
EDITED BY

Frits van Merode,

Maastricht University Medical Centre,

Netherlands

REVIEWED BY

Gabriel Obukohwo Ivbijaro,

NOVA University of Lisbon, Portugal

Dorthe Klein,

Maastricht University Medical Centre,

Netherlands

*CORRESPONDENCE

Joris van de Klundert

joris.vandeklundert@uai.cl

†
PRESENT ADDRESSES

Francisco Pérez-Galarce,

Facultad de Ingeniería y Negocios, Universidad

de Las Américas, Santiago, Chile

Felipe Simon,

Facultad de Economio y Negocios,

Universidad de Chile, Santiago de Chile, Chile

RECEIVED 16 December 2024

ACCEPTED 24 March 2025

PUBLISHED 15 May 2025

CITATION

van de Klundert J, de Vries H, Pérez-Galarce F,

Valdes N and Simon F (2025) The

effectiveness, equity and explainability of

health service resource allocation—with

applications in kidney transplantation & family

planning.

Front. Health Serv. 5:1545864.

doi: 10.3389/frhs.2025.1545864

COPYRIGHT

© 2025 van de Klundert, de Vries, Pérez-

Galarce, Valdes and Simon. This is an open-

access article distributed under the terms of

the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

The effectiveness, equity and
explainability of health service
resource allocation—with
applications in kidney
transplantation & family planning

Joris van de Klundert
1*, Harwin de Vries

2
,

Francisco Pérez-Galarce
3†
, Nieves Valdes

1
and Felipe Simon

4†

1Escuela de Negocios, Universidad Adolfo Ibáñez, Santiago de Chile, Chile, 2Rotterdam School of

Management, Erasmus University Rotterdam, Rotterdam, Netherlands, 3Department of Computer

Science, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile, 4College of

Science and Engineering, University of Minnesota, Minneapolis, MN, United States

Introduction: Halfway to the deadline of the 2030 agenda, humankind continues

to face long-standing yet urgent policy and management challenges to address

resource shortages and deliver on Sustainable Development Goal 3; health and

well-being for all at all ages. More than half of the global population lacks

access to essential health services. Additional resources are required and need

to be allocated effectively and equitably. Resource allocation models, however,

have struggled to accurately predict effects and to present optimal allocations,

thus hampering effectiveness and equity improvement. The current advances in

machine learning present opportunities to better predict allocation effects and

to prescribe solutions that better balance effectiveness and equity. The most

advanced of these models tend to be “black box” models that lack explainability.

This lack of explainability is problematic as it can clash with professional values

and hide biases that negatively impact effectiveness and equity.

Methods: Through a novel theoretical framework and two diverse case studies,

this manuscript explores the trade-offs between effectiveness, equity, and

explainability. The case studies consider family planning in a low income

country and kidney allocation in a high income country.

Results: Both case studies find that the least explainable models hardly offer

improvements in effectiveness and equity over explainable alternatives.

Discussion: As this may more widely apply to health resource allocation

decisions, explainable analytics, which are more likely to be trusted and used,

might better enable progress towards SDG3 for now. Future research on

explainability, also in relation to equity and fairness of allocation policies, can

help deliver on the promise of advanced predictive and prescriptive analytics.

KEYWORDS

explainability, equity, effectiveness, kidney allocation, family planning, healthcare

analytics, explainable AI

1 Introduction

Halfway to the deadline of the 2030 agenda, humankind continues to face long

standing yet urgent policy and management challenges to address resource shortages

and deliver on SDG 3; health and well-being for all at all ages (1, 2). More than half of

the global population, among whom a variety of subpopulations in high income
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countries, lack access to essential health services (3, 4). The scarcity

of financial, human, and other resources complicates progress

towards the “bold commitment” of SDG3 and additional

investments are needed to achieve it (1, 5, 6). Without a

significant additional investment in health service resources,

more than a third of the global population will still lack access to

essential health services by 2030 (4).

Traditionally, overall population health has been an important

criterion to guide health policy and management decisions on the

allocation of financial resources and others. Population health

has been operationalized through measures to assess the

health-adjusted life years (HALYs) enjoyed by a population, such

as the disability-adjusted life years (DALYs) and the quality-

adjusted life years [QALYs; (7, 8)]. Policy efforts targetting to

maximize HALYs for the population at large may, however,

negatively impact the health of some individuals and

subpopulations when constrained by resource scarcity. Budget

limitations may, for instance, direct policy preferences towards

resource allocations that disadvantage subpopulations for which

the expected resource effectiveness is lower (9, 10). More

generally, resource scarcity and subsequent allocation decisions

can easily cause and aggravate differences in health service access

and resulting health outcomes. From the inclusiveness

perspective of SDG3, which targets health for all, this raises the

interest in the fairness of health resource allocation decisions and

in the avoidance of resulting health inequalities.

The avoidance of health inequalities whenever possible is

explicitly considered in the definition of health equity (11).

Health equity refers to a fair and just opportunity for all to be as

healthy as possible and this definition classifies avoidable

inequalities as inequitable (11, 12). Policy decisions regarding the

allocation of scarce health services resources can promote health

equity by improving equity in access, utilization, and quality of

health services, and in the resulting health outcomes (10, 12).

In pursuit of resource allocation decisions that optimally

balance the expected resulting effectiveness and equity, scientists

and practitioners have been confronted with challenging

prediction problems to estimate future health effects of possible

resource allocations and subsequent prescription problems to

identify the best resource allocation. These challenges regard

both the specification of the models and the methods to estimate

and solve these models. In the remainder we, somewhat formally,

refer to the systematic computational analysis of data by

combining mathematical models with corresponding solution

methods as analytics and focus on the use of analytics in support

of health resource allocation decisions (13). Moreover, predictive

analytics will refer to data-driven models and methods for the

purpose of prediction such as the prediction of changes in health

outcomes that result from health resource allocation decisions.

Likewise, prescriptive analytics refers to data-driven models and

corresponding methods to solve optimization problems, such as

the problem of allocating health resources to obtain the most

equitable health outcomes.

Predictive analytics often precede prescriptive analytics in

approaches that seek to optimize health service resource

allocation. The predictive analytics estimate effects of allocation

decisions and the prescriptive analytics uses these estimation and

maximizes the expected effects. In various domains, however, the

ability of predictive analytics to predict health outcomes has long

been modest and has triggered questions whether predictive

models provide a valid basis for prescriptive analytics to allocate

scarce health service resources [see, for instance (14, 15), within

the realm of donor organ allocation]. In recent decades, many

researchers have therefore sought to extend the traditional

analytics toolkit by exploring artificially intelligence (AI)

techniques, in particular machine learning (ML) (16, 17).

