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Background: The current pandemic requires hospitals to ensure care not only for the

growing number of COVID-19 patients but also regular patients. Hospital resources must

be allocated accordingly.

Objective: To provide hospitals with a planning model to optimally allocate resources

to intensive care units given a certain incidence of COVID-19 cases.

Methods: The analysis included 334 cases from four adjacent counties south-west of

Munich. From length of stay and type of ward [general ward (NOR), intensive care unit

(ICU)] probabilities of case numbers within a hospital at a certain time point were derived.

The epidemiological situation was simulated by the effective reproduction number R,

the infection rates in mid-August 2020 in the counties, and the German hospitalization

rate. Simulation results are compared with real data from 2nd and 3rd wave (September

2020–May 2021).

Results: With R= 2, a hospitalization rate of 17%, mitigation measures implemented on

day 9 (i.e., 7-day incidence surpassing 50/100,000), the peak occupancy was reached

on day 22 (155.1 beds) for the normal ward and on day 25 (44.9 beds) for the intensive

care unit. A higher R led to higher occupancy rates. Simulated number of infections and

intensive care unit occupancy was concordant in validation with real data obtained from

the 2nd and 3rd waves in Germany.

Conclusion: Hospitals could expect a peak occupancy of normal ward and intensive

care unit within ∼5–11 days after infections reached their peak and critical resources

could be allocated accordingly. This delay (in particular for the peak of intensive care

unit occupancy) might give options for timely preparation of additional intensive care

unit resources.

Keywords: COVID-19, planning model, ICU capacities, health care delivery, pandemic

https://www.frontiersin.org/journals/health-services
https://www.frontiersin.org/journals/health-services#editorial-board
https://www.frontiersin.org/journals/health-services#editorial-board
https://www.frontiersin.org/journals/health-services#editorial-board
https://www.frontiersin.org/journals/health-services#editorial-board
https://doi.org/10.3389/frhs.2021.718668
http://crossmark.crossref.org/dialog/?doi=10.3389/frhs.2021.718668&domain=pdf&date_stamp=2021-11-16
https://www.frontiersin.org/journals/health-services
https://www.frontiersin.org
https://www.frontiersin.org/journals/health-services#articles
https://creativecommons.org/licenses/by/4.0/
mailto:christian.hauptmann@nemo-tec.de
https://doi.org/10.3389/frhs.2021.718668
https://www.frontiersin.org/articles/10.3389/frhs.2021.718668/full


Schmidt et al. COVID-19 Planning Model

BACKGROUND

The first wave of COVID-19 hit Germany relatively weakly in
comparison to other countries (1). Potential reasons for this
include extensive testing (2), early onset of mitigation measures

(1) and the extensive intensive care unit (ICU) infrastructure (3).
Additionally, a lot of resources had to be shifted to the care of

COVID-19 patients with a subsequent alteration of the health
care network. Studies observed not only a decrease in supply
in the critical care for, e.g., strokes (4), but also a reduction

of demand. For example, fewer emergency room visits were
observed in Munich (5) and fewer patients were treated with

acute coronary syndromes in German emergency rooms (6).
Additionally, waiting time for elective surgery increased and
supplies were reduced (5, 7) in order to provide intensive care
unit (ICU) capacities for COVID-19 patients. This has led to
enhanced economic pressure on hospitals (8). Abating infection
rates in June and July 2020 let hospitals return to regular patient
care. In August 2020, with eased contact precautions and lifted
travel bans for the summer holidays, infection rates were surging
again with 15.84 per 100,000 cases in Bavaria [29th of August,
7-day incidence (9)].

Against this backdrop, the question arises when and how
hospitals need to react and reallocate their personnel andmaterial
capacities to ICU wards and COVID-19 care.

Some of the current models focused on predicting the
infection rates in certain populations depending on mitigation
measures (10–12). With this estimation, the fraction of infected
patients in need for ICU care can be calculated and compared
to existing capacities, leading to a valuation of potential capacity
related deaths (13). Other models regarding the length of hospital
stay concentrated on time-to-death (14). No model so far
answers the question when and how hospitals need to react
and reallocate further capacities to ICU wards and COVID-19
general wards (NOR) in the light of increasing infection rates.
Especially in the absence of an absolute shortage of ICU beds in
Germany (15).

