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Challenges and strategies in
building a foundational digital
health data integration
ecosystem: a systematic review
and thematic synthesis

Radha Ambalavanan*, R Sterling Snead, Julia Marczika,

Gideon Towett, Alex Malioukis and Mercy Mbogori-Kairichi

Research Department, The Self Research Institute, Broken Arrow, OK, United States

Background: Chronic conditions require robust healthcare data integration to

support personalized care, real-time decision-making, and secure information

exchange. However, fragmented data ecosystems disrupt interoperability,

complicate patient-centered care (PCC), and present challenges for

incorporating genomic data into clinical workflows.

Objective: This systematic review with thematic synthesis aims to identify key

challenges and synthesize existing strategies from the literature to inform the

development of a foundational digital health data integration ecosystem.

Methods: Following PRISMA guidelines, we systematically screened literature

across multiple databases. A thematic synthesis approach was used to

categorize findings into three primary themes: interoperability, PCC, and

genomic data integration.

Results: A total of 161 studies were included. Key challenges identified include

semantic misalignment across commonly used healthcare standards such as

HL7 FHIR and SNOMED CT, limited cross-system data exchange, inadequate

patient engagement features in EHRs, and concerns regarding the security and

clinical utility of genomic data. Strategies described across the literature

include ontology-based interoperability models, AI-supported PCC

frameworks, and blockchain-enabled genomic data governance.

Conclusion: By analyzing current methodologies, research gaps, and

implementation challenges, this review offers an evidence-based foundation to

guide future advancements in healthcare data integration. It supports the

development of scalable, privacy-preserving, and ethically governed data-sharing

infrastructures that enable personalizedmedicine and real-time clinical interventions.

Systematic Review Registration: https://osf.io/c2xvw.

KEYWORDS

patient-centered care, healthcare data integration, systematic review, interoperability,

genomic data, thematic synthesis, digital health ecosystem

1 Introduction

Chronic conditions, as defined by the World Health Organization (WHO), require

sustained, long-term management and present multifaceted challenges across multiple

health domains. These conditions encompass cardiovascular diseases, diabetes mellitus,

asthma, HIV/AIDS, psychiatric disorders, sensory impairments, musculoskeletal
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disorders, and oncology-related diseases. Addressing this diverse

spectrum necessitates a multidisciplinary approach prioritizing

patient engagement, effective monitoring, and access to

pharmacotherapeutics (1, 2). These challenges underscore the

importance of integrated data systems to support PCC and

personalized healthcare delivery.

Despite advancements in healthcare, fragmented systems often

hinder collaboration and impair both research and care delivery.

Inefficiencies, delays, and inadequate patient outcomes arise from

the lack of seamless data integration (3). Interoperability remains

a cornerstone of modern healthcare systems, requiring well-

defined strategies for structuring, managing, and securely

exchanging diverse health data. PCC, a foundational principle in

modern healthcare, emphasizes empowerment, active

participation, and collaboration among care team members,

including patients, families, and providers. Nevertheless, PCC

strategies require robust data systems to ensure effective care

coordination and personalized interventions. As noted by

Wagner et al. (4), coordinated care enhances collaboration and

patient outcomes, a principle further supported by the Agency

for Healthcare Research and Quality (AHRQ), which highlights

metrics for capturing PCC strategies (5). In modern healthcare

frameworks, PCC has become a central focus, strengthening

trust, satisfaction, and communication (6).

While the adoption of EHRs has revolutionized data

management, challenges such as data interoperability, security, and

seamless integration of diverse data types persist. EHR-linked

biobanks and genomic research initiatives have demonstrated the

potential of combining phenotypic and genetic data to inform

precision medicine. However, this potential remains limited

without standardized approaches, these efforts face scalability

limitations that hinder their broader adoption. Interoperability is

particularly essential for chronic disease management, where

effective data sharing ensures timely, high-quality healthcare.

Without it, fragmented systems lead to redundant efforts and

delayed treatments, ultimately affecting patient outcomes (7–10).

The transition from paper-based records to EHRs began in the

early 1990s, driven by technological advancements and advocacy

from the Institute of Medicine (11). While EHR adoption has

accelerated globally, especially with initiatives like the Meaningful

Use (MU) program in the United States, interoperability challenges

remain a significant barrier to fully realizing their potential in

modern healthcare (12, 13). Over the past 25 years, EHR adoption

among office-based physician practices has seen significant growth.

