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Introduction: A machine-learning-based paradigm, combining unsupervised
and supervised components, is proposed for the problem of real-time
monitoring and decision support during labour, addressing the limitations of
current state-of-the-art approaches, such as the partograph or purely
supervised models.
Methods: The proposed approach is illustrated with World Health Organisation’s
Better Outcomes in Labour Difficulty (BOLD) prospective cohort study data,
including 9,995 women admitted for labour in 2014–2015 in thirteen major
regional health care facilities across Nigeria and Uganda. Unsupervised
dimensionality reduction is used to map complex labour data to a visually
intuitive space. In this space, an ongoing labour trajectory can be compared
to those of a historical cohort of women with similar characteristics and
known outcomes—this information can be used to estimate personalised
“healthy” trajectory references (and alert the healthcare provider to significant
deviations), as well as draw attention to high incidences of different
interventions/adverse outcomes among similar labours. To evaluate the
proposed approach, the predictive value of simple risk scores quantifying
deviation from normal progress and incidence of complications among similar
labours is assessed in a caesarean section prediction context and compared to
that of the partograph and state-of-the-art supervised machine-
learning models.
Results: Considering all women, our predictors yielded sensitivity and specificity
of ∼0.70. It was observed that this predictive performance could increase or
decrease when looking at different subgroups.
Discussion: With a simple implementation, our approach outperforms the
partograph and matches the performance of state-of-the-art supervised
models, while offering superior flexibility and interpretability as a real-time
monitoring and decision-support solution.
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1 Introduction

Most pregnancy-related deaths and severe morbidities originate

around the time of childbirth, making quality of care during this

period critical for positive outcomes (1). The closest to a

reference labour monitoring and decision support tool has been

World Health Organization (WHO)’s partograph. However, it

has failed to fully establish its value, for reasons including its

one-fits-all definition of healthy spontaneous progress and overall

lacking evidence of positive impact of its use (1). Currently, there

is little consensus regarding the best approach to labour

monitoring and decision-making, and practice is highly

nonstandardised (2), exhibiting some concerning patterns, e.g.,

significant disparities in Caesarean Section (CS) rates among and

within countries, correlating with wealth inequities (3). In this

context, the WHO has identified the need for the development

of better evidence-based monitoring and decision-support tools.

The recent emergence of Machine Learning (ML) represents new

opportunities in this regard, and several studies have been

focusing on the (supervised) learning of predictive models of CS

(4–9). However, most models are not designed for continuous

decision support. Souza et al. (10) addressed this limitation by

learning different predictive models for different time intervals

after the onset of the active phase of labour (“interval models”).

There are, however, some limitations to this approach: (1) the

intervals had to be large (2 h+) to accommodate enough training

data, which limits compatibility with real-time support; (2) only

women with available data at exactly the onset of the active

phase were eligible (below 30% in their study); (3) higher

performances reported for later intervals should be interpreted

cautiously, as they apply to a very small subset of women (∼5%
in their study, for the latest interval); (4) additionally, later

intervals encompass the slowest labours, which may play a role

in CS prediction being easier. On the other hand, even the best-

performing model has limitations. Due to the highly non-

standardised nature of CS practices (3), the occurrence (and

prediction) of CS may not always indicate a true risk of adverse
FIGURE 1

Decision support based on unsupervised dimensionality reduction.
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outcome–a critical consideration in decision support contexts.

Achieving a certain performance threshold also partially depends

on the consistency of practices represented within the dataset.

For all these reasons, a decision-support system based on “blind”

predictions from this type of models alone is unrealistic.

A more prudent and interpretable approach, closer to the

traditional way of working of the clinician, might be one based

on unsupervised learning, where all complex data are used in an

agnostic way to map individuals to a simplified representation

where they appear close to each other if they clinically present in

a similar way and far from each other otherwise. Clusters of

similar subjects can then be identified, and common

characteristics (phenotypes) can be described and linked to

diagnostics, treatment response, and so forth (Figure 1). Multiple

studies have demonstrated the usefulness of this type of approach

to support diagnosis or treatment selection (11–20), but they

usually explore decision support as a static process and in well-

standardized clinical contexts. In this paper, we propose an

adaptation of this type of approach for a labour-like context—

one that requires continuous and asynchronous monitoring and

decision support and does not match the well-standardised

nature of clinical trials.
2 Methods

2.1 Paradigm definition

2.1.1 Fundamentals
In clinical reality, individual presentation can be very

heterogeneous, and one’s expected “healthy” trajectory can

depend on individual characteristics. With unsupervised

dimensionality reduction, we can obtain a representation of

initial presentation where subjects are grouped by similar

characteristics. To monitor a new subject, their initial data are

mapped to said representation—close to the projections of the

most similar previous subjects, in terms of all available clinical
frontiersin.org
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FIGURE 2