The aim of this study was thus to build a model based
on the first wave of COVID-19 and validated with real time
data from the 2nd and 3rd waves in Germany and to provide
possible guidance in the balance act between urgently needed
routine patient care and repeatedly increasing (ICU) capacities
in case of rising infection rates. This model should answer the
following questions:

1. When, after an increase in infections, will bed occupancy
rates reach their peaks on normal and ICU wards and
consequently, how much time do hospital leaders have to
allocate resources accordingly?

2. To what extent will this period be affected by
higher infection rates, reflected in R and by political
mitigation measures?

Finally, the model was validated by comparing the simulated
number of infection rates and ICU occupancy with real
data obtained during the 2nd and 3rd waves (September
2020–May 2021) in the four counties south-west of
Munich (ZRF FFB).

TABLE 1 | COVID-19 cases per hospital.

County Total number

of cases

Cases per ward Average LOS

NOR ICU NOR ICU

M SD M SD

Gauting 75 74 13 9.7 6.3 15.2 19.2

Starnberg 29 27 7 10.8 6.7 6.7 4.7

Dachau 95 90 37 11.9 9.3 18.4 17.5

Fürstenfeldbruck 96 91 19 9.3 5.9 9.6 8.5

Landsberg 39 34 13 10.0 7.4 9.4 7.0

Total 334 316 89 10.3 7.4 13.8 14.8

For the normal ward (NOR) and the intensive care unit (ICU) the cases per ward and

the average length of stay (LOS) are listed using the mean values (M) and the standard

deviation (SD).

METHODS

Overview of the Study
Hospital data were collected from five hospitals [Asklepios
Lung Clinic Munich-Gauting (abbreviated in the following
as Gauting), Starnberg Hospital (Starnberg), Helios
Amper Hospital Dachau (Dachau), Fürstenfeldbruck
Hospital (Fürstenfeldbruck), and Landsberg Hospital
(Landsberg)] in four adjacent counties (Starnberg, Dachau,
Fürstenfeldbruck, Landsberg am Lech) south-west of Munich
(Supplementary Table 1). Data acquisition occurred in June
2020 and included all cases positively tested for SARS-CoV-2
within these counties between January 28th (when the 1st case
was reported in Starnberg, Germany) and June 8th, 2020. The
data provided by the hospitals did not contain any patient
specific information (e.g., name, birth date). Hospitals provided
written consent for the use of their data.

Only retrospective data was used, which was collected
and anonymized at the source. Thus, a subsequent
assignment of the data file to a specific patient record is
impossible. In such cases, the vote of an ethics committee
is not necessary according to the guidelines of the
responsible ethic committee from the Ludwig-Maximilian
University Munich.

We included all provided cases (N = 334), categorized
by the respective hospital, the length of stay (LOS), and the
type of ward the patient was treated in (NOR and ICU;
Table 1).

Day counts for intermediate care (IMC) units were handled
as ICU units, due to the similarity of medical treatments and
monitoring. Hospitals consented for this approach.

Input Parameters
Since it is of medical and organizational interest to understand
with which probability a new COVID-19 case entering the
hospital will stay on the units NOR and ICU for a certain period,
the probability distribution as function of time for NOR and ICU
is chosen as the main outcome in this analysis.
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The probability distribution is defined using the notation of
Iverson brackets (16):

pwk =
1

N

N∑

i=1

[
swi ≥ k

]
(1)

where pwk ∈ [0.1] is the probability that a patient stays on day k
(k ∈ {1, 2, 3, . . .}) on ward w (w ∈ {NOR, ICU}), while N is the
total number of patients and swi is the number of days patient
i stayed on ward w. The Iverson bracket converts any logical
proposition into a number that is 1 if the proposition is satisfied
and 0 otherwise (16).

For both resulting probability distributions exponential and
Gaussian fitting was performed.