According to Health IT data (14), EHR adoption among office-

based physician practices in the United States has risen from 18

percent in 2001 to 78 percent in 2013 for any EHR and from 72

percent in 2019 to 78 percent in 2021 for Certified EHR, reflecting

the ongoing digital transformation in healthcare.

In their seminal work, the Institute of Medicine (IOM) (15)

outlined Six Aims in Crossing the Quality Chasm, aiming to

enhance healthcare delivery by improving safety, effectiveness,

patient-centeredness, timeliness, efficiency, and equity—essential

factors for delivering high-quality care, particularly for chronic

conditions. These aims address fragmented data systems and

emphasize integrated, patient-centered healthcare. The COVID-

19 pandemic further underscored the need for comprehensive

data integration strategies that enable continuity of care and

informed decision-making during crises (16).

EHRs significantly streamline healthcare by centralizing patient

data, improving accessibility for providers, and enabling direct

patient access to medical records. Features such as secure

communication, appointment scheduling, test result viewing, and

medication management enhance patient convenience and

engagement, fostering empowerment and collaboration (12, 17,

18). Although progress is evident, significant barriers remain in

standardizing data interoperability, security, and genomic data

integration. Overcoming these challenges is essential for enhancing

personalized care and optimizing clinical decision-making.

Several studies have explored healthcare data integration

frameworks, focusing on interoperability, PCC, and genomic data

integration. Prior reviews highlight key challenges such as

inconsistent terminology mapping, lack of standardized data-

sharing models, and gaps in patient-centric engagement

strategies. However, a comprehensive thematic synthesis of these

challenges and potential solutions remains lacking. This

systematic review addresses this gap by synthesizing existing

evidence to bridge knowledge gaps and inform future research.

In the context of this review, interoperability denotes the ability

of different health information systems to access, exchange, and

meaningfully interpret shared data across various healthcare

domains and organizational settings. PCC refers to a healthcare

approach that emphasizes active patient engagement, shared

decision-making, and individualized care planning. Genomic data

integration involves incorporating genetic and molecular

information into clinical workflows to support personalized

treatment strategies. A digital health data ecosystem encompasses

the interconnected infrastructure through which clinical, patient-

generated, and genomic data are collected, shared, and utilized to

enable real-time, data-driven healthcare.

Despite ongoing advancements in EHR adoption and

interoperability frameworks, significant challenges remain in

integrating diverse health data sources, ensuring seamless PCC,

and leveraging genomic data for precision medicine.

A structured, evidence-based synthesis is essential to identify

barriers, evaluate existing methodologies, and propose best

practices for improving healthcare data integration. To address

these challenges, this systematic review follows PRISMA

guidelines and employs a thematic synthesis approach to analyze

studies on interoperability, PCC, and genomic data integration.

The research framework is systematically structured using the

PICOS (Population, Intervention, Comparator, Outcome, and

Study Design) approach, which is detailed in the materials and

methods section.

2 Materials and methods

2.1 Study design

This study followed a systematic review methodology, adhering

to the Preferred Reporting Items for Systematic Reviews and Meta-
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Analyses (PRISMA) (19) guidelines to ensure transparency and

reproducibility, see Supplementary File S1. Given the

heterogeneity of study designs and outcome measures, a thematic

synthesis approach was employed to identify patterns and themes

related to interoperability, PCC, and genomic data integration.

The systematic review aimed to categorize existing research gaps

and methodologies, focusing on healthcare data interoperability.

This systematic review was prospectively registered with the

Open Science Framework (OSF): https://osf.io/c2xvw.

2.2 Literature search strategy

To capture a comprehensive set of studies, the literature search

included multiple databases and supplementary sources, with

studies identified up to March 15, 2024. The primary databases

used were PubMed, which focuses on biomedical and life sciences

literature; MEDLINE, which covers health-related literature; and

Scopus, which provides broad scientific research coverage. Since

MEDLINE and PubMed have significant overlap, they were treated

as a single database to avoid redundancy in the search process.

In addition to these primary databases, Google Scholar and the

WHO repository were included as supplementary sources to capture

gray literature and studies not indexed in the primary databases. To

mitigate publication bias and ensure inclusivity, the search strategy

also encompassed online books, conference abstracts, seminars,

and reference publications. Gray literature was selectively included

based on relevance, credibility, and methodological rigor, with

preference given to peer-reviewed reports, government

publications, and institutional white papers. Conference abstracts

were considered only if they provided empirical data relevant to

interoperability, PCC, or genomic data integration. To broaden the

scope, the reference lists of selected articles were manually

screened to identify additional relevant studies.