Illustration of the proposed paradigm.
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information, herein referred to as peers. Dynamic changes in

subject data translate into dynamic changes in their positioning

with regards to each other in the simplified space, defining low-

dimensional trajectories. We can then use knowledge, from trials

and cohorts, on the temporal trajectories and outcomes of peers

to estimate personalised reference healthy trajectories and

likelihoods of different events for new subjects. At each follow-

up, the new-subject’s position in the simplified space and,

subsequently, the reference healthy trajectory and likelihoods of

important events, are updated. We propose a novel online

monitoring and decision-support paradigm that builds upon this

line of reasoning, illustrated in Figure 2. This allows transferring

the tracking of subject progress from an (often) high-dimensional

space onto a simplified and visually intuitive space, to facilitate

interpretation (unsupervised component), while also providing

dynamic, personalised scores regarding deviation from

“normality” as well as likelihoods of important events based on

peer knowledge (supervised component). The two components

complement each other in supporting decision-making.

Although the development of the proposed methodology was

motivated by the specific problem of labour monitoring and

decision support, it can generalise to any clinical monitoring and

decision-support problem. For that reason, we present it as a

generic pipeline (2.1), and subsequently apply it to the specific

context of childbirth (2.2).
2.1.2 Implementation
As Figure 3 illustrates, we first use dimensionality reduction to

represent high-dimensional data in a lower-dimensional,

interpretable space, where subjects are positioned based on

similarities, and temporal data are visualized as trajectories. The

monitoring of new subjects is handled by (1) projecting updated

data to this space, (2) retrieving peers, i.e., those confined to a

close neighbourhood, (3) from those who naturally evolved

towards healthy outcomes, estimating a normal/expected
Frontiers in Global Women’s Health 03
progression, and calculating the current subject’s deviation from

it, and (4) using incidence of interventions/outcomes among

peers to compute chance of occurrence for the current subject.

Implementation options for this high-level pipeline are diverse;

we describe one possible implementation. Herein, a compact

description is provided; for a detailed mathematical description,

we refer the reader to Supplementary Material Appendix A.

2.1.2.1 Learning distribution of “previous subjects” in
simplified space
A necessary first step is learning a projection model to a simplified

space from data of “previous subjects” and using it to pre-compute

their initial distribution and temporal trajectories (Figure 3, top). In

this paper, this was achieved using unsupervised multiple kernel

learning (MKL) (11, 12, 14, 21), an algorithm that allows

representing heterogeneous features in a unified manner and

subsequently merging their information to learn a lower-

dimensional embedding of the data where samples are spatially

ordered by similarity. The choice of MKL over other linear

dimensionality reduction approaches, such as PCA, comes from

its ability to address the inherent nonlinearities in labour

progression data (22). The preference for unsupervised MKL over

other non-linear dimensionality reduction techniques (23) stems

from its capacity to integrate heterogenous data features by

learning optimal kernel combinations while preserving both local

and global data structure.

2.1.2.2 Monitoring new subjects
In this paper, we resort to simple and intuitive methods to illustrate

each step of the peer-based dynamic monitoring of new subjects

(Figure 3, bottom), based on the model and pre-projected data

learned from “previous subjects”.

Given an arbitrary follow-up of a new subject:

1. Update subject. The projection model learnt in (a) is used to

project new data as soon as available, thereby updating the

subject’s position in the simplified space.
frontiersin.org
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FIGURE 3

High-level illustration of the proposed framework. Stage I—learning the distribution of “previous subjects” in simplified space. Stage II—peer-based
monitoring and decision support.
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2. Find peers. Peers are defined as the “previous subjects” whose

projections are in the neighbourhood of the (just-updated)

position of the new subject, at the same time since

admission. In practice, we define this neighbourhood as a

hypersphere centred in said position.