The probability of occupancy at a given day k for a new
patient was calculated separately for each of the two wards (NOR;
ICU) using Equation (1). The distribution of LOS probability
corresponding to the likelihood of occupancy started from initial
value close to 1 (0.946) for NOR and 0.267 for ICU and was
constantly decreasing. This probability of 0.267 for k = 1 also
corresponded to the probability that a newly admitted patient
needed ICU care for at least 1 day.

The probability of occupancy was fitted with the optimum
being achieved by a Gaussian fit for NOR:

p̃NORk = 1.145 · e−
(
k+6.279
16.74

)2
(2)

resulting in a root-mean-square error of 0.09887, while for ICU
the best accordance was obtained by an exponential fit:

p̃ICUk = 0.2655 · e−0.07145·k (3)

resulting in root-mean-square error of 0.005753 (Figure 1).
All calculations and fitting were implemented with Matlab

2020a and its curve fitting application (MathWorks, Inc., code
and relevant data provided in repository).

FIGURE 1 | Distribution of likelihood of occupancy at admission of a

COVID-19 patient for NOR (blue lines) and ICU (red lines). The distribution was

derived from data from the hospitals (solid lines) and fitted with the Matlab

fitting app (dashed lines).

Model and Assumptions
To demonstrate the applicability of the above obtained
probability distribution, we used a simple procedure to gain a
notional number of newly infected and hospitalized COVID-
19 patients. For this, we started with the incidence in the four
adjacent counties similar to the situation mid-August 2020, equal
to I = 14 (17). Daily number of new infections was calculated
using an effective daily growth rate (geff ) derived from the
assumed effective reproduction rate (R), where new infections
were calculated based on infections of last day and effective
growth rate of previous day. If the daily growth rate (geff ) is
larger than 1, the incidence is increasing, while for values below
1, the incidence is decreasing. The effective reproduction rate (R)
describes the average number of new infections caused by a single
infected individual in the susceptible population. In reference to
the Robert-Koch-Institute, we used R-values in this model based
on the last 8 days that is calculated by dividing the cumulative
incidence in the last 4 days by the cumulative new infections in
the 4 days before this time interval. The Robert-Koch-Institute
assumed that on average 5 days pass between the infection and
the onset of the first symptoms (18). However, since transmission
might already be possible 2 days before the onset of symptoms,
infection of others could already occur just 3 days after personal
exposure to COVID-19. The generation time describes the mean
time span from the infection of a person to the infection of the
subsequent cases infected by them. It corresponds roughly to
the serial interval that indicates the mean duration between the
onset of the disease in a case and the onset of the disease in its
subsequent cases. Robert-Koch-Institute estimated this period of
time to be around 4 days due to a relatively high infectiousness
at onset and lack of precaution measures if unaware of the
disease (18).

Following Wallinga and Lipsitch (19) and an der Heiden and
Hamouda (18), the daily growth rate and R-value are linked by
g = 4

√
R since two subsiding 4-day intervals are used to calculate

the R-value (18, 19). Further information on the interdependence
of R-value and g is provided in the online supplement.

The assumptions for the effective reproduction rate (R) were
based on the observed R-values during the 1st wave in Germany
(18). For the days prior to first measures, i.e., March 15th 2020,
R-values of 2 were observed, which reduced to R-values of 0.8
within ∼9 days after issuing mitigation measures (March 16th
2020) and the lockdown (March 23rd 2020) (18).

The incidence per 100,000 population (i
7 days
100,000) was calculated

within the last 7 days. It was assumed that the government would

adopt measures as soon as the 7-day incidence reached i
7 days
100,000

= 50. This assumption is based on observed 7-day incidences
prior to the start of measures during 1st wave in Germany
(18), also during the 2nd and 3rd waves the 7-day incidence of
50 was an important threshold to trigger or release measures.
These actions could achieve a reduction of the R-value and the
effective growth rate. The reduction was assumed to occur in
nine steps, i.e., within 9 days, to reflect some inertia and delay
and was limited to minimal value of R called Rlow, which is in
line with the observed R-values during 1st wave (18). Measures

were in place for at least M days and until i
7 days
100,000 was below
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FIGURE 2 | Schematic illustration of the model. The number of new infections is calculated for each day based on the respective R-value (green section) and is used

to derive the number of new hospitalizations. Length of stay and the number of hospitalizations allow for the estimation of the occupancy of NOR and ICU (section to

the right). Based on the 7-day incidence value derived from the number of new infections, mitigation measures are controlled, which influence the current R-value
(section to the bottom).