These recent advances have brought progress as well as renewed

challenges to balancing effectiveness and equity (15, 18). Novel

predictive analytics approaches using ML are more likely to

be biased and their prediction accuracy may vary across

subpopulations, often disadvantaging smaller (minority)

subpopulations (18–20). Resource allocation decisions based on

biased predictions can subsequently fail to deliver the expected

effectiveness and (unintentionally) diminish health equity (15, 18, 21).

These possible drawbacks are perceived as particularly

undesirable when using “black-box” or “closed-box” approaches

from the analytics toolkit of which the working, the results, or

both may be difficult to explain. Such black-box models are

particularly prone to produce results that yield intended

effectiveness improvements together with unintended and even

unobserved inequity increases, or vice versa, while inexplicably

violating agreed equity principles and regulations. The criticality

of health and equitable access to health services has rendered it

an explicit priority area of explainable AI (XAI) (22, 23).

The emerging literature on XAI in health services mostly consists

of case study applications and lacks embedding in a commonly

adopted assessment framework (24, 25). Theoretical advances

mostly operationalize explainability-related constructs such as

fairness and biases from theoretical machine learning and statistics

perspectives without developing the relationships with health

services measures such as effectiveness and equity. With a view

towards achieving SDG3, this research aims to advance the

understanding of the explainability of analytics for health resource

allocation and of the corresponding interactions between

effectiveness, equity, and explainability. We hypothesize that

analytics approaches to optimally allocate health service resources

harbor trade-offs between these three constructs, as also reflected in

Figure 1. The figure reflects that the optimal analytics approaches

to resource allocations are situated on the exterior of a three-

dimensional performance space in which predictive and predictive

analytics can operate. The two-dimensional red front surface

represents the effectiveness-equity combinations attainable by non

explainable methods. It may be noted that the visualization reflects

that the effectiveness-equity plane shrinks as more and more

explainability is demanded from prescriptive analytics.

Our quest into these trade-offs will be based on a newly

proposed framework which connects effectiveness, equity and

explainability to resource allocation decisions. The framework

can serve as an instrument to strengthen the contributions of

explainable analytics towards achieving SDG3.

We illustrate the framework with two case studies. The selected

case studies both present resource allocation problems for large
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populations and both address major health conditions (26–28).

Moreover, they are from domains in which advanced analytics are

already making contributions and in which explainability is a key

concern (15, 27, 29–32). The first case study is from a low income

setting and relates to SDG 3.7 on sexual and reproductive health.

It regards the highly prioritized health services for family planning

(FP) in low- and middle-income countries (LMIC) (2). The

second case study, by contrast, draws from a high income setting

and considers the allocation of scarcely available donor kidneys to

patients suffering from end-stage renal disease (ESRD). Focusing

on this non-communicable condition, it connects to SDG 3.4

which seeks to reduce premature mortality from non-

communicable diseases through prevention and treatment by one

third. The differences between the case studies provide a form of

triangulation that may promote the general validity of the results

and interpretations in the context of the framework. Together, the

framework and case study results thus provide a basis to reflect on

the relationship between effectiveness, equity, and explainability.

The discussion section therefore combines the conceptual

theoretical perspectives provided by the framework with the

practical perspectives offered by the case studies.

2 Theoretical framework, materials,
and methods

The proposed framework, as visualized in Figure 2, is rooted in

Donabedian’s well known input-process-outcome model and more

contemporary and extensive operational frameworks (33, 34).

Through the lens of Donabedian, health services resources to be

allocated are part of the health services structure and the health

services to be accessed are the processes. The structure and

services together determine the outcomes.

On the left, Figure 2 presents the resources, which might be

human resources of various degrees of training and disciplines,

medical equipment for diagnosis and treatment, drugs, facilities,

and financial resources.

FIGURE 1

A trade-offs perspective on effectiveness, equity, and explainability.

FIGURE 2

An operational model for resource effectiveness and equity.
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Below, we elaborate the framework with a focus on the

effectiveness, equity, and explainability of the resource allocation

decisions. Thus, the framework requires metrics to express effects

of allocation decisions on access to healthcare services and

subsequently on the health outcomes achieved as a result of these

services (35, 36). The focus on equity and explainability implies

an interest in the effects obtained for relevant patient

subpopulations as visualized in the top part of Figure 2.

For any set of health services depicted in the bottom part of

Figure 2, the cube, or dice, in the top part of Figure 2 represents

the subpopulations needing these services. These subpopulations

are defined by distinguishing dimensions that are relevant for

equity, such as disease severity, age, gender, disability,

socioeconomic status, geographical location, et cetera (7). The

cube can only visualize subpopulations defined along three

dimensions but higher-dimensional definitions can be

considered. For example, an equity analysis may distinguish

subpopulations along the dimensions age (0–18, 18–65, 65+),

gender (M/F), insurance status (public, private) and blood type

(O, A, B, AB), potentially defining 3� 2� 2� 4 ¼ 48

subpopulations.

Following the framework, predictive analytics takes allocation

decisions and sometimes subsequent model components as input.

Its output is a prediction of “downstream” effects, e.g., in terms

of access, quality, health, and well-being. For instance, a

straightforward predictive model may estimate effects of resource

allocation decisions on service access. A more complex model

might take resource allocation decisions and service access and

quality measures as predictors and estimate the resulting health

and well-being outcomes. Incorporating the results of predictive

analytics, prescriptive analytics can identify resource allocation

decisions so as to maximize effectiveness, equity, or a

combination of both. The prescriptive analytics used may again

be relatively straightforward, for instance calculating the increase

in number of visits of mobile teams offering FP service that

results from enlarging the number of mobile teams. Alternatively,

the prescriptive analytics might be more ambitious and aim to

establish a set of routes for the mobile teams that maximizes

equity in QALYs across the villages populations within a province.

The next three subsections present general measures for the

effects of health resource allocation to guide analytics and

decision making. The effectiveness subsection operationalizes

measures for the total (e.g., sum) of these effects, whereas the

equity subsection delves into differences in effects among

subpopulations. The third subsection covers the explainability of

the working and results of analytics in terms of the effects of the

health resource allocation decisions they aim to optimize.

2.1 Effectiveness

In Figure 2, access refers to “timely use of services according to

need” rather than to alternative definitions which might, for

instance, address availaibility or proximity of services (37).

Accordingly, the main access dimensions considered are

therefore timeliness of services provided and the conformance to

need, for which the main effectiveness measures are waiting time

and the fraction of patients in need of a service that actually

receive it. These measures and more case-specific variants are

elaborated in the two case studies.

The World Health Organisation defines the quality of health

services as “the degree to which health services for individuals

and populations increase the likelihood of desired health

outcomes” (38). This definition explicitly defines that health

service access may need to vary across subpopulations and

individuals according to differences in effectiveness and (patient)

values. At the same time, this definition positions quality in

relation to the adoption of evidence-based standards that

promote effectiveness, i.e., the likelihood of desired outcomes.

