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Introduction: Two thirds of Alzheimer’s disease (AD) patients are female.

Genetic and chronic health risk factors for AD affect females more negatively

compared to males.

Objective: This multimodal neuroimaging study aimed to examine sex

differences in cognitively unimpaired older adults on: (1) amyloid-β via 18F-

AV-45 Florbetapir PET imaging, (2) neurodegeneration via T1 weighted MRI

volumetrics, (3) cerebral blood flow via ASL-MRI. We identified AD risk factors

including genetic (APOE genotype status) and health markers (fasting glucose,

mean arterial pressure, waist-to-hip ratio, and android and gynoid body fat)

associated with neuroimaging outcomes for which we observed sex differences.

Methods: Participants were sedentary, amyloid-β positive older adults (N= 112,

ages 65–87 years) without evidence of cognitive impairment (CDR= 0).

Results: Multivariate analysis of covariance models adjusted for intracranial

volume, age, and years of education demonstrated lower volume [F (7,

102) = 2.67, p= 0.014] and higher blood flow F (6, 102) = 4.25, p≤ 0.001)

among females compared to males in regions of interest connected to AD

pathology and the estrogen receptor network. We did not observe sex

differences in amyloid-β levels. Higher than optimal waist to hip ratio was

most strongly associated with lower volume among female participants.

Discussion: Findings suggest genetic and chronic health risk factors are

associated with sex-specific AD neuroimaging biomarkers. Underlying sex-

specific biological pathways may explain these findings. Our results highlight

the importance of considering sex differences in neuroimaging studies and

when developing effective interventions for AD prevention and risk reduction.

KEYWORDS

Alzheimer’s disease, sex differences, risk factors, biomarkers, neuroimaging

1 Introduction

The female sex has long been established as a major risk factor for late-onset

Alzheimer’s disease (AD) (1). Two thirds of patients with AD are women (2). Sex

differences reported in the incidence and prevalence of AD have historically been

attributed to women’s longer life expectancy relative to men (3, 4). Further, research

examining AD risk factors has historically adjusted for sex as a covariate in analyses

but has given limited attention to describing or explaining sex and gender differences.
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Recent research suggests sex and gender differences in AD risk

factors may better explain disparities in prevalence and has

identified approximately 30 AD risk factors that affect men and

women differently, with the female sex often more severely

affected (5–7).

The prevalence rates of several AD risk factors (e.g.,

cerebrovascular events, depression, sleep disorders) are higher

among women, especially after the age of 60 and during the

postmenopausal period (8–13). One hypothesis proposed to

explain this sex disparity suggests estrogen deprivation, as is

observed in the menopause transition, may function as a

physiological trigger of increased risk for AD given estrogen’s

(specifically 17b-estradiol) neuroprotective properties for the

female brain (7, 14–17). The estrogen hypothesis emphasizes the

numerous fundamental functions of estrogen highlighting an

extensive network of estrogen receptors throughout the female

brain, predominantly in the hypothalamus, hippocampus, and

amygdala (18, 19), areas of the brain known to be associated

with early AD pathophysiological changes. The most robust

evidence for sex-differences in AD risk are found in genetic risk

factors [i.e., Apolipoprotein E (APOE) genotype] and chronic

health factors (e.g., cardiometabolic disease) (5).

The most studied and strongest genetic risk factor for late onset

AD is APOE genotype status (20, 21). APOE gene expression has

been shown to be more detrimental for female carriers of the

APOE4 allele. Females that carry the APOE4 allele have 1.5 times

higher risk for AD (1, 22, 23) and more amyloid-β plaques and

neurofibrillary tangles compared to male APOE4 carriers (20).

The literature has suggested an age-specific effect in females

wherein female APOE4 carriers may have an early susceptibility

to AD compared to males (24). Among cognitively intact older

adult APOE4 carriers, females have greater decreases in

hippocampal connectivity, and increased whole brain

hypometabolism and atrophy compared to age matched male

APOE4 carriers (25, 26). The mechanisms underlying the

interaction between sex and APOE genotype remain unclear.

Cardiometabolic diseases (e.g., type 2 diabetes, metabolic

syndrome) and their risk factors (e.g., hypertension,

hyperlipidemia, non-optimal fasting glucose, obesity) associated

with sedentary behavior are well-known risk factors for AD

development and progression for both men and women (27–30).

The development, symptoms, and treatment of cardiometabolic

diseases differ by sex (6, 31–35). For example, microvascular

disease contributes the most to cardiovascular disease in women

compared to obstructive coronary artery disease in men (36).

Additionally, men tend to develop cardiometabolic disease at an

earlier age than women given that the menopause transition and

loss of neuroprotective estrogen may accelerate the development

of cardiometabolic diseases in postmenopausal women (37–39).

Estrogen has demonstrated a protective effect on the brain

through its vasodilatory effects, enhancing the production of

sensitivity to vasodilatory factors (40, 41). Historically, the

literature has suggested a greater impact of vascular disease for

men’s AD risk vs. women, yet given the growing body of

literature on sex differences and cardiometabolic disease, it has

been suggested that the diagnosis of hypertension, high

cholesterol, and diabetes may put women at a higher risk for AD

(6). However, more research is needed.

Emerging lines of evidence suggest one out of every three AD

cases can be linked to modifiable risk factors (42). Thus, early

detection and prevention efforts have dominated the field in

addressing the AD epidemic. Given that many of these identified

cardiometabolic disease risk factors are modifiable, it is

important to fully understand sex differences, including how they

contribute to AD-specific pathophysiological changes (amyloid-β

accumulation, neurofibrillary tangles, and neuronal and synaptic

loss) when developing effective AD risk reduction interventions.

Through various imaging techniques, early detection of amyloid,

tau, and neurodegeneration (A/T/N) biomarkers that begin in the

brain before detectable clinical symptoms, can identify

cognitively unimpaired individuals that may be at high risk for

developing AD, and therefore benefit the most from

interventions to prevent or delay the onset of AD.

When considering the evidence of amyloid-β accumulation

beginning as early as 15–20 years before clinically observable

cognitive decline and age being the strongest predictor for AD,

this suggests amyloid-β accumulation may begin in or before

midlife, which notably coincides with the menopause transition

for women and the inherent loss of the neuroprotective 17b-

estradiol (16, 43, 44). New evidence indicates the presence of sex

differences among AD-related biomarkers start in midlife such

that menopausal women exhibit more amyloid-β accumulation

and decreased gray and white matter volumetrics among AD-

specific regions of the brain compared to age-matched men

(45–47). However, the research examining whether these early

AD biomarker sex differences persist with aging among

cognitively unimpaired older adults with consideration to

postmenopausal women, remains mixed. Further, in vivo multi-

modal imaging studies have shown 17b-estradiol densities among

estrogen-regulated networks vary over the menopause transition,

suggesting women’s menopausal status is important to

interpretation of neuroimaging results (48).