i
7 days
100,000. The number of new hospitalizations, i.e., new admissions
A, was deducted from the resulting number of new infections
per day (I) at a certain hospitalization rate (H), namely A =
H · I. The hospitalization rate was assumed to be equal to H =
17% (20). Using the above obtained probability distributions
for NOR and ICU, the resulting occupancy ONOR, OICU for
NOR and ICU were calculated, respectively. Schematically, this
model is reflected in Figure 2. The number of new infections
is iteratively calculated using the current R-value (green). From
the number of new infections, the 7-days incidence can be
derived, which in turn constitutes the information criterion for
the activation of mitigation measures (blue). These measures
affect the current R-value. Additionally, from the new infections,
the number of new hospitalizations can be calculated. Combined
with the information about the length of stay, the NOR and ICU
occupancy rates are derived.

RESULTS

Characteristics of Length of Stay Data
Data from N = 334 patients was collected from the five
major hospitals in adjacent counties south-west of Munich
comprising a population of 629,295 inhabitants and 1,591
hospital beds (including a maximum number of 126 ICU beds;
Supplementary Table 1). The individual hospital case counts
ranged from N = 29 cases in the Starnberg hospital to N = 96
cases in Fürstenfeldbruck.

Sorted according to the type of ward, N = 316 patients stayed
on average 10.3 (SD 7.4) days on a general ward and on average
13.8 (SD 14.8) days on ICU (N = 89 patients). The average length
of stay on a general ward differed from 9.3 (SD 5.9) days in
Fürstenfeldbruck to 11.9 (SD 9.3) days in Dachau. The highest

number of ICU admissions were observed in Dachau with N =
37 (Table 1).

Model Results
In a second step, wemodeled this LOS against the backdrop of the
epidemiological situation. With a reasonable incidence of SARS-
CoV-2 in the area, namely I = 14, and the hospitalization rate
of H = 17%, the number of new infections and subsequent
newly hospitalized patients were exemplarily calculated for R
= 2. The daily growth rate of new infections was thus found
to equal geff = 1.189 (Figure 3). With the increasing number

of new infections, i
7 days
100,000 reached and crossed the threshold of

i
7 days
100,000 = 50 on day 9 (k = 9). Assuming social distancing
measures were taken, a successive slow reduction of the growth

rate (g
steps
eff = −0.027) until Rlow = 0.8 (1geff = −0.2435)

could be observed. The maximum number of daily infections
amounted up to Imax = 122 and was observed on day 15 (tIpeak =
15, Figure 3). Mitigation measures were assumed to stay in place
for at least m = 28 days resulting in a continuous decrease of
the number of daily new infections for k > 15. Based on the
calculated notional number of new infections, Equations (2, 3)
were used for the calculation of expected occupancy in NOR and
ICU due to a notional number of new COVID-19 patients. The
expected occupancy for NOR shows a peak occupancy of 155.1
used beds at tNORpeak = 22. For ICU, the peak occupancy of 44.8 was

reached slightly later at tICUpeak = 25 (Figure 3).

After 60 days, daily incidences prevailed on a low level (I =
10.8), while NOR and ICU occupancy (27.6 on NOR; 16.0 on
ICU) were still found to be increased.