2.3 Search syntax strategy

The search strategy focused on key concepts such as “Electronic

Health Record,” “Genomic Data,” “Ontology Integration,”

“Chronic Conditions,” “Patient-Centered Care,”

“Interoperability,” and “Healthcare Quality.” Boolean operators

(AND, OR, NOT) and advanced search techniques (quotation

marks, wildcard characters, parentheses) refined the search to

ensure comprehensive coverage of related terms and variations.

The resulting search string included combinations such as

(“Electronic Health Record” OR “Genomic Data” OR “Patient-

Centered Care” OR “Interoperability”) AND (“Ontology

Integration” OR “Healthcare Quality”). The complete search

syntax is provided in the Supplementary File S2.

2.4 Article screening and selection

Articles potentially relevant to the study were initially screened

based on their titles and imported into Rayyan, a free web-based

application designed to support article screening in systematic

reviews for efficient management and blinded screening by

independent reviewers. Further selection involved abstract and

full-text reviews, applying Rayyan’s screening tools (20) to

eliminate duplicates and filter studies based on predefined

inclusion and exclusion criteria, see Supplementary File S3,

where a detailed table outlines the selection criteria.

While quantitative studies were not excluded a priori, they were

only retained if they contributed conceptually relevant insights to

thematic coding and qualitative synthesis. Purely quantitative

studies focusing solely on statistical outcomes without conceptual

or narrative interpretation were excluded, as they did not align

with the review’s thematic objectives. This approach ensured that

the selected studies provided rich contextual information

essential for evaluating healthcare data integration frameworks.

To ensure alignment with study objectives, priority was given to

studies involving healthcare providers, clinical workflows, and

patient data analysis. Studies that exclusively discussed theoretical

ontology models, generalized genomic concepts, or

computational frameworks without direct relevance to EHRs,

PCC, or interoperability were excluded.

A structured selection process was applied using the PICOS

framework to define the review focus and inclusion criteria. This

process supported systematic study selection aligned with the

thematic structure of the review, as outlined in Table 1.

Following these criteria, titles were first assessed for relevance,

followed by abstract reviews and a comprehensive review of full-

text articles. Only studies meeting the predefined criteria were

included, ensuring the integrity and validity of findings.

A curated articles database supported this process; see

Supplementary File S4—Sheet 1.

2.5 Data extraction and thematic
categorization

The systematic review identified 161 relevant studies, analyzed

using a structured thematic synthesis approach. The studies were

TABLE 1 Research question framework (PICOS).

PICOS
element

Description in the context of this review

Population (P) Healthcare systems handling chronic disease management

and clinical decision-making through integrated use of EHRs,

PGHD, and genomic data.

Intervention (I) Use of interoperability frameworks (e.g., HL7 FHIR), PCC

strategies, and genomic data integration models (e.g., SSI,

blockchain-based governance).

Comparator (C) Studies comparing conventional vs. advanced integration

strategies, or evaluating the impact of structured vs.

unstructured health data frameworks.

Outcome (O) Enhanced interoperability, improved patient engagement,

better chronic disease management, secure genomic data use,

and more efficient, personalized care delivery.

Study design (S) Systematic review using thematic synthesis, analyzing

qualitative studies on healthcare data integration frameworks

and technologies.
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categorized into three main themes: (i) Interoperability, focusing

on challenges and strategies for integrating healthcare data across

platforms; (ii) PCC, emphasizing patient engagement in data-

driven care; and (iii) Genomic Data Integration, exploring

methods for incorporating genomic information into clinical

decision-making.

Relevant data were extracted manually using a structured

template developed by the review team. Key variables included

study design, sample size, methodology, bias level, quality rating,

thematic category, and key findings. Each study was assessed

using predefined criteria evaluating research aims, data collection

methods, and potential limitations to ensure methodological

rigor. Bias levels were categorized as low, moderate, or high

based on structured criteria similar to ROBIS (Risk of Bias in

Systematic Reviews) for systematic reviews and JBI (Joanna

Briggs Institute) Critical Appraisal Checklists for

qualitative studies.