A second pair of main measures for health service processes thus

regard the fraction of services provided in compliance with

evidence-based standards and the fraction of patients for which

services have been delivered according to their values.

Figure 2 subsequently and relatively narrowly defines health in

terms of clinical health service outcomes. It uses health to refer to

the direct, clinical, treatment outcomes. Some relevant clinical

outcomes may differ per condition, while others such as

mortality rate or pain are more generic. Both case studies

illustrate effects of resource allocation on specific and generic

clinical outcomes.

Health outcomes research importantly focuses on generic

metrics regarding health-related quality of life and well-being, as

this enables to address effectiveness and equity in a broadly

applicable framework and, therefore, also to address resource

allocation decisions for a broad set of conditions (39, 40). In

Figure 2, these shared outcomes are labeled as “Well-Being” and

combine health adjusted quality of life with longevity. We use

health adjusted quality of life as a general term encompassing

well-elaborated frameworks such as the burden of disease

framework, which defines DALYs, and the health-related quality

of life (QoL) framework with its QALYs (41, 42). Both case

studies present illustrations of the relationship between clinical

outcomes and well-being outcomes.

As quality of life typically decreases with age and disability, it is

important to distinguish the effectiveness measures life expectancy

(LE) and health adjusted life expectancy (HALE). This has caused

commonly accepted effectiveness measures to consider QALYs

gained or DALYs averted rather than life years gained or lost. As

an alternative to these absolute effectiveness measures, one may

consider relative increases in (HA)LE (7). For instance, let us

suppose that a scarce donor organ can be allocated either to a

30-year or to a 55-years-old patient for a life-saving

transplantation. Furthermore, suppose that a successful

transplantation might restores their (HA)LE to their original

value of 80 years. Then, the relative effectiveness can be viewed

to be equal whereas the absolute efectiveness is 50 years for the

30-years-old and only 25 years for the 55-years-old. If the

transplantation prolongs life expectancy by 25 years for both

patients, the effectiveness is the same in absolute terms, but the

30-years-old will live only a fraction 30þ25
80

¼ 0:69
� �

of her

original (HA)LE whereas the 55-years-old returns to the

original (HA)LE.
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Clearly, such differences in effects on outcome measures not

only impact effectiveness, but also impact equity and

explainability, as discussed in the next subsections.

2.2 Equity

Equity measures can be defined in association with any of the

aforementioned effectiveness measures. However, while

effectiveness considers the sum of the outcomes obtained for

selected subpopulations, equity is primarily defined on the basis

of differences in effects between subpopulations.

As mentioned in the introduction, not every inequality in

health service access, quality of services, health outcomes, or

well-being outcomes implies inequity. Inequalities are inequitable

in so far as they entail avoidable, unfair, or unjust disparity in

opportunity for all to be as healthy as possible (43, 44). For

example, genetic variety can cause differences in health outcomes

resulting from resource allocation decisions that are beyond the

scope of the decision space. Likewise, limitations in the resources

to be allocated may imply that not all subpopulations can be

fully serviced according to need. In such a case, elements of

lottery may be considered as fair and equitable allocation

mechanisms even if they cannot avoid inequalities in access and

outcomes (45, 46).

Inequity in the effects of resource allocation decisions can be

expressed through pairwise effect comparison between

subpopulations or through the distribution of resource allocation

effects over subpopulations. The Gini coefficient is a widely

recognized measure that summarizes information about the

distribution of an effect, measuring inequality on a scale from 0

to 1 (47). Higher values indicate greater inequality, with 0

representing perfect equality, e.g., in case all population members

enjoy the same health outcome. Conversely, the value 1 indicates

perfect inequality, where the maximum possible health outcome

(e.g., HALE) is achieved for one person (or subpopulation) and

the minimum is achieved for everyone else.

The Gini coefficient is linked to the Lorenz curve, a graphical

representation of the distribution of an effect. In the HALE

example, the Lorenz curve shows the cumulative distribution of

HALE (vertical axis in Figure 3) by successive percentiles of the

population (horizontal axis in Figure 3) (48). In case of perfectly

equal distribution, the Lorenz curve forms a straight diagonal

line, known as the “line of equality.” The Gini coefficient is

defined as the surface of the area between the Lorenz curve and

this line of equality.

Viewed from the perspective of a Lorenz curve, Rawls’ theory

of justice considers allocation decisions equitable if they

(recursively) maximize the minimum effectiveness over all

subpopulations (49). Thus, it would consider a Gini coefficient of

a strictly positive value equitable if (recursively) the contribution

to the Gini value by the subpopulation for which effectiveness is

lowest cannot be improved (e.g., because of genetic differences).

As Rawls’ definition of distributive justice fully prioritizes

maximizing the minimum effects over the subpopulations and

disregards consequences for the total effectiveness over all

subpopulations, it defines an extreme in the equity-effectiveness

trade-off spectrum. It has been applied to design equitable organ

allocation policies that eliminate access inequalities among

populations depending on blood type and current allocation

practices in the US have adopted these principles (31, 50).

The other extreme is formed by maximizing effectiveness

with complete disregard of differences in effects

between subpopulations.

The Atkinson inequality measure (or Atkinson index)

facilitates less extreme approaches on the equity vs. effectiveness

trade-off spectrum depicted in Figure 1. Like the Gini coefficient,

it is associated with a social welfare function, which, in this case,

multiplies the average effect across a population with an equity

measure (the index) (51). It expresses the effectiveness vs. equity

trade-off in terms of the “equally distributed equivalent” level of

the effect, defined as the fraction of the total effect that a

population would need to sacrifice to achieve a more equitable

distribution (52). For example, the corresponding social welfare

function for analytics with zero explainability is defined by the

(transparent) front facing side of the three dimensional body

depicted in Figure 1 and it can be used to identify solutions

corresponding to normative choices of Atkinson index values.

2.3 Explainability

Explainability of analytics can refer to the working of the

methods used and to the results obtained by estimating or

solving an analytic model (23, 53). The definitions provided for

explainability in this rapidly developing field of science vary and

build on definitions of interpretability, understandability,

transparency, and comprehensibility, and vice versa (23, 53, 54).

FIGURE 3

Lorenz curve.
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In the remainder, we define explainability of analytics as the

extent to which the working and solutions provided by analytics

can be explained to an audience of relevant human stakeholders

(where the explainer can be another human or an AI

technology). Following this non-dichotomous definition, the

explainability of models ranges across a continuum as is also

depicted in Figure 1.

Explainability is particularly important for “critical” sectors

that impact human safety and health (23, 53). Consequently,

explainability should enable relevant stakeholders to verify and

trust that health resource allocation decisions are effective and

equitable. Building on (53), potentially relevant human

stakeholders for health resource allocation decisions are patients,

care givers, medical professionals, managers of health service

organisations, insurers and funders, regulators, and professionals

responsible for developing and operating the analytics technology.