Studies that have examined sex differences in amyloid-β

accumulation among cognitively unimpaired older adults have

shown conflicting results including no sex differences (49, 50),

older adult males exhibiting more amyloid-β accumulation (51),

and older adult females exhibiting more amyloid-β accumulation

(52). Sex differences among volumetric studies indicate

cognitively unimpaired older adult males exhibit more age-

related atrophy in the temporal regions of the brain compared to

older adult women, including smaller hippocampus volume

indicative of possible downstream AD neurodegeneration (49, 53,

54). However, review of longitudinal studies examining brain

atrophy, amyloid-β accumulation, and cognitive decline have

demonstrated sex differences in the progression of AD such that

women may be protected relative to men during the prodromal

AD phases, but exhibit faster progression rates of decline

compared to men (5, 55).

In addition to the typical imaging techniques and biomarkers

used to detect early pathophysiological processes of AD following

the A/T/N classification system, decreased cerebral blood flow

has been discussed as a novel AD biomarker given the
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hypothesis of vascular abnormality of AD in conjunction with the

ability of ASL-MRI to detect tissues and cell damage that precede

neurodegeneration (56–59). Further, cerebral blood flow is an

important index of aging and it is well known that velocity

decreases as a function of aging (60–62). Research has

demonstrated sex differences in cerebral blood flow. An increased

rate of cerebral blood flow in young adult women compared to

age-matched men has been widely reported and observed using a

variety of types of techniques [e.g., single photon emission

computed tomography (SPECT), PET, Xenon-enhanced

computed tomography, and ASL-MRI] (63–67). Few studies have

examined sex differences in cerebral blood flow among older

adults and those few report conflicting results (68, 69). One

unique cross-sectional study looked at the rate of changes in

cerebral blood flow across the lifespan in women and men (70).

Results indicated sex-specific trajectories with aging such that

women had a greater rate of decline of cerebral blood flow over

the lifespan compared to men and that this disparity in the

declining rate was most pronounced during ages 61–70 years old

(70). For women, cerebral blood flow has been found to differ

dependent on menopause stage, such that postmenopausal

women demonstrate higher cerebral blood flow compared to

other menopause stages (i.e., pre- and peri-menopausal) in

certain brain regions (71).

Taken together, this research suggests contradictory results

regarding sex differences in amyloid-β accumulation, AD related

brain volumes, and cerebral blood flow in cognitively unimpaired

older adults. These discrepancies suggest that there may be

confounding variables that have yet to be fully explored, such as

specific risk factors that may contribute to the findings and the

timing of data collection relative to aging and menopause

processes. For example, recent studies suggest that brain volume

and connectivity change across the menstrual cycle (72, 73) and

estrogen receptor density changes in estrogen regulated networks

throughout the menopause transition (48), though these cycles

are rarely considered in neuroimaging research. The underlying

mechanistic explanations for these observed sex differences

remain understudied. The role of sex hormones has been

postulated as a potential contributing factor to these results (41)

and examining the associations with sex specific risk factors may

help with clarification.

For example, Rahman et al. (44) uniquely examined the

relationship between sex-specific risks and AD biomarkers in a

cohort of middle-aged adults. The study demonstrated higher

amyloid-β deposition and lower MRI gray and white matter

volumes in middle-aged women compared to age-matched men.

Notably, hormonal risk factors, including menopause stage and

hormone replacement therapy use, predicted these identified sex

differences among the biomarkers when compared to other

clinical, chronic health, and lifestyle AD risk factors (47).

The present study sought to investigate sex differences in the

association of brain volume and cerebral blood flow with chronic

health risk factors in a cohort of sedentary, amyloid-β positive,

older adults. Our multimodal imaging study examined in vivo

sex differences in a cohort of high-risk, cognitively unimpaired

older adults on the following AD biomarkers: (1) amyloid-β on

18F-AV-45 Florbetapir PET imaging, (2) neurodegeneration via

TI weighted MRI volumetrics, and (3) cerebral blood flow via

ASL-MRI in AD-specific brain regions. Given that research

suggests these brain biomarkers may indicate early detection of

AD pathology, it is important to identify the most impactful risk

factor associated with sex-driven AD biomarkers for each of the

sexes to inform future hypotheses and research studies targeting

optimization of AD prevention interventions. Therefore, we

aimed to identify which of the literature supported sex-specific

AD risk factors (genetic, cardiometabolic health factors) was

most strongly associated with the identified sex-driven AD brain

biomarker differences. Based on the estrogen hypothesis, we

hypothesized that cognitively unimpaired older adult women

would exhibit greater amyloid-β burden, reduced volume, and

reduced cerebral blood flow in preclinical AD-specific brain

regions (e.g., amygdala, hypothalamus, and parahippocampal

gyrus) compared to men and that genetic (APOE genotype) and

health risk factors (cardiometabolic disease) would predict these

differences. Findings contribute to understanding the optimal

timing of AD prevention trials while gaining insight regarding

AD risk in the postmenopausal stage for women.

2 Materials and methods

2.1 Participants

The present study is a secondary analysis utilizing the baseline

data from the Alzheimer’s Prevention through Exercise (APEX,

NCT02000583) study, a 52-week exercise intervention conducted

at the University of Kansas Alzheimer’s Disease Research Center

examining change in AD-related neuroimaging biomarkers.

Baseline medical history, neuropsychological testing, and MRI

and amyloid-β imaging with PET (18F-AV-45) were assessed in

all participants during baseline evaluations. The APEX study

recruited a convenience sample of 121 cognitively unimpaired,

sedentary older adult participants. Inclusion criteria for APEX

required age of 65 years and older, a Clinical Dementia Rating

(CDR) Scale of 0, a Mini Mental State Examination (MMSE)

score of 27 or greater, normal cognitive test performance on the

Uniform Data Set neuropsychiatric battery (74, 75) for age and

years of education (<1.5 SD below the mean), stable 30-day

medication regimen, sedentary or underactive as defined by the

Telephone Assessment of Physical Activity (76), and amyloid-β

positive measured by PET (18F-AV-45). Persons with insulin-

dependence, significant hearing or vision problems, clinically

evident stroke, cancer in the previous 5 years, or recent history

(<2 years) of major cardiorespiratory, musculoskeletal, or

neuropsychiatric impairment, were excluded.

2.2 Genetic risk factors

APOE genotype status was determined from frozen whole

blood samples (acid citrate dextrose anticoagulant) using an

allelic discrimination assay to identify single nucleotide
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polymorphisms (ThermoFisher). We distinguished APOE4,

APOE3, and APOE2 alleles using Taqman probes to APOE-

defining polymorphisms: rs429358 (C_3084793_20) and rs7412

(C_904973_10). This was included in the model as the number

of ϵ4 alleles (0, 1, 2).