The initial extraction was performed by the first author (RA),

and independently reviewed and validated by the second reviewer

(RSS) and third reviewer (JM). Discrepancies were resolved

through consensus. Data were extracted and organized using

structured spreadsheets. The categorization and quality

assessment process are detailed in Supplementary File S5—Sheet

1. A comprehensive summary of extracted data is presented in

Table 2, detailed thematic classification and key findings were

recorded in Supplementary Files S5—Sheets 1 and 2.

2.6 Thematic coding and reliability

Data extraction followed a structured thematic synthesis

approach by three independent reviewers. Articles were

systematically analyzed to highlight key excerpts, assign initial

codes, and categorize findings under interoperability, PCC, and

genomic data integration. Thematic coding was iteratively refined

to capture emerging patterns. Themes were cross-validated

through consensus discussions to ensure reliability. Discrepancies

were resolved through deliberation, minimizing subjectivity.

Annotation details, including coding and methodological

assessment, were recorded in Supplementary File S5—Sheet

2. No statistical inter-rater reliability metric was calculated, as

coding was consensus-based, with decisions refined iteratively.

2.7 Risk of bias and quality assessment

The risk of bias was qualitatively assessed based on study

methodology, sample representativeness, and reporting

transparency. A structured qualitative assessment adapted from

conventional systematic review practices was implemented.

Rather than using a formal checklist like ROBIS or JBI, the

review team used predefined criteria to evaluate clarity in data

collection methods, alignment with study objectives, and depth

of analytical insight. Studies were categorized as having a low,

moderate, or high risk of bias based on these criteria. The

complete quality assessment details are provided in

Supplementary File S5—Sheet 1.

2.8 Data synthesis approach

Due to the methodological diversity of included studies, a

meta-analysis was not conducted. The heterogeneity in study

designs, sample populations, and measured outcomes made

effect-size comparisons infeasible. Studies encompassed

qualitative case studies and observational studies, which vary

significantly in analytical approaches. Instead, a thematic

synthesis approach was adopted to systematically extract

recurring patterns and research gaps, ensuring a structured and

comprehensive synthesis of findings while maintaining

methodological rigor.

TABLE 2 Key findings from systematic review and thematic synthesis.

Main theme Challenges in healthcare data integration Clinical implications Proposed solutions & best
practices

Interoperability Fragmented data exchange due to lack of standardized

protocols.

Delays in data access and decision-

making.

Promote universal adoption of HL7 FHIR,

SNOMED CT, and LOINC.

Inconsistent adoption of HL7 FHIR, SNOMED CT, and

LOINC across healthcare systems.

Incomplete or inconsistent patient

records.

Develop ontology-based models for semantic

alignment.

Limited system scalability. Standardize APIs for seamless platform

exchange.

Patient-centered care

(PCC)

Poor integration of PGHD into EHRs. Reduced personalization of care. Develop AI-driven platforms with real-time

PGHD tracking.

Lack of user-friendly tools for patient engagement. Limited engagement in treatment

decisions.

Embed CDS tools in EHRs using NLP and

feedback loops.

Lack of real-time feedback.

Genomic data

integration

Ethical and regulatory concerns. Data privacy risks and consent

violations.

Use federated learning for decentralized

genomic analysis.

Consent complexity and cross-border data governance. Barriers to genomic medicine

implementation.

Integrate genomic standards (OMOP-CDM,

GA4GH) with EHRs.

High computational cost of AI/genomics integration. Inaccurate predictions due to

processing gaps.

Apply privacy-preserving technologies like

blockchain and ZKPs.

Ambalavanan et al. 10.3389/frhs.2025.1600689

Frontiers in Health Services 04 frontiersin.org

https://doi.org/10.3389/frhs.2025.1600689
https://www.frontiersin.org/journals/health-services
https://www.frontiersin.org/


3 Results

3.1 PRISMA flow diagram

The article selection process followed the PRISMA 2020

guidelines, ensuring a systematic and transparent approach to

identifying, screening, and including studies. The initial search

yielded 7,989 records from specified databases and

supplementary sources such as Google Scholar and the WHO

repository. After removing duplicates using Rayyan software,

6,148 unique records remained. Screening based on predefined

inclusion and exclusion criteria resulted in 1,649 articles assessed

for eligibility. Following thorough evaluation, 161 studies were

included in the systematic review. Figure 1 (PRISMA Flow

Diagram) visually represents the article selection process,

highlighting the methodology’s rigor and transparency.