3. Estimate deviation from ideal progression. The ideal

trajectory is estimated as the average of the temporal

trajectories of all peers who experienced uncomplicated, good

outcome; the corresponding standard deviation is used to

capture healthy variability. In the next follow-up, the subject’s

new position can be compared to that expected, and a

coefficient of “deviation from normality” can be estimated.

Specifically, we use the z-score (i.e., number of standard

deviations away from the expected position).

4. Predict interventions/outcomes (and timings). Let us refer to

interventions and outcomes as events. We take the proportion

of peers that would yet experience a certain event as estimate of

chance of its occurrence. Moreover, the distribution of timings

of occurrence of a certain event among peers can be used to

model chance of occurrence as a function of time.

2.2 Application to childbirth

2.2.1 Data
We illustrate the proposed paradigm with the WHO Better

Outcomes in Labour Difficulty (BOLD) project dataset (1, 24),

including 9,995 labours across 13 Nigerian and Ugandan facilities

[see Oladapo et al. (1) for eligibility criteria details]. The primary

goal of the BOLD project was to identify the essential elements

of intrapartum monitoring that trigger the decision to use

interventions aimed at preventing poor labour outcomes. In this

project, women characteristics such as demographics, medical

history and previous pregnancy information were collected at

admission (we refer to these as “static” features), and dynamic

maternal and foetal measurements were monitored throughout

the course of labour, in nonstandardised time intervals

(“dynamic” features). Information on intra- and post-partum

complications, interventions and outcomes was also collected.

We use 52 features (33 static and 19 dynamic) to characterize

women in labour at each moment, detailed in Supplementary

Material Tables B.1 and B.2. Feature processing and admission-

time data imputation, when performed, are also described in

these tables. Missing data among follow-ups was dealt with

through previous (follow-up) value propagation. A subset of 549

women who still presented missing data after the described

operations was removed from the analysis, as well as an

additional 876 women due to time inconsistencies. Experiments

were thus performed with data from 8,470 women.
2.2.2 Experiments and analysis
To illustrate and validate the paradigm, the dataset was

randomly separated into training (n = 6,349) and testing

(n = 2,121). Figure 4 illustrates the evaluation of the proposed

ML framework using the BOLD dataset. The training set was
Frontiers in Global Women’s Health 05
used to illustrate a “historical cohort of women”, and the testing

set was used to simulate new women to be monitored.

Uncomplicated labour was defined consistently with previous

adverse outcome definitions (25–27).

Two types of analysis are performed: (1) descriptive and

qualitative, regarding the interpretability of labour dynamics in

the simplified space; (2) quantitative, regarding the supervised

component of the paradigm, which uses knowledge on

interventions and outcomes among peers to provide risk

estimates. For illustration purposes, and given the relevance of

this problem in current research, we focus on CS prediction.

Three simple, intuitive scores per woman are derived from the

paradigm and evaluated as predictors (mathematical description

in A.3), and subsequently compared to the current state of the

art: the maximum values, when considering all follow-ups, of

1. CS chance estimate (according to SELMA study practice, as

defined in 2.1.2b-step 4), vCSp .

2. Product of chance estimate and the “deviation from normality

coefficient” (as defined in 2.1.2b-step 3), vCSpz .

3. Product of chance estimate, deviation from normality

coefficient and time since admission, vCSpzt .

For each score, the cut-off that provided the best balance between

Sensitivity (SE) and Specificity (SP) was learnt from the training set

(using 3-fold cross validation) and subsequently applied to make

predictions in the testing set (Figure 4). Performance was

compared to those of the partograph’s alert and action lines, as

well as Souza et al.’s (10) admission and earliest-interval

predictive models. Under the assumption that CS practice can be

very nonstandardised/biased, we also investigated whether

predicting CS was easier for some subgroups of women over

others, and whether our approach could be used to aid in the

detection and understanding of practice patterns and biases.

3 Results

Neighbourhood parameters yielding the results presented in

this section are discussed in Supplementary Material Appendix C.
3.1 The simplified space and clinical
interpretability

Figure 5 illustrates the initial distribution of the training set

(“previous women”) in the simplified MKL space, and its clinical

interpretability. Each scatter point corresponds to one woman.