2.3 Chronic health risk factors

The presence or absence of the following cardiovascular risk

factors were included as predictive measures in the present analysis:

(1) Optimal fasting glucose: A fasting glucose measurement was

collected twice during the baseline visit and an average of these

measurements was calculated. A fasting glucose level of above

100 mg/dl was considered non-optimal (77). (2) High mean arterial

pressure: Mean arterial pressure was collected at the baseline visit

and pressures that read above 100 was considered high (78). (3)

Higher than optimal waist to hip ratio: Waist to hip ratio was

calculated at the baseline visit and dichotomized as yes/no

depending on whether it was above the sex-specific cutoff of greater

than or equal to 0.85 in women and greater than or equal to 0.90

in men (79). A Dual-energy x-ray absorptiometry (DEXA) scan

was completed during the baseline visit to measure total body,

android (trunk and abdomen adipose tissue), and gynoid (hip and

thigh adipose tissue) fat percentages. (4) Higher than optimal total

body fat percentage: Total body fat percentage was calculated by

dividing fat mass (g) by the sum of lean mass (g), bone mineral

content (g), and fat mass (g). Total body fat percentage greater

than 38% in women and greater than 25% in men was considered

nonoptimal (80). (5) Total android fat percentage: Android fat

percentages were calculated by dividing android fat (g) by total fat

mass (g). (6) Total gynoid fat percentage: Gynoid fat percentages

were calculated by dividing gynoid fat (g) by total fat mass (g).

2.4 AD brain biomarker imaging

For the proposed analysis, sex differences were examined

among three neuroimaging techniques (18F-AV-45 PET imaging,

T1 weighted MRI, and ASL-MRI, described in detail below).

2.4.1 Amyloid-β pet acquisition, processing, and
analysis

All participants received Florbetapir PET scans obtained

approximately 50 min after administration of intravenous

florbetapir 18F-AV45 (370 MBq) acquired with the GE Discovery

ST-16 PET/CT scanner. Two PET brain frames of five minutes in

duration were acquired continuously, summed, and attenuation

corrected. The mean PET signal across the brain was divided by

the signal from whole cerebellum ROI to produce a Standardized

Uptake Ratio (SUVR) image. Three experienced raters interpreted

the images to determine amyloid status as “elevated” or “non-

elevated” as previously described (81–84). Raters first reviewed raw

PET images visually then examined the cerebellum normalized

SUVRs in 6 cortical regions (anterior cingulate, posterior cingulate,

precuneus, inferior medial frontal, lateral temporal, and superior

parietal cortex) and projection maps comparing SUVRs to an atlas

of amyloid negative scans (83). Inclusion criteria for the primary

exercise trial was dependent on PET ratings and therefore

completed prior to randomization. As such, PET ratings were

blinded to groups/conditions by default. Participants for the

primary exercise trial were eligible if they had an “elevated” scan or

were in the “subthreshold” range which was defined as a mean

cortical SUVR for the 6 ROIs >1.0, which represented the upper

half of non-elevated scans [mean cortical SUVR for non-elevated

scans (n = 166) 0.99 (0.06 SD)] (81). Therefore, participants

included in the present secondary analysis were determined to have

“sub-threshold” and “elevated” amyloid status as determined from

the primary exercise trial. To remain consistent with universal

quantitative standards, SUVR values were converted to Centiloid

values (Centiloids = 196.9 × SUVR_wholecerebrefFBP−196.03) (85,

86). The Centiloid values for the sample met the ADNI standard

amyloid-β positivity threshold (25.3 Centiloids/composite reference

region). Therefore, participants included in the present secondary

analysis were determined “amyloid-β positive.”

2.4.2 MRI acquisition, processing, and analysis

All participants received Siemens Skyra 3 T T1-weighted MRI

of the brain (Tesla Skyra scanner; MP-RAGE 1 × 1 × 1.2 mm

voxels, TR = 2,300 ms, TE = 2.98 ms, TI = 900 ms, FOV

256 × 256× mm, 9° flip angle; Pulsed ASL single-shot EPI

3.8 × 3.8 × 4.0 mm, TR = 3,400 ms, TE = 13 ms, TI = 700 ms, FOV

240 × 240× mm, 90° flip angle; ASL single-shot EPI

3.8 × 3.8 × 4.0 mm, TR = 3,400 ms, TE = 13 ms, TI = 700 ms, FOV

240 × 240 mm, 90° flip angle). To facilitate assessment across

imaging modalities, participants’ sequences were co-registered to

the anatomical native space using SPM12 (https://www.fil.ion.ucl.

ac.uk/spm/software/spm12). The anatomical image was

segmented using CAT12 and the Neuromorphometic atlas

(https://neuro-jena.github.io) producing both regional volumes

and region of interest (ROI) masks. These individualized ROI

were used to extract mean values from the ASL-MRI and 18F-

AV-45 PET SUVR images. ASL-MRI data were processed using

the ASLTbx for SPM12 before mean blood flow values were

extracted from each ROI. These MRI acquisition, processing, and

analyses procedures were automated across participants and

throughout the primary exercise trial to maintain quality control.

2.4.3 Brain regions of interest

Bilateral ROIs examined via 18F-AV-45 Florbetapir PET

imaging included the anterior cingulate gyrus, lateral temporal

lobe, precuneus, and superior parietal lobe. The anterior

cingulate gyrus was primarily examined based on the results of

the Rahman et al. (47) study that found amyloid-β deposition

sex differences in this region among middle-aged adults. The

additional neocortical areas (lateral temporal lobe, precuneus,

and superior parietal lobe) in addition to a global measurement

of amyloid-β deposition were included because of their identified

association with preclinical AD according to the amyloid cascade

hypothesis of AD (87, 88).

Bilateral ROIs examined via TI weighted MRI volumetrics

included the hippocampus, amygdala, parahippocampal gyrus,
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entorhinal cortex, insula, and caudate. The hippocampus,

amygdala, parahippocampal gyrus, ínsula, and caduate were

primarily examined based on the findings of the Rahman et al.

(47) study that demonstrated sex differences among these 5

regions in a cohort of middle-aged adults. The entorhinal cortex

was also included as a ROI because it has been identified among

the literature as one of the earliest brain regions found to be

associated with Preclinical Alzheimer’s disease via structural

MRI, along with the hippocampus, amygdala, and

parahippocampal gyrus (89). The hippocampus and the

amygdala are also brain regions included in the estrogen receptor

network and therefore considered ROI for the present study

examining sex differences (90).

Bilateral ROIs examined via ASL-MRI included the

hippocampus, amygdala, parahippocampal gyrus, temporal lobe,

precuneus, anterior cingulate cortex, and superior parietal lobe.

The precuneus, anterior cingulate cortex, and superior parietal

lobe were primarily examined based on research that has found

reduced cerebral blood flow in these three regions in patients

with AD (91–94). The hippocampus, amygdala, parahippocampal

gyrus, and temporal lobes were included regions due to their

association with preclinical AD (89, 90).

2.5 Statistical analyses

2.5.1 Aim 1: AD brain biomarker differences by sex

To investigate regional differences between men and women in

T1 weighted volumes (MRI), amyloid-β deposition (18F-AV-45

PET), and cerebral blood flow (ASL-MRI), we applied the following

three Multivariate Analysis of Covariance (MANCOVA) models to

examine whether regions differed by sex with age, education, and

modality specific confounders (TIV = total intracranial volume,

number of APOE4 alleles) included as covariates.