For sensitivity analysis, simulations were repeated with
different R-values ranging from 1.1 to 4.0 allowing to determine
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FIGURE 3 | Expected NOR (blue line) and ICU (red line) occupancy due to a

notional number of newly admitted Covid-19 patients. Additionally, the number

of new infections (dashed black line) and the derived number of new hospital

admissions (solid black line) are plotted. For each line the time of peak is

indicated.

the number of new admissions and their expected occupancy
for NOR and ICU, namely the day of maximal number of new
infections (tIpeak), maximal number of new infections (Imax), day

and amount of maximal number of NOR occupancy (tNORpeak ),

(ONOR
max ), and day and amount of maximal number of ICU

occupancy (tICUpeak), (O
ICU
max). From these values, the time from

maximal daily infections to the day of maximal NOR and ICU
occupancy, i.e., tNORpeak − tIpeak and tICUpeak − tIpeak, where calculated

together with the relative additional increase after tIpeak expressed

as factor aw, where aW = Ow
max/O

w
tIpeak

andw =NOR or ICU. The

number of days from maximal daily infections to the maximal
NOR and ICU occupancy increases with rising R from 5 to 8 (6 to
11) for NOR (ICU), respectively. At the same time, the additional,
relative increase aNOR and aICU increases with rising R from 1.1
to 1.5 for NOR and from 1.1 to 1.7 for ICU (Figure 4; Table 2).
For example, for an R-value of 2 the peak in new infections was
observed on day 21, while the peak of NOR (ICU) occupancy was
observed on day 28 (31). The difference between these days is
shown in panel B, namely 7 days for NOR and 10 days for ICU.

DISCUSSION

Initial Data and Hospitalizations Rates
Using data from the first wave of COVID-19 infections between
March and May 2020, we modeled N = 334 cases from five
hospitals in four adjacent counties. The probability of occupancy
for NOR and ICU showed an exponential decline (Figure 1),
with an ICU starting value equal to 0.27. This means that 27%
of hospitalized patients were treated on the ICU for several days
(≥1 days), which is slightly higher than found by Nachtigall et al.
(21) who reported 0.21 in a German retrospective analysis. These
figures surpass prior estimations stating that 3–10% of patients
are in need of ICU care (15).

With increasing knowledge about management of covid-19
cases, and especially with the establishment of clinical indicators

FIGURE 4 | Effects of varying R-values on the time to peak for new infections

and NOR and ICU occupancy (A) and delay between these two measures (B).

The higher the R-values, the earlier the peaks in the course of the simulation

occur (A). Contrastingly, the delay in time between the occurrence of the

infection peak and the occupancy peaks for the NOR (red marks) and ICU

(blue marks) enlarges with increasing R-value (B).

for the admission to ICUs, admission rates to the ICU were
expected to decline. The clinical criteria were hypoxemia with
an oxygen saturation lower than 90% with 2–4 L of oxygen
supplementation per minute and dyspnea or a respiratory rate
higher than 25/min. Furthermore, the routine administration of
dexamethasone in patients with type 1 respiratory failure was
found to reduce the probability of a severe course of disease
(22, 23).

Comparing NOR and ICU average length of stay, the slower
decline observed for the ICU indicates that patients treated on
ICU stayed longer compared to NOR. On NOR, less than 10%
stayed for 20 days and longer. Approximately 1% of patients
stayed for 30 days and longer. On the ICU, 10% of all patients
(42% of ICU patients) stayed 13 days and longer on the ICU.
Only 1% of all subjects (4.3% of ICU patients) stayed 45 days and
longer. This is in line with an early German model that estimated
an average ICU stay of 14 days (15).

After 60 days, 16 ICU beds were still occupied, which could
lead to a potential shortage of beds in a following wave. If several
waves followed each other shortly (e.g., <30 days interval),
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TABLE 2 | Effects of different R-values on the characteristics of the expected occupancy probability.