FIGURE 1

A visual representation illustrating the study selection process according to the preferred reporting items for systematic reviews and meta-analyses

(PRISMA) guidelines. PCC, patient-centered care; EHR, electronic health record; PGHD, patient-generated health data.
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3.2 Key themes from systematic review and
thematic synthesis

The systematic review identified 161 relevant studies, which

were analyzed to uncover recurring themes in healthcare data

integration. The findings were categorized into three

overarching themes: interoperability, PCC, and genomic

data integration.

Interoperability challenges stem from fragmented data-sharing

mechanisms, inconsistent adoption of interoperability standards

such as Health Level Seven Fast Healthcare Interoperability

Resources (HL7 FHIR), Systematized Nomenclature of Medicine

Clinical Terms (SNOMED CT), and Logical Observation

Identifiers Names and Codes (LOINC), as well as limitations in

application programming interfaces (APIs) that restrict seamless

healthcare system integration. These inconsistencies lead to

inefficiencies in data exchange, making it difficult to achieve

interoperability across different health information

technology infrastructures.

Insights from PCC highlight barriers to patient engagement,

including limited integration of patient-generated health data

(PGHD) into EHRs, lack of real-time feedback mechanisms, and

usability constraints in digital health platforms. The absence of

structured patient engagement mechanisms reduces the

effectiveness of PCC strategies, impacting treatment adherence

and personalized care delivery.

Genomic data integration presents challenges related to

privacy, security, and the computational burden of incorporating

phenotypic-genotypic relationships into clinical workflows.

Ethical concerns regarding data sharing, regulatory compliance,

and the complexity of integrating genomic information within

EHR systems further hinder the adoption of genomics-driven

precision medicine.

These findings emphasize the pressing need for standardized

frameworks, AI-driven data harmonization techniques, and

security-enhanced genomic data models to support precision

medicine and patient-centered interventions. Table 2 presents a

structured summary of the key findings, their clinical

implications, and proposed solutions to address these challenges.

A more detailed breakdown of study annotations and thematic

classifications is available in Supplementary Files S5.

Among the 161 included studies, the most common study

designs were descriptive (n = 54), followed by qualitative

studies (n = 15), and a range of implementation, observational,

mixed-methods, and exploratory approaches (n = 92). The

majority of studies (n = 150) were assessed to have low risk of

bias, while a small number were rated as moderate or

contained narrative descriptions of potential selection or

reporting bias. In terms of thematic representation,

interoperability was the most prevalent focus, appearing in 149

studies either independently or in combination with other

concepts. Patient-centered care was identified in 48 studies,

while genomic data integration featured in 14. These patterns

are detailed in Table 2 and Supplementary Files S5—Sheets 1

and 2 were used to guide the thematic synthesis.

3.3 Challenges in healthcare data
integration

The findings from this systematic review reveal persistent

challenges in healthcare data interoperability, PCC

implementation, and genomic data integration, emphasizing the

need for standardized solutions.

Interoperability challenges stem from fragmented data-sharing

mechanisms, inconsistent adoption of HL7 FHIR, SNOMED CT,

and LOINC, and API standardization limitations. Studies included

in this review indicate that semantic misalignment remains a key

barrier, leading to inefficiencies in clinical workflows and delays in

healthcare decision-making. The lack of unified interoperability

frameworks across institutions and regions further complicates

data exchange. Moreover, the absence of ontology-driven

integration models prevents seamless semantic consistency,

restricting the scalability and adaptability of health IT systems.

PCC implementation challenges identified in this review

highlight limited integration of PGHD into EHR systems,

usability constraints in digital health platforms, and a lack of

structured real-time patient feedback mechanisms. Although

various mobile health applications and patient portals have been

developed to facilitate engagement, their integration into existing

EHRs remains inconsistent, reducing their effectiveness in

chronic disease management. Compounding these challenges,

studies indicate that personalized care adjustments are often

delayed due to the absence of dynamic, real-time data exchange

between patients and providers. These limitations underscore the

need for enhanced AI-driven automation and interoperability

solutions to optimize patient engagement strategies.

Genomic data integration challenges primarily relate to data

privacy, regulatory compliance, and computational inefficiencies.

Several studies in this review point to concerns over data security

and the complexities of aligning genomic datasets with

phenotypic and clinical information. Ethical considerations,

including patient consent models, risks of genetic discrimination,

and varying international data-sharing regulations such as the

Health Insurance Portability and Accountability Act (HIPAA)

and the General Data Protection Regulation (GDPR), further

complicate the adoption of genomics-driven precision medicine.