Differences among these stakeholders entail differences in

explainability requirements. It has therefore been argued that

stakeholders must work together to harness the benefits that

analytics technologies can bring to health care and to foster trust

(55). Trust is difficult to establish without transparency, for

instance, in the form of disclosing to all stakeholders how

decisions impacting access and outcomes are made (56).

For predictive analytics, transparency thus requires full

disclosure of the models used, the predictors, the data sets used

for model estimation, and the methods by which they are

parametrized. For prescriptive analytics, it also requires a

description of the optimization models and methods.

Transparency can be readily provided for classical techniques

such as maximum likelihood estimation in linear regression

(predictive) and linear programming (prescriptive). Full

disclosure can be far more challenging for advanced machine

learning approaches, for instance when using deep learning, that

may rely on large numbers of hyperparameters that can in turn

be tuned by machine learning methods (57, 58). In such cases,

the need for trust and verification of ethical principles,

compliance to evidence-based standards, and equity requirements

bring about challenges for the explainability of the working and

outcomes of the model to all relevant stakeholders. In relation to

the presented case studies, for example, explainability might

require providing evidence-based arguments to visit some villages

more frequently than others for the provisioning of FP services,

or to prioritize certain patient populations on the kidney

transplant wait list.

A main challenge for all predictive and prescriptive analytics is

to avoid biases, as they can negatively and unfairly impact

effectiveness and equity. Biases of many forms can easily and

unintentionally enter healthcare analytics applications, as already

evidenced in various contexts (18, 19, 55). Biases may exist in

data sources used, such as electronic health records and data

from experiments with biased designs. Such biases can be

“learned” by analytics, leading to biased predictions and

prescriptions. Prescriptive analytics may, for instance, inequitably

allocate fewer resources to subpopulations for which service

effectiveness is underestimated. Such biases are particularly likely

for minority subpopulations who are naturally under-represented

in data sources (a form of data imbalance) and for

subpopulations already experiencing access inequities. Biases may

also arise as various measures of prediction performance (e.g.,

calibration measures and discrimination measures) are conflicting

(20). Reducing one bias may then enlarge another. These

conflicts can also arise in relation to equity measures and among

equity measures as illustrated above for kidney allocation.

Transparency and explainability facilitate stakeholders to notice

biases and take corrective actions to improve the model or when

considering model results in support of resource allocation

decisions. Conversely, a lack of transparency and explainability

may complicate or even block the implementation and use of

analytics when it is perceived to lead to violations of ethical

principles or forms of discrimination that are explicitly addressed

in guidelines, codes of conduct, regulations, and law (20, 55).

Post hoc explainers—forms of artificial intelligence that explain

why certain outcomes are obtained—can promote explainability

but may have limited value when requesting explanations

regarding equity and effectiveness. In fact, such add-on analytics

can diminish prediction performance, as has been illustrated for

transplant survival prediction (54, 59). As post-hoc explainers

may even give “false impressions” of understanding and

contribute little to transparency and trust (60), we have not

included them in our framework and analysis (but do

acknowledge their potential as a future research direction).

Hence, while from a theoretical perspective explainability

requirements limit the capabilities of analytics to promote

effectiveness and equity, these requirements may promote

effectiveness and equity in practice. The latter would contradict

the hypothesized trade-off between explainability on the one

hand and effectiveness and equity on the other. We use case

study as the method to provide further, in-depth, exploration of

these trade-offs. As mentioned and motivated in the

introduction, we specifically conduct two very diverse case

studies in which we apply the framework presented in Figure 2

and adopt predictive and prescriptive analytics of various degrees

of explainability for resource allocation. We test our hypotheses

regarding trade offs by evaluating the effectiveness and equity

achieved for the various degrees of explainability.

Correspondingly, the methodological choices within the case

studies are covered in the case study subsection rather than in

this general methods section.

3 Results

3.1 Low income case study: family planning

The need for FP services goes unmet for more than 218 million

women in LMIC (28). FP services improve health and well-being

outcomes as they prevent unintended pregnancies and unsafe

abortions, significantly reduce infant and maternal mortality, and

strongly benefit economic growth (61). Mobile outreach teams play

an important role in scaling up access to FP services in underserved

areas such as remote rural areas. These teams visit communities

with regular time intervals to offer FP services for free or at low cost.
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Each team typically serves a fixed set of sites (i.e., communities)

where access to alternative FP providers is low (32). A site visit

usually lasts one day, during which the team travels to the site,

provides FP services (distributing, dispensing, providing,

removing, and counseling on contraceptive methods), and

returns home. Teams commonly operate around 220 days per

year (30). As such, each team faces a resource allocation problem:

It must choose how many days (visits) per year to allocate to

each outreach site (29). Solving this resource allocation problem

using prescriptive analytics involves addressing the trade-offs

between effectiveness and equity, as estimated with predictive

analytics (29, 30, 32). As outlined below, the rural low-income

setting brings about specific explainability needs.

The number of days allocated to a site determines the time

interval between consecutive visits and therefore strongly affects

access to FP services for the site. Using longitudinal data from

outreach teams from three African countries and predictive

analytics, (30) estimate that visiting a site once per six months

instead of once per month reduces the yearly number of FP

client visits from that site by 73%–82%. Increasing the number

of outreach visits to a given site thus increases the number of FP

client visits, which subsequently enhances both contraceptive

prevalence and the protection from unwanted pregnancy (62).

The latter is not only an important outcome in itself, but is also

associated with strong improvements in outcomes such as

maternal and infant mortality (61). Satisfying the unmet need for

FP might avert 104,000 maternal deaths per year (63).

Allocating equal numbers of outreach visits to each site appears

to offer equitable access, yet it fails to recognize differences in

access needs among sites. The guidelines and outreach programs

therefore typically recommend higher visit frequencies for sites

with higher needs and demand (30, 64). The guidelines thus

reflect one of the two key objectives of FP outreach programs: to

maximize effectiveness. Two commonly used effectiveness

measures are: (1) the number of client visits and (2) the number

of couple-years of protection (CYPs) (32). The second objective

provides an equity perspective: subpopulations whose outcomes

are more negatively impacted by lack of access need more

resources (mobile team days) allocated to obtain the equal health

outcomes. For FP services, this especially applies to young clients

and families who experience difficulties accessing FP services

through alternative channels (e.g., due to poverty or distance) (61).