Effective

reproductions rate

(R)

Days from of peak for new

infections to maximal NOR

occupancy

(tNOR
peak−tIpeak)

Relative increase of NOR

occupancy after peak of

new infections

(ONOR
max /ONOR

tIpeak
)

Days from of peak for new

infections to maximal ICU

occupancy

(tICUpeak−tIpeak)

Relative increase of ICU

occupancy after peak of

new infections

(OICU
max/O

ICU
tIpeak

)

1.1 5 1.1 6 1.1

1.5 6 1.2 9 1.3

2.0 7 1.3 10 1.5

2.5 7 1.3 10 1.4

3.0 8 1.4 11 1.5

3.5 8 1.5 11 1.6

4.0 8 1.5 11 1.7

Several key numbers of the expected occupancy were derived from the following numbers: day of maximal number of new infections (tIpeak ), maximal number of new infections (Imax),

day and amount of maximal number of normal ward (NOR) occupancy (tNORpeak ), (O
NOR
max ) and day and amount of maximal number of intensive care unit (ICU) occupancy (tICUpeak ), (O

ICU
max).

From these values, the time from maximal daily infections to the day of maximal NOR and ICU occupancy, i.e., tNORpeak − tIpeak and t
ICU
peak − tIpeak , was calculated and listed together with the

corresponding relative increase of NOR and ICU occupancy after peak of new infections (ONOR
max /ONOR

tIpeak
) and (OICU

max/O
ICU
tIpeak

).

resources could become scare, contradicting Stang et al. (15).
Therefore, a rather slow and considered change of mitigation
measures is useful and recommended.

The estimated LOS could also be related to bed occupancy
rates and the respective epidemiological situation.

For that, we had to make several assumptions. We presumed
the incidence of SARS-CoV-2 infections in the area to be equal to
the rate in mid-August (17), and the hospitalization rate of 17%,
similarly to the first wave in Germany (20).

Hospitalization rates varied largely by country and region.
For example, it amounted up to 26% in Belgium (24), 30%
in the Netherlands (25), and 69% in France (26). A large-
scale international study showed an average hospitalization rate
of 6.6% (27). In Germany, it was primarily estimated to lay
between 3 and, respectively, 5–10% (15, 28) for the first wave
of COVID-19.

It could be argued that in a potential second wave, the
hospitalization rate will be subjacent since it was unclear at the
beginning of the pandemic whether an outpatient setting was at
all feasible for this disease. In this analysis, the hospitalization
rate is an important linear constant, meaning that with a 50%
lower rate, bed occupancy rates would also halve. However, the
shape of the determined curves and thus the course will be
left unchanged.

Influence of Selected R-Value and
Implementation of Mitigation Measures
Another important assumption was R. The effective reproduction
rate R indicates the average number of people infected by an
infectious person if immunity prevails in the population. The
number of new infections and subsequently newly hospitalized
patients were exemplarily calculated for R = 2, resulting in a
daily growth rate of new infections of 1.189 (Figure 3). The peak
occupancy was expected to be reached with ∼155 used beds on
NOR at day 22 and with∼45 beds on ICU at day 25.

This simulation was based on effective mitigation measures
that were launched on day 9 for at least 28 days. The end of
these mitigation measures was conditional to incidences having

surpassed 50 per 100,000. The number of days from maximal
daily infections to the maximal NOR and ICU occupancy
increases with rising R from 5 to 8 days (6 to 11 days) for
NOR (ICU).

Similar delays from maximal daily infections of the maximal
NOR and ICU occupancy were observed in the corresponding
data of the first wave in the respective area. These results might
indicate that with increasing R, the time to provide additional
ICU capacities enlarges as well. Since a higher R denotes a
more critical situation with soaring infection rates, a longer time
span for the preparation of hospital staff and medical equipment
(e.g., ventilators and beds) could lead to an optimal medical
care situation. These five additional days of preparation, i.e., as
observed for R = 1.1 compared to R = 4, might represent a
game-changer for the handling of the situation.

Of course, with rising infection rates, the surplus of
additionally needed ICU (and NOR) beds increases as well.
In this model calculation the demand for ICU beds only
slightly exceeds the number of maximum ICU beds from
the first wave. However, during the first wave, there was
no established limit of the 7-day incidence equal to 50 per
100,000 in place at the level of individual counties. It could
be argued that during 1st wave several measures (e.g., social
distancing, general lockdown) were taken at stages with different
local infection rates, and measures remained in force for a
longer time.