MANCOVA 1: Amyloid-β deposition (18F-AV-45 PET) of 5

ROIs∼Sex + Age + Education +APOE4 status

MANCOVA 2: T1 weighted volumes (MRI) of 6

ROIs∼Sex + Age + Education + TIV

MANCOVA 3: Cerebral blood flow (ASL-MRI) of 7

ROIs∼Sex + Age + Education

Univariate ANCOVAS corrected for multiple comparisons

using Benjamini Hochberg’s critical value for a false discovery

rate of 5% were used to further examine significant

group differences.

2.5.2 Aim 2: associations between sex-driven AD

brain biomarker differences and AD risk factors
(genetic, chronic health conditions)

To identify which of the risk factor variables were most strongly

associated with sex differences in neuroimaging biomarkers identified

in Aim 1, we used Least Absolute Shrinkage and Selection Operator

(LASSO) regressions, a method used to obtain a subset of

predictors that are, empirically, the strongest by excluding

extraneous variables (95). The combination of different types of

predictors (i.e., continuous vs. discrete) and some multicollinearity

among the predictors (Table 1) further justified use of the LASSO

regression vs. other statistical approaches (i.e., OLS regression, ridge

regression) (96, 97). The LASSO regression approach was also used

in an effort to remain consistent with the literature such that the

Rahman et al. study used a LASSO regression approach to study a

similar research question with a comparable ratio of sample size

(150 participants) to number of predictors (15 predictors) to our

study (47). Given the sample size and number of predictors,

LASSO regressions within a k 2-fold cross validation using a leave

one out predictive modeling framework were applied to the data to

choose final models with the lowest minimum cross-validated error

and identify the most essential predictors.

Variables that were included as potential predictors include:

APOE4 status (0, 1, 2 alleles), non-optimal fasting glucose (yes/

no), elevated mean arterial pressure (yes/no), higher than

optimal waist to hip ratio (yes/no), higher than optimal body fat

percentage (yes/no), total android fat (percentage), total gynoid

fat (percentage), age (years), and education (years). To identify

the risk factors specific to sex, interaction terms between the sex

variable and the risk factor variables were also included.

3 Results

3.1 Participants

Data from 121 participants were available for analysis. We

excluded 9 participants (6 with incomplete genetic testing data

and 3 with incomplete MRI data). The remaining 112

participants (ages 65–87 years) were examined, including 74

women and 38 men who were college educated on average and

95.5% of which identified as non-Hispanic, White. There were

no quality control issues with the neuroimaging data from these

112 participants. Results from the Community Healthy Activities

Model Program for Seniors (CHAMPS) self-report questionnaire

suggest the sample did not engage in a substantial amount of

physical activity and were primarily sedentary. Participants’

clinical, demographic, and anthropometric characteristics are

given in Table 2. Notably, none of our participants in our sample

carried 2 APOE4 alleles therefore APOE4 status in the

subsequent models were reduced from three levels to two (0,1

alleles). Males and females did not differ by age, APOE4 carrier

status, fasting plasma glucose, mean arterial pressure, or physical

activity engagement. The female group was less educated

(p = 0.049) and included a higher percentage of participants who

identified as African American (p < 0.001), had a lower waist to

hip ratio (p < 0.001), lower total body fat percentage (p < 0.001),

higher android fat percentage (p < 0.001), and lower gynoid fat

percentage (p < 0.001) than the male group.

3.2 Aim 1: AD brain biomarker differences
by sex

Brain ROIs showing biomarker differences between sex groups

were first identified among amyloid-β deposition (18F-AV-45
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PET), T1 weighted volumetrics (MRI), and cerebral blood flow

(ASL-MRI) among the whole sample.

3.2.1 Pet amyloid-β burden

A Multivariate Analysis of Covariance (MANCOVA) of the

relationship between sex and amyloid-β burden (Centiloid) in

four hypothesized brain ROIs (anterior cingulate gyrus, lateral

temporal lobe, precuneus, superior parietal lobule) and global

amyloid-β burden adjusting for age, education, and APOE4 status

revealed no group differences between men and women [F (5,

103) = 2.09, p = 0.071, η
2p = .09], and post hoc individual

ANCOVAs revealed no significant group differences for the these

ROIs (Table 3).

Given the unequal sex sample sizes in this analysis (males = 38,

females = 74), the Box’s Test for Equivalence of Covariance

Matrices (Box’s M) was conducted and interpreted using p < .001

as a criterion (98, 99). The Box’s M test was not significant

(p = 0.120), suggesting the assumption of homogeneity of

covariance matrices was met.

3.2.2 MRI volumes

After adjusting for intracranial volume, age, and years of

education, a MANCOVA yielded a significant group difference

between male and female volumes in six hypothesized ROIs [F

(6, 102) = 4.25, p < 0.001, η2p = .20] (Table 4). The Box’s M test

was not significant (p = 0.115), suggesting the assumption of

homogeneity of covariance matrices was met. post hoc univariate

ANCOVAs, corrected with the Benjamini-Hochberg critical value

for a false discovery rate of 5%, among the six hypothesized

ROIs revealed there was a statistically significant difference in

volumes between males and females in the amygdala [F (1,

107) = 4.78, p < 0.048] and entorhinal cortex [F (1, 107) = 15.89,

p≤ 0.002]. Females exhibited lower volume in the amygdala

(p < 0.048, 95% C.I. = 0.01, 0.13), and entorhinal cortex

(p < 0.002, 95% C.I. = 0.17, 0.49) compared to males (Figure 1).

TABLE 1 Correlation matrix: Pearson correlation coefficients (for continuous variables)/point biserial coefficient (for one continuous variable and one
dummy variable)/Phi coefficient (for two dummy variables).

Variable 1 2 3 4 5 6 7 8 9 10

1 Age (years) 1

2 Education (years) 0.02 1

3 Sex (male/female) −0.03 −0.14 1

4 APOE4 status (0,1 alleles) 0.06 −0.02 0.01 1

5 Fasting plasma glucose (yes/no) −0.05 −0.13 0.21 0.01 1

6 Mean arterial pressure (yes/no) −0.12 −0.09 0.01 0.07 0.44 1

7 Waist-to-hip ratio (yes/no) −0.04 0.08 1.99 0.01 0.46 0.01 1

8 Total body fat (yes/no) 0.07 0.22 2.36 0.01 0.02 0.01 0.82 1

9 Android fat, % −0.04 −0.01 0.15 −0.08 0.02 0.15 −0.05 −0.15 1

10 Gynoid fat, % 0.02 0.09 −0.14 0.12 0.05 −0.01 0.05 0.24 −0.74 1

Bolded values indicate moderate-strong relationships.

TABLE 2 Participants’ demographic, clinical, and anthropometric
characteristics by sex group.