FP outreach programs thus face the problem of optimizing the

number of visits to allocate to each outreach site with respect to

effectiveness (total number of client visits or CYPs) and equity

(relative number of client visits or CYPs to subpopulations of

young clients and of clients who have difficulties accessing FP

services elsewhere). The access measure client visits is strongly and

linearly correlated with the clinical outcome measures (32) and

can therefore serve as the effectiveness measure. Following an

Atkinson-based equity weighting approach, effectiveness and

equity objectives can now be combined by weighting visits to the

subpopulations of young clients and the number of people in a

site with difficulties to access FP services elsewhere. In the

illustration below, a weight of 1.5 is used as a proxy for the larger

impact on well-being outcomes.

As (30) show based on data from more than 20,000 outreach

visits, current allocation decisions are weakly aligned with the

aforementioned objectives and often far from optimal. At the

same time, black-box prescriptive analytics techniques have been

highly successful at solving this type of resource allocation

problems (65). They take the characteristics of each team and each

site as input and return the visit frequencies that are predicted to

yield the highest weighted number of client visits or CYPs.

However, the lack of explainability of black-box prescriptive

analytics techniques forms an implementation barrier for several

salient FP stakeholders in LMICs (30, 32). First, policy makers and

mobile team members lack trust in this form of analytics. Second,

the black-box nature is difficult to marry with professional values

about evidence-based standards. Explaining the solutions (i.e., visit

schedules) returned by black-box techniques is perceived to be

hard and compliance with evidence based principles is therefore

perceived to be difficult ascertain (66). Third, as with any model,

biases lie in wait. To give one example, outreach teams tend to

schedule site visits during market days and vaccination campaigns,

as these attract many potential clients. If a model lacks this

information (which is indeed not systematically collected), it may

strongly overestimate the “baseline” number of client visits or

CYPs in the corresponding site and recommend a higher-than-

optimal visit frequency. The lack of explainability of the solutions

provided by prescriptive analytics bears the risk that FP providers

fail to correct for the biases underneath.

Explainable methods for choosing visit frequencies may assign

villages to a limited number of categories, each with its own visit

frequency (e.g., three categories with visits every one, three, or

six months, respectively) [see (30)]. Metrics of varying degrees of

explainability can be used for this categorization. More

explainable metrics rely on simpler models to capture the

relationships between visits and outcomes. For example, a simple

and explainable approach allocates sites to categories in

decreasing order of their average number of clients served per visit.

Figure 4 summarizes the results of simulation studies to assess

the effectiveness and equity achieved by the various approaches,

using Uganda as a case study [see (30) for the data]. MATLAB

R2019b was the software used for the computational analysis,

including the explainable prescriptive analytics and the least

explainable exact approach taken from (67).

Figure 4 follows the lay-out of Figure 1 in presenting a two-

dimensional graph to visualize the effectiveness-equity trade-off

and uses the same color scheme to represent explainability. As

expected, the black-box method outperforms the other methods

in effectiveness and equity, while the highly explainable method

of allocating the same number of outreach visits to each site

(“Equal frequencies”) performs poorly. More surprisingly

perhaps, the aforementioned simple and explainable approach

yields decisions that are less than 1% from optimal with respect

to both equity and effectiveness.

Both the method (essentially a decision tree) and the metric

used to assign a village to a visit frequency category (the average

number of clients or CYPs per outreach visit) can easily be

explained. FP providers can therefore easily leverage their local

knowledge to identify sites for which this metric is not an
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accurate metric for categorization (e.g., due to the aforementioned

biases) and manually adjust those.

3.2 High income case study: kidney
allocation in the US

End-stage renal disease (ESRD) is the 12th most common cause

of death globally, with a global burden of disease of 35.8 million

DALYs in 2017 (68). It is associated with sedentary lifestyle-

related risk factors and highly prevalent in high-income countries

such as the US. Transplantation is the most cost-effective

treatment for ESRD and the number of transplanted kidneys

reached a record high of 26,309 in the US in 2022 (69). The

number of transplants is, however, limits access to the most

effective treatment of transplantation in the US, where almost

90,000 patients are waitlisted for transplantation and one person

dies from kidney disease every 9min (26, 27). Dialysis and

transplantation are costly treatments and pose huge strains on the

financial resources of health systems. In the US, the annual

expenditure for these treatments exceeds 130 billion USD (27).

Despite the allocation of these financial resources, kidney disease

may still be the chronic disease with the largest inequities in the

US (27). For several decades already, these inequities in treatment

access and outcomes have been associated with model biases and

the explainability of newly developed analytics models (15, 31).

The persistent scarcity of kidneys available for transplantation

limits access and many patients remain wait listed for multiple

years. Recipients who receive a transplant have a mean waiting

time of around three years in 2022 and 12.4% of recipients had

been waiting for at least five years (31, 69). In recent years, less

than half of the patients enrolled eventually receive a transplant

via the wait list (70). Several adjustments in the donor kidney

allocation policy have sought to resolve the inequities in this

probability of receiving a transplant and in the waiting time until

transplantation among subpopulations depending on blood type,

age, and ethnicity (69–71).

A first factor the kidney allocation system (KAS) considers for

effective and equitable organ allocation is the number of days a

patient is on the wait list (72). The expected survival time after

transplantation is another important consideration. It depends on

patient-related predictors, on donor-related predictors, and on

predictors estimating the quality of the match between the donor

organ and possible recipients, e.g., in terms of blood type and

HLA (72). Predictive analytics for post transplant survival

prediction are a rapidly emerging field in which many new

machine learning approaches have recently been proposed to

improve predictions and allocation decisions (73, 74).

In this case study, we implement a classical Cox proportional

hazard model for (death-censored) graft survival prediction, as

underlies current KAS parameters (72, 75–77). Cox proportional

hazard models assume the graft failure probability is determined by

a recipient independent time dependent base line survival function

and by a time independent recipient dependent hazard rate (75)

and can be estimated using commonly available standard software.

Additionally, this case study presents two commonly applied

standard machine learning based survival prediction analytics

models availaF survival forest model. Survival decision trees and

random survival forests are extensions of classical survival trees and

random forests for survival prediction with right censored data for

which there is evidence of good prediction performance (73). The

simplicity and deterministic nature of survival decision trees causes

them to be classified as explainable, unlike random survival forests.

The predictive analytics use standard predictors considered in

UNOS’ current allocation policy. These include predictors from

the kidney donor profile index (KDPI) and from the estimated

FIGURE 4

Evaluation of methods for choosing visit frequencies in terms of effectiveness (total CYPs), equity (weighted CYPs), and explainability (green ! red =

high ! low explainability).
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patient transplant survival score (EPTS) (72, 78, 79). It uses the

UNOS/OPTN data fo transplants from the years 2011 to 2013

and corresponding survival data until 2018. The predictive

models use single imputation and ten Monte Carlo cross-

validation repetitions with an 80%/20% split between training

and test data. The predictive models were implemented in

Python using scikit-survival. This code and the code for the

allocation simulations are available on Github as indicated in the

data availability statement below.

We firstly report on predictive analytics for survival prediction.