In the light of recent political discussions in Germany
and a new tendency for short term measures, the question
arises how bed occupancy rates would consequently develop.
With R = 2, minimum duration of measures of 5 days and
incidence below critical levels, our estimated bed occupancy
rates would undulate on NOR and ICU at a higher level (on
average 114 for NOR and 42 for ICU, with maximal values of
155 for NOR and 45 for ICU) with an undulation period of
42 days (Figure 5).

This could be discussed as a useful procedure if herd immunity
should be approached and existing capacities should be utilized as
much as possible (29).
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FIGURE 5 | Simulation of the effects of mitigation measures affecting the

current R-value: new infections (dashed black line), new hospitalizations (solid

black line), and expected NOR (blue line) and ICU (red line) occupancy caused

by short term measures, i.e., in this case measures that were stopped already

5 days after the 7-days incidence returned below the level of 50.

Thus, the following practical implications can be derived:

1. A higher R leads to higher bed occupancy rates, but it might
take longer to reach the peak occupancy. This provides extra
preparation time. In our model, with an R = 1.1, the peak
was reached 5 days (NOR) and 6 days (ICU) after the peak
of infections, with R = 4, the peak was reached 8 days (NOR)
and 11 days (ICU) after the peak of infections.

2. With onset of measures, hospitals should expect a continued
increase of NOR and ICU occupancy (typical factors are 1.1–
1.7 depending on R), therefore hospitals should further reduce
standard care in favor of COVID-19 patients. Hospitals have
about 5–11 days before the maximum bed occupancy might
be expectantly reached.

3. With political mitigation measures taken for short periods of
time at similar or lower 7-day incidences compared to the
first wave, a clearly definable next wave might be avoided.
Our model predicts in this case undulations in bed occupancy
rates with peaking occupancy approximately every 6 weeks
depending on R and duration of the measures taken. However,
this would impose even greater challenges on clinicians
balancing routine and COVID-19 care.

Of note, all actions of the civil protection and hospital
management units should primarily be tuned and scheduled on
the dynamics of the occurrence of infections, reflected by the
R-value, and the threshold of available beds on the different
wards (NOR, ICU). The IVENA database (ILS FFB IVENA
eHealth), i.e., a web based program where all hospitals have
to update their NOR and ICU occupancy and the maximal
available number of beds on the different wards allows the level of
occupancy to be tracked in real time to control the availability of
resources. The maximum number of available beds is, however,
not corresponding to the actual physical beds, but foremost on
the available health care workers. These human resources have
been often considered as “the bottleneck” as they are finite and
not allocatable according to the outbreaks’ pressure.

In a second step and after these mandatory control
mechanisms are in place, it is time to plan the emergency
preparedness against the maximum value of NOR and ICU beds.
The model results indicate that high initial R-values might be
associated with slightly larger delays between the peak of new
infections and the peak occupancy on NOR and ICU. However,
planning should be done with the minimally observed delays,
which inform about the availability to set up additional resources,
including additional beds, devices, and staff.

The observed increased delay in time to peak occupancy rates
with increasing R follow the subsequent rationality: Given a
constant incidence, occupancy rates on both, NOR and ICU, will
reach a constant value as well (only COVID-19 cases taken into
account). The curves for the likelihood of occupancy (Figure 2)
define the inertia, i.e., the time until a constant NOR and ICU
occupancy rate is reached. For example, independent of the
constant incidence, it takes 20 days for NOR and 40 days for ICU
to reach a constant level, i.e., 95% of the maximal level. Second,
the R-value controls the skewness of the incidence. For higher R-
values, the exponential increase is sharper as compared to lower
R-values close to 1. Therefore, for higherR-values, due the inertia,
NOR and ICU occupancy rates increase as fast as the incidence,
resulting in a slight shift toward longer delays of time to peak for
larger R-values.

This model, however, does not consider the period from
detection of infection to hospitalization.

It is important to note that it typically takes several days from
the detection of infection to hospital admission. Such a delay
would be expected to lead to a prolonged period between the
incidence and the occupancy rates summits. This could reduce
the criticality of emergency resource allocation slightly. This
delay was not considered in this model, which can be seen as a
limitation of this model.