As time advances and data are updated, the scatter points

(women) move around in the space, defining low-dimensional

trajectories. Given that we are dealing with a multidimensional,

nonlinear mapping, similarity-ordering in the MKL space can

follow complex patterns. For the sake of example, we illustrate

cases where clinical variables appear highly ordered along a

single dimension of the MKL space, using the Pearson

correlation coefficient to identify such cases. The values for all

dimension-variable correlation pairs are available in

Supplementary Material Figure E.1. Herein, we discuss some of
frontiersin.org
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FIGURE 4

Evaluation of the proposed framework using the BOLD dataset. 1—train/test partition; 2—learning the MKL projection model with the admission-time
features of the training set; 3—projecting all training and testing data; 4—three-fold cross-validation and predictor extraction with the training set; 5—
extraction of cut-off values for the predictors; 6—framework application and predictor extraction with the testing set; 7—application of learned cut-
offs in the testing set predictors.

Nogueira et al. 10.3389/fgwh.2025.1368575
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FIGURE 5

Similarity-based spatial ordering in the MKL space with BOLD dataset. Each plot corresponds to the projections of the samples used to learn the MKL
model, color-coded by a specific clinical variable that highly correlates with one of the dimensions of the MKL space. ρd= Pearson correlation
coefficient between dimension d and the clinical variable.

FIGURE 6

Interpreting trajectories in the MKL space. (a) Examples of trajectories defined by training set subjects in the first 2 dimensions of the MKL space. Each
sequence of connected triangles corresponds to the trajectory of one subject; the triangles correspond to follow-ups and are coloured by respective
follow-up timing normalized by delivery timing (taking admission-time as reference). (b) Example of initial estimate of expected “healthy” progress
along the first dimension (E1

p,0 (t)) for a subject with a low initial (first-dimension) value (y1p,0). Top—E1
p,0 (t), cropped at the timing where jC(t)j is

halved. Bottom—count of the number of peers with uncomplicated labours used to estimate E1
p,0 (t), jC(t)j.

Nogueira et al. 10.3389/fgwh.2025.1368575
the highest correlations. For instance, the first dimension of the

obtained space (Figure 5, top row) strongly correlates with

cervical dilatation, duration of contractions and, inversely, with

the time between contractions. Thus, in this dimension, women

in similar stages of labour are closely positioned, with the
Frontiers in Global Women’s Health 07
leftmost and rightmost regions of the scatter plots mostly

populated with women that, at admission-time, were in earlier

and later labour stages, respectively. Expectedly, women move

towards the right in the scatter plot, as labour advances, as

illustrated by Figures 6A,B. Figure 6A overlays the trajectories
frontiersin.org
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defined by some of the women of the training set on the admission-

time scatter plot of dimensions 1 vs. 2. Each sequence of connected

triangles corresponds to the trajectory of one woman, with each

triangle corresponding to a follow-up and coloured by its timing

normalized by delivery timing. A heterogeneity in initial

positioning (i.e., admission-time labour stage) is observed.

Nonetheless, all individuals define a rightwards trajectory as

labour progresses. In Figure 6B, the initial estimate for “ideal

trajectory” (mean in blue ± standard deviation in pink) is plotted

for a woman whose initial projection lies on the leftmost region

of the scatter plot. As expected, with time, projection values in

dimension 1 increase. An initially larger slope gradually

decreases, a pattern that is explained by the fact that in the first

few hours both slower and faster deliveries are weighing in on

the curve estimation, whereas for later timings the remaining

slower deliveries push the mean curve down.

The position in the lower-dimensional space is not only

dictated by dynamic labour variables. In the bottom row of

Figure 5, we can observe that position in dimension 2 correlates

with the country variable, while also correlating with cervix

consistency, suggesting an association (bias) between country and

qualitative assessment of cervix consistency. The rightmost

scatter plot suggests that experiencing emotional distress is

translated into a downwards displacement in dimension 6.

The clinical interpretability of the MKL space can also ease the

identification of patterns regarding the occurrence of target events.

For example, in Figure 7, analogous scatter plots are generated, this

time coloured by the (non)occurrence of CS and adverse outcome.