For each of the three prediction models, we present the mean

signed prediction error, the Brier score, and the C-index for

5-year post-transplant death-censored donor kidney survival,

which is the main clinical (health) outcome of interest (76, 80,

81). These metrics are reported for the ethnicities and genders

distinguished by UNOS/OPTN. The subpopulation C-index

reported below is novel and calculates the C-index by only

considering ordered pairs for which at least one of the recipients

belongs to the subpopulation.

In Table 1, green indicates a “positive” bias and red a “negative”

bias. There are no noteworthy significant differences in prediction

performance among the models, despite their differences in

explainability. However, there are significant differences and

therefore biases in prediction performance between subpopulations.

The Brier score is significantly larger for the Black subpopulation,

indicating that their 5-year survival probabilities are estimated less

accurately. This can be explained from the (negative) mean signed

error, which shows that their survival is significantly overestimated.

The mean signed error also reveals that the 5-year survival is

significantly underestimated for Asian Americans.

For Hispanics, the Brier score is significantly better than

average as is also confirmed by the C-index results, which show

that predicting who survives longest is more frequently correct

for Hispanics in all three models and less frequently correct for

the Black subpopulation for the decision trees and random

forests. The C-index scores for some minority subpopulations are

even further from average but the difference is not significant,

likely because of the small population sizes and resulting large

standard error. Lastly, we may note that the female

subpopulation score significantly worse on these discrimination

measures compared to the majority subpopulation of men.

To verify whether any of the prediction biases results from data

imbalance, we have estimated the three prediction models again for

a data set in which the large White and Black subpopulations were

undersampled to be of the same size as the subpopulation of

Hispanics (originally around 15% of the entire recipient

population). The prediction results are very comparable as can be

verified from the Supplementary Material.

The predictive analytics subsequently feed into prescriptive

analytics to allocate organs and impact their effectiveness with

equity. This case study considers the effects of allocation on

equity in access and on equity in health outcomes among

subpopulations according to ethnicity and gender.

The survival predictions are especially relevant for prescriptive

analytics models that aim to maximize effectiveness in therms of

the health outcome graft failure. An effectiveness maximizing

policy allocates organs becoming available to a compatible

patient on the wait list with highest expected death censored

graft survival resulting from the transplant. In case of ties, the

organ may be assigned to the longest waiting patient.

Table 2 presents results obtained using 30 effectiveness

maximizing allocation policy simulations for each of the three

prediction models. Each simulation spans a period of 30 years, with

a warm up period of 8 years. In the allocation policy simulations,

compatibility is defined following the blood type compatibility

guidelines in KAS and ignores HLA compatibility (72, 78, 79).

For the Cox Proportional Hazards model, the results reflect the

prediction biases which overestimate survival for the Black people

and underestimate survival for Asians. Hence, Black people are

more likely to be selected for transplantation and have significantly

higher transplant probabilities, while the opposite is the case for

TABLE 1 Equity of prediction performance.

Category group CPH SDT RSF

m (s) m (s) m (s)

Calibration

Brier score

Overall 0.221 (0.002) 0.224 (0.001) 0.222 (0.001)

Female 0.217 (0.004) 0.219 (0.002) 0.216 (0.003)

Male 0.225 (0.001) 0.228 (0.002) 0.226 (0.002)

Amer Ind/Alaska native 0.256 (0.022) 0.248 (0.021) 0.251 (0.018)

Asian 0.202 (0.011) 0.207 (0.010) 0.200 (0.006)

Black 0.239 (0.006) 0.240 (0.004) 0.238 (0.004)

Hispanic 0.210 (0.003) 0.208 (0.006) 0.204 (0.007)

Multi-racial 0.221 (0.111) 0.237 (0.048) 0.239 (0.048)

Native Hawaiian/Pacific 0.220 (0.019) 0.193 (0.045) 0.192 (0.033)

White 0.215 (0.003) 0.221 (0.002) 0.219 (0.002)

Mean signed error

Overall �0.034 (0.011) �0.033 (0.013) �0.032 (0.005)

Female �0.013 (0.015) �0.016 (0.017) �0.011 (0.009)

Male �0.047 (0.010) �0.044 (0.013) �0.045 (0.007)

Amer Ind/Alaska native �0.093 (0.084) �0.115 (0.047) �0.117 (0.072)

Asian 0.057 (0.027) 0.065 (0.041) 0.065 (0.021)

Black �0.068 (0.012) �0.066 (0.019) �0.073 (0.01)

Hispanic 0.017 (0.022) 0.022 (0.024) 0.022 (0.027)

Multi-racial �0.291 (0.321) �0.209 (0.161) �0.226 (0.123)

Native Hawaiian/Pacific 0.008 (0.111) 0.057 (0.121) 0.068 (0.102)

White �0.04 (0.009) �0.042 (0.014) �0.034 (0.008)

Discrimination

C-Index

Overall 0.610 (0.004) 0.600 (0.004) 0.610 (0.004)

Female 0.582 (0.007) 0.575 (0.008) 0.586 (0.006)

Male 0.627 (0.006) 0.614 (0.006) 0.624 (0.005)

Amer Ind/Alaska native 0.664 (0.055) 0.673 (0.055) 0.649 (0.060)

Asian 0.629 (0.032) 0.613 (0.029) 0.631 (0.025)

Black 0.585 (0.013) 0.564 (0.013) 0.567 (0.008)

Hispanic 0.647 (0.015) 0.645 (0.018) 0.650 (0.019)

Multi-racial 0.615 (0.234) 0.56 (0.166) 0.512 (0.19)

Native Hawaiian/Pacific 0.783 (0.107) 0.812 (0.103) 0.782 (0.099)

White 0.616 (0.007) 0.610 (0.01) 0.629 (0.007)

CPH, cox proportional hazard model; STD, survival decision tree; RSF, random

survival forest.

Green indicates a “positive” bias.

Red indicates a “negative” bias.
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Asians. Correspondingly, the Black subpopulation also experiences

significantly lower waiting time to transplant and longer expected

death censored graft survival after transplant. The latter may not

materialize because of the mentioned overestimation.

No significant differences in organ allocation metrics appear

among the subpopulations when adopting the survival decision

tree predictions. Even more remarkable are the significantly

lower overall transplant probability and significantly larger mean

waiting time in comparison to the Cox proportional hazards

results. The survival decision tree prediction model hardly uses

patient related predictors and therefore encounters many ties

during allocation. Following the tie-breaking rule, it subsequently

assigns the donor organs to the longest waiting among the tied

patients. As a result, it very closely mimics the FIFO policy

discussed below. This policy can indeed result in equal transplant

probabilities and waiting times among ethnicities (31, 50).