Validation of Model With Data From the
2nd and 3rd Waves
For validation purposes, the presented model was applied to the
respective pandemic situation in the four counties south-west of
Munich during the 2nd and 3rd waves (Figure 6). Data covers
250 days from September 15th 2020 to May 26th 2021. New
infections (data source: RKI) are represented by black circles
(Figure 6, slighting windows of 7 days). ICU occupancy rates
(data source: ILS FFB IVENA eHealth) are represented by red
circles (Figure 6). Because of a change of pandemic dynamics
over time, simulation parameters required several adaptations:
for the 2nd wave, R= 1.25 and Rmin = 0.75 were used to describe
the obtained date. Furthermore, the decline in the incidence due
to mitigation measures (starting at a threshold of 160 for 75 days)
was done in 16 steps to cope with the observed prolonged peaks
of the new infections. For the 3rd wave, R = 1.1 and Rmin = 0.8
were assumed as they best described the 3rd wave and likewise,
the reduction due to mitigation measures (starting at a threshold
of 150 for 60 days) was done in 14 steps. Vaccination programs
(with priority in the elderly people) and the increasing fraction of
the population recovered from COVID-19 require a consequent
reduction of the R-value from wave to wave. The vaccination
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FIGURE 6 | Validation of the model by comparing simulated number of

infection rates (dashed black line) and ICU occupancy (red line) with real data

of infection rates (black circles) and ICU occupancy (red circles) obtained

during the 2nd and 3rd wave (September 2020–May 2021) in the four counties

south-west of Munich (ZRF FFB).

program started in the four counties south-west of Munich in
late December 2020 (Figure 6, day 100). During 2nd and 3rd
wave, reduced hospitalization rates to ICU were observed, which
were also reflected in the simulation by using hospitalization rates
of 7% and 5% for 2nd and 3rd wave simulation, respectively.
The decline of ICU bed occupancy rates might be related to the
early vaccination of high-risk population, i.e., elderly and people
with comorbidities.

The expected number of new infections (Figure 6, dashed
black line) and ICU occupancy (Figure 6, red line) constitute a
good fit for the real data. The peak in ICU occupancy occurred
later than expected, here it might be necessary to consider a
further parameter, namely a delay between infection and ICU
admission, which might be in the range of 2–3 weeks.

Model Limitations
Subsuming, this relatively simple model does not take into
account several aspects of the epidemiological situation and
more complex models are available. Nevertheless, we consider
it an adequate and practical basis for hospital leaders to derive
the need for COVID-19 care in the light of the respective
epidemiological situation. Length of stay probabilities derived
from the obtained data could be applied to other models as well.

Although several model parameters like hospitalization rate
have been selected based on data from numerous Germany
hospitals, other used data represented only four counties south-
west of Munich in five hospitals. Further research has to verify
whether our findings could also be applied nationwide or
even internationally.

Furthermore, political measures currently in discussion can
only be reflected in the model when leading to a reduction in R
below 1. Other factors leading to a limitation of transmission, like
herd immunity, have not been regarded for reasons of simplicity.

CONCLUSION

Due to Nowcasting of the R-value, hospital leaders are now
precisely informed about the infection rates in their counties. Our
model based on data from four counties south-west of Munich
provides a relatively simple framework of how the demand for
ICU and NOR beds reacts to certain infection rates and political
measures. Furthermore, it provides a solid example of the
complex relationships and time spans and reduces uncertainty
in the provision of ICU capacities. The main results were the
concordant relationship between increased daily infection rates
and maximal NOR and ICU occupancy rates, indicating a self-
stabilization of supply and demand at a high bed occupancy
rate. After a peak in infections, hospitals have about 5–11 days
before the maximum bed occupancy is expected to be reached.
Depending on the duration of political mitigation measures
and R, bed occupancy rates might undulate with small peaks
approximately every 6 weeks. However, this would impose even
greater challenges on clinicians balancing routine and COVID-
19 care. Further research should focus on real time modeling of
these connections to provide day to day updates.
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