Another significant barrier is the computational inefficiency in

processing large-scale genomic datasets using AI-driven

approaches, which limits the real-time clinical application of

genomic insights.

The insights gathered from this review reinforce the need for

structured, ontology-based frameworks, AI-driven data

harmonization, and enhanced security measures to address these

critical challenges and advance the integration of interoperability,

PCC, and genomic data in healthcare systems.

3.4 Proposed solutions and best practices

Addressing the challenges identified in healthcare data

integration requires structured interventions that enhance
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interoperability, PCC, and genomic data integration. Based on the

findings from this systematic review, solutions must focus on

standardization, technological advancements, and regulatory

alignment to achieve seamless data exchange, improved patient

engagement, and secure genomic data utilization.

3.4.1 Enhancing interoperability through
standardization and ontology integration

The fragmented adoption of interoperability standards across

healthcare systems presents significant barriers to effective data

exchange. To address these challenges, the widespread

implementation of standards such as HL7 FHIR, SNOMED CT,

and LOINC should be prioritized to promote semantic

consistency and data harmonization. The integration of ontology-

based frameworks can further enhance data standardization by

enabling automated reasoning and supporting advanced decision-

support tools. In parallel, the development and deployment of

standardized APIs can improve cross-platform interoperability,

thereby reducing workflow inefficiencies. To ensure widespread

adoption, regulatory policies must reinforce interoperability

mandates and promote universal compliance across

healthcare systems.

3.4.2 Advancing patient-centered care through
digital health solutions

To overcome barriers in patient engagement and PCC

implementation, healthcare systems should adopt AI-driven

digital health platforms that offer real-time feedback mechanisms

and decision-support tools. Mobile-first applications with

intuitive user interfaces can enhance PGHD integration within

EHR workflows, ensuring patients actively participate in their

care. Embedding NLP-based decision-support tools can further

personalize treatment plans by leveraging real-time patient

data analytics.

3.4.3 Strengthening data security and ethical
governance in genomic data integration

Given the increasing role of genomics in precision medicine,

ensuring data security and regulatory compliance is critical.

Secure encryption models and decentralized consent frameworks

can safeguard genomic data privacy while enabling responsible

data sharing. Aligning genomic data standards such as the

Observational Medical Outcomes Partnership Common Data

Model (OMOP-CDM) and the Global Alliance for Genomics

and Health (GA4GH) framework with clinical ontologies can

facilitate better integration into electronic health record (EHR)

systems. Federated learning techniques can allow AI-driven

insights without centralizing sensitive patient data, enhancing

both security and scalability.

By implementing these standardized interoperability

frameworks, AI-driven PCC strategies, and secure genomic data

integration practices, healthcare systems can move toward

scalable, patient-centered, and ethically governed data ecosystems

that support precision medicine and chronic disease management.

While many interoperability studies proposed technically

sound frameworks, several lacked validations in real-world

clinical settings, which limited their usefulness in actual

healthcare environments. Studies on PCC were often grounded

in strong conceptual frameworks but varied widely in how

they measured actual patient engagement, often relying on

provider-reported data rather than direct patient input.

Genomic integration studies, though methodologically robust,

frequently assumed infrastructural readiness and data

standardization that may not reflect current realities across

diverse healthcare systems.

3.5 Key findings and research gaps in
healthcare data integration

This review identifies critical gaps in healthcare data

standardization, PCC strategies, and genomic data security

measures. While existing interoperability solutions aim to

enhance healthcare data exchange, their implementation

remains fragmented, resulting in semantic inconsistencies

and scalability limitations across institutions. The findings

underscore the necessity of structured data exchange models,

the integration of standardized terminologies, and enhanced

regulatory alignment to facilitate seamless healthcare

data management.

Several emerging trends were observed, including the

increasing use of ontology-driven data models to standardize

clinical concepts and improve cross-platform interoperability.

Self-Sovereign Identity (SSI) is gaining attention as a privacy-

preserving approach that enables patients to retain control over

their health information, genomic data, and digital identities. SSI

frameworks could address data ownership concerns, ensuring

secure authentication and cross-border data exchange without

reliance on centralized authorities. The integration of genomic

data within EHR systems has also gained momentum; yet privacy

concerns, ethical considerations, and the lack of harmonized

regulatory frameworks continue to hinder widespread adoption.

Research findings also indicate that institutional-level

interoperability frameworks are often more developed than

national-scale initiatives, highlighting disparities in adoption rates

and governance models.