Figure 7-left shows a higher density of CS in subjects on the

leftmost region, which we have seen to correspond to earlier-

stage labours. This trend is confirmed in Figure 7-right, which

displays the outcome ratio along dimension 1. In the case of

adverse outcome (Figure 7-center), no evident correlation pattern

along dimension 1 is observed. Supplementary Material

Figure D.1 extends this analysis to the practice of amniotomy

and labour augmentation, with the resulting patterns suggesting a
FIGURE 7

Spatial distribution of outcomes of interest in the admission-time MKL sp
dimension 1, obtained by dividing scatter points in 20 bins along dimensio
dimension 1, computed as the percentage of the total scatter points contai
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correlation between the incidence of these interventions and

initial subject positioning along dimension 2 (Supplementary

Material Figure D.1-right). Given the correlation of dimension 2

with country observed in Figure 5, this pattern suggests a higher

incidence of both interventions within Nigeria’s facilities.
3.2 Prediction of CS

Table 1 contains the results of the CS prediction experiments

for the complete training and testing populations. During cross-

validation, the AUC ranged from 0.746 to 0.767, suggesting a

decent predictive power. With the selected cut-offs, our simple

predictors largely outperformed the partograph’s alert and action

lines, achieving a significantly better trade-off between metrics

related to the positive (SE, PPV) and negative (SP, NPV) class.

For example, vCSpzt achieved SE and SP≈ 0.7, PPV≈ 0.26 and

NPV≈ 0.94. On the other hand, alert and action lines present

relatively good specificity, at the expense of poor sensitivity.

When applying the learned cut-offs to the testing set,

performances did not significantly change, suggesting

good generalizability.

As mentioned in 2.2.2, because CS practice can be highly non-

standardised/biased, we also investigated whether predicting CS

was easier for some women subgroups, and whether our

approach could help detecting and understanding practice

patterns and biases. Figure 8 illustrates the partitioning of the

admission-time MKL space in different spatial regions, which is

equivalent to splitting women in subgroups of similar

characteristics upon admission. The same spatial division is

carried out for the training (left) and testing (right) sets. The

cut-offs of Table 1 were recomputed for each training subgroup

and applied to make predictions in the testing counterparts. In

the top rows, the predictor among {vCSk }, k [ {p, pz, pzt}, with

the best performance in testing [measured as the maximum value

for min(SE,SP)] is identified for each region, along with the
ace. Right: CS and bad outcome (BO) rates of occurrence throughout
n 1 and computing each bin’s occurrence rate (top); data density along
ned in each bin (bottom).
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selected cut-off and corresponding performance metrics. In the

bottom rows, the process is repeated for the partograph’s alert

and action lines. All scatter plots are coloured by the subgroup

minimum between SE and SP.

The top-left plot of Figure 8 reveals a rightward-oriented

gradient in performance, suggesting that the prediction of CS is
TABLE 1 Cs prediction results.

Train (n = 6,349; nCS = 817)

Th SE SP PPV NPV AUC (p-value)
Alert line — 0.540 0.728 0.227 0.915 —

Action line — 0.290 0.889 0.278 0.894 —

vCSp 0.221 0.699 0.700 0.256 0.940 0.763 (<0.0001)

vCSpz 0.422 0.683 0.684 0.242 0.936 0.746 (<0.0001)

vCSpzt 2.038 0.706 0.707 0.263 0.942 0.767 (<0.0001)

Test (n= 2,121; nCS = 279)

Th SE SP PPV NPV AUC (p-value)
Alert line — 0.548 0.731 0.236 0.914 —

Action line — 0.290 0.891 0.288 0.892 —

vCSp 0.221 0.674 0.696 0.251 0.934 —

vCSpz 0.422 0.659 0.712 0.258 0.932 —

vCSpzt 2.038 0.703 0.712 0.270 0.941 —

n, sample size; nCS, number of positive cases; Th, threshold/cut-off; SE, sensitivity; SP,
specificity; PPV, positive predictive value; NPV, negative predictive value; AUC, area

under the receiver operating characteristic; p-value, fraction of 10,000 random permutation

tests for which AUC≥AUC observed.

FIGURE 8

Subgroup performances in the training (left) and testing (right) sets for our
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more effective for subgroups corresponding to later labour stages

at admission time. If we merge early- and late-admission women

into two larger subgroups (in practice, we separated them in

latent- and active-phase labours, based on the 4 cm dilatation

threshold recommended at the time the SELMA study was

conducted), this effect is evident (see Supplementary Material

Table F.1). The gap between the two subgroup performances is

significant, with both growing apart from the average

performances of Table 1, but in opposite directions—towards

poorer performances in the early-admission group (vCSpzt :

AUC = 0.646, SE = 0.606, SP = 0.609) and higher performances in

the late-admission group (vCSpzt : AUC = 0.813, SE = 0.739,

SP = 0.740). Note that CS is approximately twice as incident in

the early-admission subgroup, which has a direct effect on PPV

and NPV. Note also that, despite the diverging pattern in the

two subgroup performances, subgroup-level performance is in

both cases being optimised by using subgroup- rather than

globally estimated cut-offs (Supplementary Material Figure F.1).