The results for the random survival forest based predictions

highlight prediction biases that were not apparent from the

prediction model results. The predictions associate longer

survival with features that are more common in the White

subpopulation than in the Hispanic subpopulation and in the

Indigenous minority subpopulation. This causes inequity in the

form of significant differences in transplant probabilities and

transplant waiting times. These differences might reflect existing

health and health system biases, such as White patients enrolling

at earlier stages of renal disease or having a shorter history of

diabetes (50). Altogether, regardless of explainability, embedding

ML based prediction models in the resource allocation policies

has not led to better allocation performance than embedding

classic Cox proportional hazard model.

To counter inequities, a Rawlsian approach to organ allocation

may strive for equal transplant probabilities and waiting times (31).

A FIFO policy selects the longest waiting compatible patient

regardless of expected survival or ethnicity and can therefore achieve

equality of transplant probability and waiting time for those who

receive a transplant. The choice of survival prediction model

therefore becomes irrelevant for FIFO policies. The FIFO allocation

results are presented in the Supplementary Material and in Table 3.

Lastly, we consider a hybrid approach which is a hybrid

combination of the two aforementioned allocation policies.

Whenever an organ becomes available it considers a weighted sum

of expected survival and waiting time for each compatible

reicipient on the waitlist and selects the recipients with the highest

weighted sum. In the results reported in Table 3, the weight for

estimated survival is ten times the weight of the waiting time.

Current allocation policies also adopt such a weighhted approach

(72). As this hybrid approach quickly converges to the FIFO

approach when using the survival decision tree and random

survival forest models, we present the results for all three policies

for the Cox proportional hazard model in Table 3 and refer to the

Supplementary Material for the other hybrid results.

The results reveal that while the equity of access policy has

fewer differences between subpopulations, performance is

significantly worse for all subpopulations for at least one

allocation performance metric. The same also applies to the

hybrid policy, although the performance differences are less

substantial. Thus, the performance obtained when maximizing

survival effectiveness is strictly better for some subpopulations

while avoiding negative effects for others. These results are

visualized by the green Lorenz curve for the maximizing

effectiveness policy and the red Lorenz curve for the hybrid

policy in Figure 5. According to the equity definition provided in

Subsection 2.2, the survival maximizing solution might thus be

equitable. Let us close this case study by noting that maximizing

effectiveness is also associated with prioritizing younger and

healthier patients and therefore associated with equity of

outcomes in relative terms (as mentioned in Subsection 2.1).

4 Discussion

In this study we have analyzed the trade-offs between

effectiveness, equity, and explainability as a result of predictive

and prescriptive analytics to improve the allocation of health

TABLE 2 Results obtained by various prediction models in a predictive
model that maximizes effectiveness.

TP WTUT ESAT

Group m s m s m s

CPH

Total population 0.646 0.018 237 24 2,677 9

Amer Ind/Alaska native, Non-

Hispanic

0.718 0.067 210 146 2,621 86

Asian, Non-Hispanic –0.563 0.037 318 97 2,634 37

Black, Non-Hispanic –0.688 0.016 –190 22 –2,707 11

Hispanic/Latino 0.624 0.024 305 42 –2,635 19

Multiracial, Non-Hispanic 0.660 0.075 277 226 2,743 119

Native Hawaiian/Other Pacific,

Non-H

0.407 0.133 349 614 2,683 173

White, Non-Hispanic 0.630 0.021 242 28 2,674 12

STD

Total population 0.609 0.019 1,279 77 2,825 19

Amer Ind/Alaska native, Non-

Hispanic

0.552 0.051 1,228 88 2,843 226

Asian, Non-Hispanic 0.592 0.035 1,279 80 2,801 128

Black, Non-Hispanic 0.587 0.021 1,275 79 2,833 48

Hispanic/Latino 0.625 0.016 1,224 76 2,881 59

Multiracial, Non-Hispanic 0.637 0.089 1,350 103 2,810 347

Native Hawaiian/Other Pacific,

Non-H

0.612 0.136 1,294 107 2,942 404

White, Non-Hispanic 0.623 0.022 1,296 77 2,800 37

RSF

Total population 0.629 0.019 587 43 2,977 3

Amer Ind/Alaska native, Non-

Hispanic

0.435 0.060 794 347 2,970 48

Asian, Non-Hispanic 0.591 0.041 690 111 2,962 21

Black, Non-Hispanic 0.586 0.022 619 59 2,971 6

Hispanic/Latino 0.562 0.026 799 87 2,965 12

Multiracial, Non-Hispanic 0.513 0.081 477 328 2,986 56

Native Hawaiian/Other Pacific,

Non-H

0.473 0.113 1,823 1,024 2,966 89

White, Non-Hispanic –0.700 0.017 –481 41 2,987 7

CPH, cox proportional hazard model; STD, survival decision tree; RSF, random survival forest.

Green indicates a “positive” bias.

Red indicates a “negative” bias.
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resources. Our initial theory-based hypothesis has been that trade-

offs between the three aforementioned constructs exist and that

demanding more explainability limits the effectiveness and

equity attainable.

The analysis is based on two case studies from very different

contexts and covering different types of needs and services. The

first considers FP services in Uganda (low-income). The second

case study addresses the advanced surgical intervention of kidney

transplantation in the US (high-income). Based on the results

obtained from two very different case studies, the key finding is

that the initial hypothesis is partially falsified.

Providing an in depth interpretation of the results from the

viewpoint of the initial hypothesis, we firstly notice that the least

explainable, “black-box,” models at best perform marginally

better in terms of effectiveness and equity in comparison to quite

explainable alternatives. In the FP case study, the difference was

less than one percent. In the transplant allocation study, the

differences were largely non-significant. While this evidence from

two very different simulation case studies can be viewed to have

limited strength and external validity, it points at the marginal

gains that black-box models may achieve over extant models.

The case studies thereby exemplify the importance of developing

and testing approaches with varying degrees of explainability.

Sacrificing explainability does not necessarily addmuch strength

to the modeling of the relationships in the presented operational

model, i.e., the modeled impact of the resources allocated on

process measures such as service access and quality and/or on

health and well-being outcomes. In the FP case study, these

relationships were captured equally well by simple, transparent

and explainable analytics. For the transplant case study, one may

argue that even the advanced black-box model of random survival

forests was unable to improve over the modest survival predictions

of the rather explainable Cox proportional hazard and decision

tree models. Such phenomena may occur especially when the

outcomes can intrinsically only be explained partially by the

relations and predictors at hand. Adding less explainable

technologies will not resolve the remaining “noise.” As health and

well being depend on many factors beyond resource allocation, the

two very different case studies can thus be interpreted to illustrate

this same fundamental prediction accuracy problem.

This brings us to the importance of evidence when considering

predictive and prescriptive analytics for health resource allocation.