Despite advancements in health IT, research gaps persist. Many

existing interoperability frameworks lack the adaptability required

for dynamic healthcare environments, limiting their effectiveness

in real-world applications. The handling of Directly Identifiable

Information (DII) and Indirectly Identifiable Information (III)

presents additional challenges, as AI-driven analytics and

genomic data integration raise concerns about re-identification

risks, data misuse, and compliance with privacy regulations such

as GDPR and HIPAA. Although AI-driven predictive analytics,

blockchain for secure data exchange, and graph-based databases

are promising, their adoption remains limited due to regulatory,

computational, and technical constraints. Future research should

focus on validating these technologies through empirical studies,

addressing cross-border regulatory challenges, and developing

scalable, flexible infrastructures to support real-world

healthcare applications.
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4 Discussion

4.1 Interoperability and data exchange
limitations

Despite advancements in healthcare data integration, persistent

gaps in semantic consistency, interoperability across platforms, and

data standardization hinder effective healthcare communication

and decision-making. Semantic inconsistencies, lack of

standardized formats, and variations in healthcare terminologies

continue to challenge interoperability. Heterogeneous data

structures, disparate coding systems, and misalignment between

EHR implementations further exacerbate the problem, limiting

real-time clinical data exchange and integration. Application

Programming Interfaces (APIs) facilitate cross-platform data

exchange, yet many healthcare systems struggle with fragmented

data repositories and redundant documentation workflows,

resulting in data silos that prevent cross-institutional

collaboration and continuity of care (21). Established standards

such as HL7 FHIR, SNOMED CT, and Clinical Document

Architecture (CDA) provide structured data management

approaches, but their adoption remains inconsistent across

healthcare organizations due to variations in technological

maturity, resource constraints, and lack of regulatory mandates

(22). Regulatory frameworks such as HIPAA and GDPR enforce

compliance measures, but cross-border data-sharing regulations

remain fragmented, leading to interoperability bottlenecks in

multinational healthcare systems (23).

To address these challenges, standardized technologies

such as semantic web frameworks and ontology-based

systems, including OWL and RDF, have been proposed to

improve interoperability and facilitate more efficient data

retrieval and clinical decision-making (24, 25). Despite these

advancements, the limited adoption of ontology-based

solutions and insufficient alignment between clinical

terminologies and ontological models restrict the potential

benefits of these technologies. Misalignment between

different interoperability models continues to hinder

seamless health data exchange, emphasizing the need for

further research on developing scalable, domain-specific

interoperability solutions that align with evolving clinical

and regulatory requirements (26).

4.2 Patient-centered care and personalized
medicine

PCC emphasizes patient engagement, active participation, and

collaborative decision-making, yet existing EHR systems often lack

integrated patient-centered tools that support personalized

healthcare delivery. Research indicates that structured data

models and patient-centric digital platforms enhance

engagement, treatment adherence, and health outcomes by

providing more accessible, user-friendly patient interfaces tailored

to diverse patient populations, including those with limited

digital literacy (27). The lack of context-aware digital

interventions and intelligent automation in EHR platforms

reduces the ability to deliver adaptive, patient-specific

recommendations. Designing integrated patient-provider

interfaces with digital tools that support self-monitoring and

real-time health tracking will be critical in ensuring effective PCC

implementation (28). These capabilities are especially crucial in

chronic disease management, where ongoing care coordination,

patient-reported outcomes, and timely interventions are central

to effective treatment. Future frameworks should integrate AI-

driven clinical decision support (CDS) systems and real-time

patient-reported outcome monitoring to further improve patient

engagement and clinical efficiency (29). As shown in Table 3, the

reviewed studies highlighted common implementation challenges

in PCC and outlined emerging tools to address them.

4.3 Security, compliance, and ethical
challenges in genomic data integration

Integrating genomic data into EHRs presents significant

privacy, security, and ethical challenges. The high sensitivity

of genomic data introduces new risks related to

unauthorized access, secondary use of genetic information,

and challenges in informed consent management. Concerns

over genetic data misuse, privacy violations, and potential

discrimination underscore the necessity for robust security

protocols to safeguard patient information (33). Compliance

with HIPAA (United States) and GDPR (European Union)

ensures data protection and regulatory oversight, yet

harmonizing these frameworks globally remains a challenge,

particularly given the rapid expansion of AI-driven genomic

data processing (23). Interoperability gaps in genomic data

exchange further exacerbate these challenges, as variations in

genetic variant annotations, clinical interpretation models,

and data-sharing policies limit the ability to utilize genomic

insights effectively.