It is observed that, to optimize performance, cut-off values

increase for the early- and decrease for the late-admission

subgroup (Supplementary Material Table F.1), when compared to

the globally estimated (Table 1), a result that is not counter-

intuitive given the corresponding variations in CS incidence and

the latter’s role in the very definition of the predictors. Regarding

generalizability, in most cases (both in Figure 8 and

Supplementary Material Table F.1), subgroup performances in
predictors (top) and partograph’s alert and action lines (bottom).
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the testing set are comparable to those in the training set. For a

more detailed breakdown of the model’s performance by

subgroups, which are driven by demographics and clinical

characteristics at admission time, we refer the reader to Figure 5

and Supplementary Material Figure E.1.

When it comes to the partograph’s alert and action lines

(bottom row of Figure 8, Supplementary Material Table F.1),

subgroup performances range from comparable to significantly

worse than those of our predictors, depending on the women

subgroup at hand. It is further observed in the bottom row of

Figure 8 that they generally perform best in partitions where

Uganda is the dominant country (revisit Figure 5), suggesting

that in Uganda CS practice was more aligned with the

partograph’s guidelines.

Lastly, Figure 9 positions our predictor vCSpzt , in terms of

performance, with regard to the admission-time and earliest

interval (0–2 h after onset of 4 cm of cervical dilatation) models

by Souza et al. (10) (referred to as Model 1 and Model 2 in the

original publication, respectively; also trained and tested with the

BOLD dataset). Comparisons are restricted to Models 1 and 2,

since sample sizes drop sharply for later interval Models

(3 and 4), making comparisons more problematic. It includes the

performance of vCSpzt as in Table 1 and also when considering

only late-admission women (Supplementary Material Table F.1).

For all models, cut-off values that provided the best balance

between sensitivity (SE) and specificity (SP) during training were

subsequently applied to make predictions in the testing set. Our

simple predictor is observed to perform comparably to the

predictive models but can be applied to all individuals and

during real-time follow-up, as opposed to Souza’s approach.
4 Discussion

4.1 Main findings

We have presented a novel machine learning-based approach

for interpretable, continuous labour monitoring and decision-
FIGURE 9

Comparison of the performances obtained with our model vCSpzt (on the ent
≥4 cm dilatation) against those of admission-time (model 1) and earlies
specificity; PPV, positive predictive value; NPV, negative predictive value; AU
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support. The unsupervised component of the proposed paradigm

allows the dynamic visualisation of high-dimensional labour data

as low-dimensional trajectories in a clinically-interpretable

simplified space, and their comparison with personalised (and

also dynamically-updated) estimates of healthy trajectories

(Figures 5, 6). This simplified representation also proved helpful

in the identification of practice biases—e.g., in the cases of

qualitative assessment of cervix consistency (Figure 5) or

interventions by amniotomy and labour augmentation

(Supplementary Material Figure D.1) between countries, or in the

intervention by CS between early and late-admission women

(Figure 7). Simple supervised peer-based scores, quantifying

deviation from normal progress or likelihood of important

events, significantly outperformed the current reference

monitoring and decision-support tool (the partograph) and

performed comparably to state-of-the-art predictive models,

while having wider clinical applicability (Figure 9). Finally,

adjusting predictor cut-offs to maximise subgroup-level

performances, confirmed our hypothesis that in some women

subgroups CS prediction is significantly easier than in others

(Figure 8, Supplementary Material Table F.1, Figure F.1).
4.2 Interpretation

The differences found regarding the intervention by CS

between early and late-admission women align with findings

from previous observational studies (28–32). Performances in the

problem of CS prediction were overall moderate. As explained in

the Introduction, they are also intrinsically limited by the

inconsistency of CS practice in the available datasets.