Variable All Male Female p
value

No. 112 38 74

Age, y 71.56 (±4.94) 71.91 (±4.35) 71.38 (±5.24) 0.574

Education, y 16.04 (±2.34) 16.67 (±2.45) 15.72 (±2.23) 0.049

White, % 95.5 100.0 93.2 <.001

CHAMPSa

Physical activity, hours/

week

18.39 (8.59) 18.11 (9.71) 18.52 (8.46) 0.816

Caloric expenditure,

METS/kg/week

8,636.46

(5,960.83)

10,920.15

(7,281.13)

7,462.90

(4,801.33)

0.004

APOE4 status

1 ϵ4 allele, % 45.6 44.7 47.3 0.799

2 ϵ4 alleles, % 0.00 0.00 0.00 —

Hysterectomyb, %

positive

21.7 — 21.7 —

HRTa, % hx use 65.2 — 65.2 —

Laboratory Values

Fasting plasma glucose,

mg dl-1

99.49 (±13.5) 102.52

(±13.11)

97.93

(±13.55)

0.087

Mean arterial pressure,

mmHg

93.90 (±9.68) 94.42 (±8.71) 93.63

(±10.19)

0.667

Waist-to-hip ratio 0.87 (±0.09) 0.96 (0.07 0.83 (±0.06) <.001

Total body fat, % 38.76 (±7.36) 39.70 (±7.50) 38.27 (± 7.28) <.001

Android fat, % 8.93 (±1.88) 8.55 (±1.63) 9.12 (±1.98) <.001

Gynoid fat, % 15.90 (±2.35) 16.36 (±2.21) 15.66 (±2.39) <.001

CHAMPS, community healthy activities model program for seniors questionnaire; HRT,

hormone replacement therapy; Hx, history.

Bolded values indicate significance at p < 0.05.
aCHAMPS, n = 109.
bHysterectomy, HRT n = 23.

TABLE 3 Sex group differences by PET imaging modality (centiolid).

Region All
(n= 112)

Male
(n = 38)

Female
(n = 74)

p
value

η
2p

Anterior

cingulate

gyrus

60.99

(±41.05)

60.04

(±43.75)

61.48 (±39.89) 0.853 <.01

Lateral

temporal lobe

45.84

(±33.99)

47.56

(±32.66)

44.96 (±34.92) 0.853 <.01

Precuneus 58.02

(±44.75)

61.13

(±48.58)

56. 43 (±42.90) 0.853 <.01

Superior

parietal lobule

26.91

(±34.86)

22.84

(±32.96)

28.99 (±35.83) 0.667 <.01

Global

amyloid

burden

1,240.14

(±206.18)

1,245.85

(±217.95)

1,237.22

(±201.33)

0.944 <.01
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3.2.3 ASL-MRI cerebral blood flow
A MANCOVA of the relationship between sex and cerebral

blood flow in hypothesized brain ROIs after adjusting for age

and years of education was statistically significant, and the female

group showed higher blood flow compared to the male group in

several brain regions [F (7, 102) = 2.67, p = 0.014, η
2p = .15]

(Table 4). Given the unequal sex sample sizes in this analysis

(males = 38, females = 74), the Box’s Test for Equivalence of

Covariance Matrices (Box’s M) was conducted and interpreted as

not significant (p = 0.002) using p < .001 as a criterion based on

current literature, suggesting the assumption of homogeneity of

covariance matrices was met (98, 99). post hoc univariate

ANCOVAs, corrected with the Benjamini-Hochberg critical value

for a false discovery rate of 5%, among the seven hypothesized

ROIs revealed there was a statistically significant difference in

cerebral blood flow between males and females in the amygdala

[F (1, 108) = 8.70, p = 0.014], temporal lobe [F (1, 108) = 12.46,

p = 0.005], anterior cingulate cortex [F (1, 108) = 8.65], p = 0.014),

precuneus [F (1, 108) = 17.29, p = 0.005], superior parietal lobe [F

(1, 108) = 11.93, p = 0.005], parahippocampal gyrus [F (1,

108) = 8.26, p = 0.015], and hippocampus [F (1, 108) = 11.66,

p = .005]. Females exhibited higher blood flow in the amygdala

(p = 0.014, 95% C.I. =−7.92, −1.55), temporal lobe (p < 0.005,

95% C.I. =−7.05, −1.97), anterior cingulate cortex (p = 0.014,

95% C.I. =−6.53, −1.27), precuneus (p = 0.005, 95% C.I. =−9.48,

−3.36), superior parietal lobe (p = 0.005, 95% C.I. =−6.65,

FIGURE 1

MRI volume Sex differences by region of interest accounting for differences in total volume, age, and education. Error bars represent 95% confidence

intervals.

TABLE 4 Sex group differences by MRI imaging modality.

Modality All (n = 112) Male (n = 38) Female (n = 74) p value η
2p

MRI-volumea Region, ml

Hippocampus 6.40 (±0.65) 6.74 (±0.70) 6.22 (±0.55) 0.884 <.01

Amygdala 1.74 (±0.18) 1.86 (±0.18) 1.68 (±0.14) 0.048 .04

Parahippocampal gyrus 6.75 (±0.66) 7.22 (±0.71) 6.51 (± 0.49) 0.536 <.01

Entorhinal cortex 4.28 (±0.48) 4.66 (±0.44) 4.08 (±0.37) 0.002 .13

Insula 11.73 (±1.13) 12.41(±1.24) 11.38(±0.90) 0.603 <.01

Caudate 5.67 (±0.66) 5.93 (±0.73) 5.53 (±0.57) 0.205 .01

ASL-MRI Region, ml/100 g/min

Amygdala 28.57 (±) 8.25 25.13 (±) 7.76 30.33 (±) 7.94 0.014 .07

Temporal Lobe 31.18 (±) 6.57 28.20 (±) 5.90 32.71 (±) 6.30 0.005 .10

Anterior Cingulate Cortex 23.45 (±) 6.75 20.74 (±) 6.04 24.84 (±) 6.31 0.014 .07

Precuneus 28.73 (±) 8.08 24.73 (±) 7.79 30.78 (±) 7.38 0.005 .14

Superior Parietal Lobe 21.70 (±) 6.28 19.02 (±) 6.77 23.07 (±) 5.64 0.005 .10

Parahippocampal Gyrus 31.60 (±) 8.87 28.22 (±) 9.04 33.34 (±) 8.26 0.015 .07

Hippocampus 31.76 (±) 7.94 28.23 (±) 6.80 33.57 (±) 7.37 0.005 .10

Bolded values indicate significance at p < 0.05, after correction using the false discovery rate (FDR).
aAdjusted for total intracranial volume.
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−1.80), parahippocampal gyrus (p = 0.004, 95% C.I. =−8.53,

−1.56), and hippocampus (p = .005, 95% C.I. =−8.37 −2.22)

compared to males (Figure 2).

3.3 Aim 2: associations between sex-driven
brain biomarker differences and AD risk
factors

LASSO regressions were used to identify which risk factor variables

were most strongly associated with the Aim 1 identified brain ROIs

showing neuroimaging biomarker differences between sex groups.

LASSO regressions selected the most informative predictors for MRI

volumetric measurements of the amygdala and entorhinal cortex as

well as ASL-MRI cerebral blood flow measurements of the amygdala,

temporal lobe, anterior cingular cortex, precuneus, superior parietal

lobe, parahippocampal gyrus, and hippocampus regions. Ten AD

risk factor variables were included as potential predictors including

age, education, sex, APOE4 carrier status, non-optimal fasting plasma

glucose, non-optimal mean arterial pressure, non-optimal waist-to-

hip ratio, non-optimal total body fat percentage, android fat

percentage, and gynoid fat percentage. To evaluate sex differences,

interaction terms with each predictor multiplied by sex were included

in the LASSO models (females = 1, males = 0).