An important question to be asked when considering less

explainable analytics is how much benefit these bring in the two

dimensional effectiveness-equity space (that is facing the reader

in the Figures 1, 3, 4). The case studies presented evidence from

simulation studies. Subsequent experimental evidence can help to

assess practical effectiveness-equity performance of black-box

technologies. Unfortunately, the evidence base on healthcare

analytics has advanced slowly (82).

Strong evidence of effectiveness and equity can also reduce the

need for explainability. Health systems and medical professionals

have a history of adopting drugs and medical technologies

supported by strong evidence, even when the workings and

outcomes are not fully explained or understood (54). Accordingly,

technology assessment protocols and approval regulations are

being adjusted to include embedded AI and analytics (83). Such

progress is especially valuable for cases in which “black box”

analytics outperform more explainable alternatives.

On the same theme, the FP case study states that prescriptive

analytics which planners and professionals perceive to lack

explainability is unlikely to be implemented as it is not consistent

with their evidence based values. Associations of medical

professionals are issuing guidance on adoption of advanced

analytics so as to facilitate conduct according to professional

standards (e.g., regarding effectiveness and equity) when

considering to use these technologies in practice (54, 55). Indeed,

this has led to the use of the term “augmented intelligence” as an

alternative for “artificial intelligence” to express the view that the

technologies augment the intelligence of the human professionals

involved, rather than substitute their intelligence (55). It has been

argued that “when there are overarching concerns of justice—that

is, concerns about how we should fairly allocate resources—ex ante

transparency about how the decisions are made can be particularly

important. . .. we may prefer to trade off some accuracy, the price

we pay for procedural fairness” (60). In view of the results

TABLE 3 Results obtained by various allocation policies using a Cox
proportional hazard prediction model.

TP WTUT ESAT

Group m s m s m s

Maximize survival effectiveness

Total population 0.646 0.018 237 24 2,677 9

Amer Ind/Alaska native, Non-

Hispanic

0.718 0.067 210 146 2,621 86

Asian, Non-Hispanic 0.563 0.037 318 97 2,634 37

Black, Non-Hispanic 0.688 0.016 190 22 2,707 11

Hispanic/Latino 0.624 0.024 305 42 2,635 19

Multiracial, Non-Hispanic 0.660 0.075 277 226 2,764 119

Native Hawaiian/Other Pacific, Non-H 0.407 0.133 349 614 2,683 173

White, Non-Hispanic 0.630 0.021 242 28 2,674 12

Maximize access equity

Total population 0.610 0.019 1,253 76 2,579 10

Amer Ind/Alaska native, Non-

Hispanic

0.566 0.055 1,155 85 2,640 129

Asian, Non-Hispanic 0.592 0.036 1,276 85 2,561 63

Black, Non-Hispanic 0.587 0.022 1,263 77 2,608 23

Hispanic/Latino 0.626 0.018 1,194 77 2,561 35

Multiracial, Non-Hispanic 0.648 0.088 1,358 142 2,650 188

Native Hawaiian/Other Pacific, Non-H 0.614 0.145 1,276 133 2,487 229

White, Non-Hispanic 0.623 0.022 1,267 78 2,565 21

Hybrid optimization balancing effectiveness and equity

Total population 0.623 0.019 988 70 2,648 7

Amer Ind/Alaska native, Non-

Hispanic

0.550 0.052 707 184 2,643 71

Asian, Non-Hispanic 0.549 0.035 1,231 141 2,630 38

Black, Non-Hispanic 0.644 0.021 835 62 2,671 12

Hispanic/Latino 0.600 0.017 1,056 89 2,631 17

Multiracial, Non-Hispanic 0.674 0.079 903 152 2,615 86

Native Hawaiian/Other Pacific, Non-H 0.548 0.111 1,805 480 2,651 118

White, Non-Hispanic 0.627 0.024 1,064 79 2,638 9

TP, transplant probablity; WTUT, waiting time until transplant; ESAT, expected survival

after transplant.

Red indicates a “negative” bias.
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obtained, this can be interpreted to argue against the least

explainable analytics for the case studies hand.

On the other hand, the FP case study makes clear that the base

case of not using any form of augmentation by prescriptive

analytics provided the worst solutions in the effectiveness-equity

space. The same can be concluded for the FIFO-based kidney

allocation policy, which can be viewed to be explainable and to

provide equitable access but is significantly lacking in terms of

effectiveness and equity of outcomes. Analytics can learn and

replicate resulting biases encoded in available data from non

optimal allocation practices, which is especially undesirable when

transparency and explainability are limited (20). Hence, the case

studies can also be interpreted to illustrate that explainable

analytics provides an opportunity to overcome historic

effectiveness and equity shortcomings.

The above leads us to an adjusted version of the theoretically

developed Figure 1 which adds a practical, evidence-based perspective,

as present in Figure 6. It highlights the very limited benefits, if any, of

choosing less explainable models beyond a certain explainability

threshold. As mentioned, the real world effectiveness may even

diminish beyond this point because of implementation challenges.

Obviously, the actual shape of Figure 6 may vary across allocation

problems and over time as the scientific field of explainable analytics

advances. Future empirical studies will be important.

Lastly, let us therefore spend a few words on explainability

questions that are especially relevant for future studies on the

allocation of scarce resources. What needs to be explainable, the

working of the analytics, the outcomes, both, and for whom and

by whom? More specifically, one may wonder whether the

workings, outcomes, or both should be explainable to all patients?

How can we assess whether an explanation is correct and leads to

the desired understanding? For instance, who understands the

supposedly explainable Cox proportional hazard models and the

relationship between deceased censored graft survival and patient

outcomes such as life expectancy and well-being? Is it enough to

explain the effectiveness and equity of outcomes at a

subpopulation level, or is it required to explain why a resource

allocation is effective and equitable? For instance, is it necessary

for patients to understand why the team visits another village and

not theirs? Why is it fair and just that a donor kidney is allocated

to another patient while my patient is in worse health and waits

longer? Does explainability refer to the logic of the model, or to

the embedded norms, values and ethics (54, 84)? With many of

these questions open, advancement of the explainability of fairness

and justice regarding the working of analytics and regarding the

equity of outcomes forms a research direction that can accelerate

the uptake of advanced analytics in support of SDG3.

4.1 Limitations

A first limitation is that the analysis is based on two illustrative

case studies. Despite being very different and from both extremes of

the low-income high-income continuum, the comparable results

obtained from these illustrations may have limited general validity.

Hence our call for further empirical research to validate or falsify

the findings summarized in Figure 6. This will also serve to

address the second abovementioned limitation; both studies

FIGURE 5

Lorenz curves for Cox based allocation based on maximizing survival and hybrid allocation.
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simulate allocation policies and hence can be viewed to provide weak

evidence. Third, let us repeat that the case studies only cover some

applications of non-explainable analytics and that other, future,

non explainable models may provide different results. Future

research might identify health resource allocation domains for

which they attain more substantial performance improvement.
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