Nonetheless, using a straightforward implementation and simple

predictors, we could significantly outperform the partograph and

perform comparably to previous predictive models. In summary,

our paradigm combines attractive features of the partograph

(visual assessment, intuitive, interpretable) with performance

levels of purely supervised ML models (in this case regarding

CS), while overcoming limitations of both approaches
ire cohort or when considering only late-admission women, defined as
t interval (model 2) models by Souza et al. (10). SE, sensitivity; SP,
C, area under the receiver operating characteristic.
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(non-personalised, non-dynamically-updated and univariate

reference trajectories in the partograph; temporal resolution and

applicability limitations in the predictive models). On the other

hand, the finding that for some women subgroups CS prediction

is significantly easier than in others is likely a direct consequence

of CS practice heterogeneity itself—eventually more consistent,

thus predictable, in some cases than others. Subgroup analysis

can thus be useful to locally optimise predictive performances

and to help identifying and understanding practice differences

and biases, an important step in terms of the objectives of

practice standardization and optimization of intervention towards

risk minimization.
4.3 Contextualization with existing literature
on ML-based labour prediction

When comparing our work to other existing literature, results

can vary significantly depending on study population

characteristics, cohort size, the parameters included, and the

complexity of the ML models used. For example, a study carried

out in Iceland (33), found that interrogating transabdominal and

transperineal ultrasound data using a Cox Regression model

achieved an AUC for prediction of spontaneous delivery of 0.68

(95% confidence interval, 0.55–0.80). Another study from

Canada (34), achieved an AUC of 0.77 (0.71–0.82) when

predicting emergency caesarean section deliveries based on

antenatal obstetric and non-obstetric factors (acquired before the

onset of labour) using a multivariate logistic regression model.

Finally, a study from the US (35), achieved and AUC of 0.82 at

predicting vaginal delivery at 4 h from admission interrogating

intrapartum data using a supervised ML model. Despite

variations in study settings, datasets, and statistical or ML models

used, it is notable that all predictions fall within an AUC range

of [0.68–0.82]. This places our model’s performance on par with

these other ML-based implementations. Furthermore, our model

utilizes data that can be feasibly collected in low- and middle-

income countries (LMICs), unlike other studies that rely on

cardiotocography (36) or ultrasound data (33), which are

challenging to obtain in resource-limited settings.
4.4 Clinical implications of our study

To emphasize the clinical implications of our study, we have

implemented a prototype of a decision support system based on

the ML approach presented in this manuscript. Further details of

this prototype can be found in Supplementary Material

Appendix G. The prototype proposed offers a real-time decision

support tool that guides clinicians in monitoring labour

progression by providing dynamic risk assessments and

intervention recommendations based on a patient’s ongoing

trajectory. These personalized insights could be particularly

relevant in LMICs, where deviations from normal labour can go

undetected due to limited access to skilled healthcare

professionals. In these settings timely interventions can
Frontiers in Global Women’s Health 11
significantly impact maternal and neonatal outcomes. By offering

clear, actionable recommendations, our prototype could support

early intervention and better resource allocation, potentially

reducing the burden of preventable complications such as

prolonged labour or the unnecessary use of caesarean sections.
4.5 Limitations

A first limitation is the inherent difficulty in validation—in

terms of the prediction of actual risk of adverse outcome/

“necessary” interventions—as we only have knowledge on what

interventions were performed and the resulting outcomes, but no

guarantee of causality. A second limitation relates to the specific

implementation of the proposed paradigm, where, for sake of

illustration, a simplified version was tested, especially when it

comes to the supervised component’s estimation of the “ideal”

trajectory and risk estimates. This paper thus represents a proof

of concept, where simple implementation choices already show

the potential of the proposed paradigm, based on the internal

validation results. Before clinical integration, a more sophisticated

implementation would be required. The dataset, originating from

the BOLD project conducted in 2014–2015, may seem dated in

comparison to newer datasets available in the literature.

However, our methodological approach is designed to be flexible

and adaptable to other datasets originating from different

contexts such as (37), a more recent cohort from Uganda

comprising 1,040 deliveries, or (38), a cohort from Kenya

comprising 1,164 deliveries. Furthermore, the BOLD dataset

focuses solely on practices in two countries. Additional external

validation is required to assess its applicability in other

healthcare settings with different population characteristics and

clinical practices. It should be stressed that the usefulness of the

proposed approach is maximised when the training data are

representative of the population and context under study. Finally,

the subgroup analysis presented in Figure 8 helps identify

potential performance biases or limitations in the predictive

model, which could guide future refinements to ensure that our

approach benefits a diverse patient population.
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