3.3.1 MRI VOLUMES

Overall, all LASSO models for volumetric MRI ROIs performed

well being able to explain a range of 63%–77% of the variation in

the values of the training data coupled with appropriate RMSE

values for each model. Table 5 lists the estimated coefficients and

associated R2 and RMSE values for each model.

Older age predicted lower volumes in both amygdala and entorhinal

cortex for both men and women. Higher education predicted lower

amygdala volumes for both men and women, but only lower

entorhinal volumes for women. Education was not significantly

associated with entorhinal cortex volume for men. Carrying an APOE4

allele was associated with higher entorhinal cortex volume for females,

but for males, carrying a APOE4 allele was associated with lower

entorhinal cortex volume. The APOE4 allele was not significantly

associated with amygdala volumes for either males or females.

Body composition variables were associated differently with

brain volumes for males and females. For females, higher waist

to hip ratio was associated with lower volumes in both amygdala

and entorhinal cortex. For males, body composition was not

significantly associated with amygdala volume. Meanwhile, for

males, lower gynoid fat and total fat were associated with lower

entorhinal cortex volume, but higher android fat was associated

with lower entorhinal cortex volume.

We observed sex-specific patterns for glucose levels and arterial

pressure. High fasting glucose levels were associated with lower

amygdala volumes for females but were not associated with

amygdala volumes for males. By contrast, high fasting glucose

was associated with lower entorhinal cortex volumes for males,

but not for females. High mean arterial pressure was associated

with lower volume in the entorhinal cortex for women and

higher volume for men. Arterial pressure was not associated with

amygdala volume in males or females. The pattern of MRI

volumetric association results by sex are summarized in Table 6.

3.3.2 ASL-MRI CEREBRAL BLOOD FLOW
Overall, the seven LASSOmodels for ASL-MRI cerebral blood flow

of ROIs performed very poorly explaining a range of 0%–1% of the

variation in the values of the training data. The models failed to

accurately predict the most impactful risk factors associated with the

ASL-MRI cerebral blood flow of these regions. Table 5 lists the

estimated coefficients and associated R2 and RMSE values for

each model.

FIGURE 2

ASL-MRI Sex differences by region of interest accounting for differences in age and education. Error bars represent 95% confidence intervals.
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4 Discussion

This multimodal neuroimaging study aimed to examine

sex differences in preclinical AD biomarkers among amyloid

positive, cognitively unimpaired, sedentary older adults.

Several key findings emerged that support and extend

existing literature. First, significant sex differences in MRI

T1-weighted regional volumes and ASL-MRI measured

blood flow were observed in regions linked to preclinical

AD pathology and the estrogen receptor network. Second,

AD MRI T1-weighted volumetric biomarker differences in

the amygdala and entorhinal cortex were most consistently

and strongly associated with impaired fasting glucose,

higher than optimal waist to hip ratio, and APOE4 carrier

status for females. Third, amyloid-β levels were comparable

between females and males, likely due to the selection

criteria of our study. Many of the implicated

cardiometabolic risk factors are modifiable. Thus,

these findings support the development of sex-specific

strategies for modifiable risk factors during the AD

preclinical stage.

TABLE 5 LASSO regression estimation coefficient results by sex and imaging modality and region of interest: MRI measures.

Modality Group Region (R2, RMSE) Predictor Estimate

Volumetric MRI

Female Amygdala Age −0.027

(0.626, 0.394) Education −0.036

Fasting plasma glucose −0.001

Waist-to-hip ratio −0.014

Male Age −0.019

Education −0.001

Female Entorhinal cortex Age −0.078

(0.767, 0.471) Education −0.102

APOE e4 status 0.026

Waist-to-hip ratio −0.010

Mean arterial pressure −0.103

Male Age −0.096

Fasting plasma glucose −0.048

APOE e4 status −0.009

Mean arterial pressure 0.091

Android fat % −0.032

Gynoid fat % 0.033

Total body fat 0.008

ASL MRI

Female Amygdala Android fat % 1.482

(<.001, 6.868) APOE e4 status 0.147

Male Education −0.164

Fasting plasma glucose −0.123

Female Temporal Lobe Android fat % 1.261

(0.040, 6.182)

Female Anterior Cingulate Cortex Android fat % 1.322

(<.001, 5.549) APOE e4 status 0.007

Female Precuneus, Age 0.397

(<.001, 13.788) Education 1.629

APOE e4 status 0.095

Female Superior Parietal Lobe Age 0.180

(0.030, 0.180) Education 0.122

Female Parahippocampal Gyrus Android fat % 0.704

(0.011, 7.334)

Female Hippocampus Female sex 1.563

(0.009, 7.033) APOE e4 status 0.100

Male Waist-to-hip ratio −0.232

Bolded values indicate moderate-strong relationships.

TABLE 6 Pattern of MRI volume predictors by sex.

Region Female Male

Lower amygdala volume Older age

Higher education

High waist/hip ratio

High fasting glucose

Older age

Higher education

Lower entorhinal cortex

Volume

Older age

Higher education

High waist/hip ratio

APOE ϵ4 negative

High arterial pressure

Older age

High fasting glucose

APOE ϵ4 positive

Low arterial pressure

Higher android fat

Lower gynoid fat

Lower total fat
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4.1 Pet amyloid-β burden sex differences

We did not find any associations between sex and amyloid-β

burden among the anterior cingulate gyrus, lateral temporal lobe,

precuneus, superior parietal lobule or global amyloid-β burden

after adjusting for age, education, and APOE4 status. It is

important to note that we did not expect a large amount of

variance among participants given the inclusion criteria of the

primary APEX study required sub-threshold or elevated amyloid-

β, which may have contributed to the lack of sex differences we

observed. These results are consistent with literature using cross-

sectional methodology among cognitively unimpaired older

adults (100) and across the lifespan (49). Some research suggests

sex differences in amyloid-β burden may exist but occur earlier

in the aging process, such as during the menopause transition

(47, 71). According to the estrogen hypothesis, estrogen may

reduce aggregation of amyloid-β. This suggests that the decrease

of estrogen during menopause may result in greater amyloid-β

burden. Future studies may benefit from exploration of the

potential effect of reproductive history, including years since

menopause, and its relationship with amyloid-β burden among

postmenopausal women. An alternative possibility for the lack of

observed sex differences in amyloid-β may relate to a lack of

control for AD family history in our study, for which prior

studies for have demonstrated sex differences (101). Future

studies should consider family history when examining the

interaction between sex and asymptomatic cerebral β-amyloidosis.

4.2 MRI-volumetric sex differences

Our volumetric findings are consistent with the UK Biobank,

the largest single-sample study of structural sex differences in

the human brain ages 40–69 (102). The study found males

generally had larger total brain volume and among similar

brain regions of interest to the present study to include the

hippocampus, nucleus accumbens, amygdala, caudate nucleus,

dorsal pallidum, putamen, and thalamus, accounting for total

intracranial volume. Interestingly, they also found women had

thicker cortices compared to men globally and among these

regions, except notably the entorhinal cortex which was found

to be thicker among men. It is important to note that greater

brain volume does not necessarily indicate better brain health

and can be region specific (103). For example, greater

amygdala volumes are associated with depression, while

greater hippocampal volumes are associated with higher levels

of education (104, 105). Future studies should independently

examine sex differences among regional cortical thicknesses,

which have been shown to be phenotypically independent

from structural volume measurements (106). In a sample

slightly younger than the current study, Rahman et al. and

Mosconi et al. also demonstrated lower MRI gray and white

matter volume among women in the amygdala compared to

men. Contrary to our results, they also found women had

significantly lower volumes in the hippocampus,

parahippocampal gyrus, insula, and caudate in addition to the

superior, middle, and orbital frontal gyrus, anterior cingulate

(ACC), and putamen among 46–65 year old females compared

to age-matched males (47, 71). Future studies with larger

sample sizes and across age groups during post-menopause

should explore the potential underlying mechanisms of sex

hormones in volumetric sex differences accounting for

reproductive system health history.

Other studies have found no sex differences among

structural volumetric measurements of the hippocampus and

amygdala among samples of healthy older adults (51, 107).

Contrary to these studies, our sample included sedentary older

adults with asymptomatic cerebral β-amyloidosis. Further,

findings from the Buckley et al. review suggest a greater

amyloid-β burden sensitivity in females relative to males such

that females with asymptomatic cerebral β-amyloidosis had

steeper cognitive decline and neurodegeneration compared to

males (100). Taken in context of our volumetric findings, this

may suggest faster neurodegeneration among women with

preclinical AD risk factors compared to men. However, the

cross-sectional design of the present study limits this

interpretation, and longitudinal studies are needed to further

investigate this potential sex difference in AD trajectory.

4.3 ASL-MRI cerebral blood flow sex
differences

Our study found that older adult women with asymptomatic

cerebral β-amyloidosis had higher blood flow in regions

associated with AD pathology and estrogen receptor network

ROIs compared to men. The mechanism explaining the

interaction between sex and cerebral blood flow in our results

remains unclear. It is important to note that greater blood flow

does not necessarily indicate better brain health. Prominent

theories in the aging neuroscience literature regarding

compensation, maintenance, reserve, and age-related brain

restructuring or reorganizing are examples of when higher blood

flow in a certain region is not a marker of health (108, 109).

Mosconi et al. demonstrated the role of estrogen on cerebral

blood flow during the menopause stages. The study found higher

cerebral blood flow in postmenopausal women compared to

perimenopausal women in the supramarginal gyrus, middle and

superior temporal gyrus, superior and inferior front gyrus of

both hemispheres (71). In their discussion of these findings, they

proposed a compensatory reaction to glucose hypometabolism,

and increased ketone metabolism after menopause as an

underlying reason for the increased cerebral blood flow in these

women (71). These results could also be interpreted as suggesting

that blood flow is reduced during the fluctuations of

perimenopause. During post menopause, blood flow may be

returning to normal or possibly higher functioning as part of the

compensatory reaction. Given our postmenopausal sample was

older than the Mosconi et al. study, in addition to our

volumetric sex difference findings, there could be a similar

compensatory process occurring for women later in

the aging process.
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4.4 Associations between sex-driven
biomarker differences and AD risk factors

Only one other study to our knowledge has evaluated

associations of demographic and cardiometabolic risk factors

with MRI T1 weighted volumetric sex differences in cognitively

unimpaired older adults (110) and none have examined

predictors of ASL-MRI cerebral flood flow. In contrast to our

methodological approach, Armstrong et al. followed its sample

for 20 years and measured volumetric loss using cardiovascular

predictors defined differently than in our study (110). They

found that for males, hypertension and higher HDL cholesterol

were protective against volume loss in the hippocampus and

parahippocampal gyrus. In females, obesity (as measured by

body mass index ≥30 kg/m2 vs. <30 kg/m2) was found to protect

against volume loss in the temporal gray matter but hypertension

was associated with steeper volumetric decline in gray matter

compared to men (110). Although we did not replicate their

hypertension findings in the hippocampus or parahippocampal

gyrus, we also found sex differences to include high mean

arterial pressure predicted higher volume in the entorhinal cortex

for males and lower volume for females.

Contrary to their study, our study measured obesity using more

precise methods including waist to hip ratio, DEXA measured total

fat percentage, and type of fat distribution (android and gynoid fat

percentages). Our study found that for men, more android fat but

less gynoid fat and total fat was associated with smaller entorhinal

cortex volumes. In contrast, we found for females, waist to hip

ratios greater than or equal to 0.85 was associated with smaller

amygdala and entorhinal cortex volumes and more android fat

predicted higher cerebral blood flow. It is worth noting that

measures of body composition have shown non-linear age-related

associations with cognitive performance and dementia such that

body fat or higher body weight may be protective at some life

stages and deleterious at other stages (111). Thus, timing may be

a critical element to understanding sex differences in the

influence of cardiometabolic risk factors on the brain.

Weight distribution during aging differs between males and

females and may further explain some of our findings. For males,

adipose tissue slowly but consistently accrues in the trunk and

abdomen during aging over time (android fat distribution). For

females, prior to menopause, adipose tissues accrue in the hips

and thighs (gynoid fat distribution). After menopause, gynoid fat

mass stabilizes while android fat distribution steeply increases

into older adulthood (112, 113). Android fat distribution is

associated with visceral fat accumulation which is directly related

to cardiovascular disease and metabolic disease compared to

other types of fat, both of which have been recognized as risk

factors for Alzheimer’s disease. Females in our sample had

significantly more android fat percentage on average compared to

males, suggesting postmenopausal females in our sample have

more visceral fat and susceptibility for increased cardiovascular

risk factors.

Our sample was sedentary by design. Research has found

sedentary behavior is associated with additional risk factors for

Alzheimer’s disease including impaired glucose and lipid

metabolism (114). Sedentary behavior over time may lead to

abdominal obesity and insulin resistance, the most prominent

underlying risk factors for cardiovascular disease and metabolic

syndrome (115–119). In addition, according to the estrogen

hypothesis, postmenopausal women are also more susceptible to

these cardiovascular and metabolic risk factors due to the loss of

estrogen and its key protective effect for glucose transport

regulation and aerobic glycolysis. This area of aging research may

provide a potential understanding of the underlying cause for the

association finding between waist to hip ratio with brain volume

among AD pathology and estrogen receptor network region ROIs

in our sample of sedentary older adult females. More research is

warranted to further explain these findings.

We did not find any impactful risk factors associated with the

ASL-MRI cerebral blood flow of these regions. The ASL-MRI

technique is helpful with providing information on vascular

physiology and neurodegeneration related to AD pathology

(120). The present study was limited by the amount of risk

factors included in the model directly related to vascular

physiology. Future studies should consider including more risk

factors, as acknowledged in our limitations section. Research has

shown neurofibrillary tangle tau biomarkers and cerebral blood

flow are correlated, independent of other well-known AD-related

risk factors (i.e., APOE, amyloid, small vessel disease markers)

(121–123). These studies suggest significant cerebral blood flow

changes may be associated with more downstream AD pathology.

Given our study sample consisted of cognitively unimpaired

individuals that may be at high risk for developing AD, it may

be too early to associate ASL-MRI measurements with any risk

factors. More studies examining ASL-MRI in AD at-risk

populations with consideration of tau are needed. Methodological

limitations and inconsistencies of the ASL-MRI technique may

have also contributed to our findings. The accuracy and

reproducibility of results in studies using the ASL-MRI technique

has been critiqued in the literature given its sensitivity to motion

and reliance on the scanner’s magnetic field strength (124).

Studies also discussed concerns with lack of standardization in

acquisition across the literature (125, 126).

4.5 Strengths and limitations

The current analysis was unique in that it included

neuroimaging techniques that considered two of the three

categories as part of the A/T/N biomarker classification scheme

for AD pathology (43). Uniquely, it adds ASL-MRI imaging, a

unique imaging technique for highlighting sex and age

differences in cerebral blood flow. However, the current analysis

is missing consideration of neurofibrillary tangle tau biomarkers,

which is commonly measured by elevated CSF phosphorylated

tau and elevated NFT-tau ligand uptake on PET imaging

analyses. Future studies should consider examining sex

differences among all three categories of the A/T/N biomarker

AD pathology scheme in preclinical AD individuals.

While the LASSO regression statistical approach is designed for

predication accuracy, literature also suggests concerns with variable
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selection consistency (127, 128). Certain techniques were used in

the current study to accommodate for conducting a LASSO

regression with a smaller sample size (i.e., k2 and leave-one-out

cross validation) that we acknowledge may have oversimplified

the model threatening the reliability of our Aim 2 findings (129).

Results should be interpreted with caution and future replication

of these findings are needed. Further, LASSO regressions are

designed to estimate the relationships between variables and

make predictions however do not estimate causal effects. Our

study’s purpose was to identify the most influential risk factor

associated with sex-specific AD biomarkers to inform future

hypotheses and studies. Future studies are needed to study the

underlying mechanisms among these predicted associations.

The current study is cross-sectional in design, and therefore

causal direction of associations cannot be determined.

Longitudinal studies are needed to determine if the identified sex

differences are predictive of dementia or suggest healthy brain

aging differences over time, especially considering changes that

result from the menopause transition. The use of regression

analysis to examine a potential relationship between

neuroimaging biomarkers and cardiovascular risk factors in a

cross-sectional study is also problematic. Neurodegeneration can

only be measured using longitudinal study designs. It also cannot

be determined whether blood flow is increasing or decreasing

over time for either men or women. Lastly, cardiovascular risk

factors and health are cumulative over time therefore analyses

examining health outcomes should be controlling for health and

related behaviors over a lifetime to examine potential effects in

later life.

Our sample consisted of a preponderance of non-Hispanic

White, educated, and high socioeconomic status older adults,

diminishing the external validity of the results of the current

study. However, our sample consisted of significantly more

women who identified as African American (n = 5) compared to

men (n = 0) (Table 2). African American populations are 2 times

more likely than non-Hispanic white populations to be clinically

diagnosed with Alzheimer’s disease or dementia related

disorders, with African American women shown to be at an even

higher risk (130, 131). A recent review also suggested African

American women may demonstrate more AD-related

neurodegeneration and cerebral small vessel disease when

compared to non-Hispanic white populations (132). Therefore,

the sex differences identified for both volumetric MRI and ASL-

MRI in our study may have been strengthened with the inclusion

of significantly more African American women in our study

sample. As for the Royse et al. meta-analysis findings suggested,

more studies with larger, more diverse samples examining AD-

related biomarkers and risk factors taking both sex and

ethnoracial factors into consideration are needed. The imbalance

between sample size of men and women and relatively small

sample size of men may have limited the sex-associated

difference analyses. However, the imbalanced sample size

represents the ratio of Alzheimer’s disease prevalence between

men and women with two thirds of patients with AD being

women. Our results are only generalizable to persons who

identify as female or male and may not apply to trans-women or

trans-men. Sex and gender exist on spectrums. Research on sex-

differences must consider the health and aging experiences of

trans-people or for persons who identify elsewhere on the sex/

gender spectrum and examine factors unique to this population

such as hormone therapy.

Another limitation of the current study was the binomial (yes/

no) categorization of AD risk factors as predictive measures in the

analysis including impaired fasting glucose, high mean arterial

pressure, higher than optimal total body fat percentage, and

higher than optimal waist to hip ratio. Although dichotomizing

the risk factors aligned with typical approaches, we acknowledge

it simplifies what is an underlying continuous process.

Measurement imprecision inevitably results in some classification

errors, particularly for values close to cutoff points. Future

studies should consider the use of continuous biomarker

variables to provide a more accurate representation of the

severity of the risk factors.

The current study is limited by its lack of control for other well-

established risk factors for AD with known sex and gender

differences including other health conditions (e.g., dyslipidemia,

hypercholesterolemia), health behaviors (e.g., diet, sleep,

smoking), socioeconomic considerations (e.g., occupation,

household income), and psychological factors (e.g., depression)

(133–135). Another major limitation of the current study is its

lack of reproductive history consideration, specifically menopause

type (e.g., natural, medically or surgically induced) and treatment

(e.g., hormone therapy) as potential contributors to AD risk.

Natural menopause has been associated with AD-risk-specific

neuropathology including amyloid-β deposition and decreased

hippocampal volume (45, 46). Further, research has identified a

greater risk for AD associated with early medically or surgically

induced menopause that occurs prior to natural menopause (136,

137). A recent review and meta-analysis of research on hormone

replacement therapy and its relationship to cognition and AD

risk indicate a lack of benefits and potential harmful effects,

except in women who undergo early surgically induced

menopause. Current research suggests the formulation, route of

administration, and timing of hormone replacement therapy

initiation produce different effects and are critical to

understanding the efficacy of hormone therapy for AD

prevention (15, 138–149). Future studies should consider the

combination of these risk factors, especially reproductive history,

among one individual and the potential sex differences among

these risk factors in relation to preclinical AD biomarkers.

5 Conclusion

In summary, we examined associations of AD risk factors with

AD biomarkers by sex in our cohort of sedentary older adults. We

found widespread sex differences in T1 MRI weighted volumetrics

in addition to ASL-MRI blood flow. Sedentary older adult women

with asymptomatic cerebral β-amyloidosis demonstrated smaller

volumes in addition to higher blood flow in AD pathology and

estrogen receptor network ROIs. Genetic and chronic health risk

factors were most strongly associated with these sex-related
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differences for the female group only including higher than optimal

waist to hip ratio was most strongly associated with lower volume.

Future investigations with larger sample sizes should include

reproductive history characteristics including hysterectomy status

and hormone replacement in an effort to investigate a potential

underlying sex-specific biological pathway to brain aging to

explain these differences, as was found among midlife women in

the Rahman et al. study (47). These findings highlight the

importance of considering differences in patterns of

neurodegeneration and brain blood flow among preclinical AD

older adult males and females when developing effective AD

interventions and prevention strategies.
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