TABLE 3 Current challenges, gaps, and strategic solutions in patient-
centered care and personalized medicine.

Patient-
centered care
challenge

Gap identified in
review

Proposed
strategies and tools

Limited integration

of PGHD into

EHRs.

PGHD is not consistently

reflected in clinical

workflows; real-time tracking

is lacking.

Mobile-first platforms, real-

time PGHD syncing, and

NLP-based decision-support

systems. (27, 28)

Digital health

literacy disparities

Older adults, non-tech-savvy

users, and underserved

populations face barriers to

adoption.

Inclusive UX/UI,

multilingual interfaces, and

user-centered design

principles. (30)

Absence of real-time

feedback loops.

Lack of context-aware,

adaptive interventions limits

timely personalization.

AI-enabled CDS tools,

automated alerts, and

symptom-monitoring apps

(29)

Privacy and data

control concerns.

Patients lack agency over

data access and sharing,

reducing trust and

participation.

Integration of SSI

frameworks and blockchain-

based dynamic consent

models (31, 32)
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Genomic data integration also raises concerns about

algorithmic bias in AI-driven genetic risk assessments, genetic

discrimination, and inequitable access to personalized healthcare

services (34). The NIH Ethical Considerations framework

emphasizes the importance of transparency in genomic data

handling, patient autonomy, and ethical AI governance to

mitigate risks associated with genomic data use (35). Studies

suggest that achieving a balance between technological

advancements and ethical governance is critical for ensuring

equitable and responsible genomic data integration in clinical

decision-making frameworks (36).

To mitigate risks associated with genomic data integration,

future frameworks should incorporate privacy-preserving AI

models, federated learning techniques, and blockchain-based

consent management to ensure security without compromising

data utility (37). Integrating knowledge graphs, such as Neo4j,

also represents a promising approach for scalable and secure

management of genomic relationships within patient records,

improving structured genomic data use in clinical settings (38).

The inclusion of Direct Identifiable Information (DII) and

Indirect Identifiable Information (III) markers within genomic

EHR frameworks could enhance data provenance tracking while

minimizing the risk of patient re-identification.

4.4 Persistent challenges in current
healthcare data integration

This systematic review identifies persistent challenges in

healthcare data interoperability, PCC strategies, and genomic

data integration. Despite advancements in health IT, semantic

inconsistencies, fragmented data architectures, and variations in

data exchange protocols continue to hinder seamless

interoperability. The findings underscore the need for

standardized frameworks that facilitate semantic consistency,

secure data exchange, and patient-centric digital tools. Current

healthcare systems struggle with real-time interoperability,

leading to inefficiencies in data retrieval and clinical workflows.

Addressing these limitations requires a multi-faceted approach,

including standardizing healthcare terminologies, implementing

ontology-driven data models, and enhancing regulatory

compliance mechanisms to ensure seamless data exchange across

diverse healthcare infrastructures (39). These limitations are

especially pronounced in chronic disease management, where

fragmented data systems, lack of real-time feedback, and poor

integration of longitudinal health data impede continuity of care

and personalized treatment.

4.4.1 Genomic data integration and blockchain

security
Genomic data integration presents critical challenges related to

privacy, security, and ethical concerns, particularly regarding data

ownership, consent models, and cross-border genomic data

exchange (40). While regulatory frameworks such as HIPAA and

GDPR establish foundational compliance measures, global

harmonization remains inconsistent, leading to variations in how

genomic data is stored, shared, and accessed (41). Ensuring

secure and transparent data transactions is essential to mitigate

risks associated with genomic data misuse, unauthorized access,

and potential genetic discrimination.

One of the emerging solutions to address these security

concerns is blockchain technology, which offers decentralized

identity management, cryptographic encryption, and transparent

access control mechanisms (42). By integrating blockchain-

powered SSI models, patients can exercise greater autonomy over

their genomic data, allowing them to control access permissions

while ensuring tamper-proof audit trails for regulatory

compliance (43). Smart contract mechanisms can automate

consent management, ensuring that genomic data transactions

adhere to evolving regulatory policies (44).

Despite its potential, widespread adoption of blockchain-based

solutions in genomic data integration remains limited due to

scalability concerns, computational overhead, and interoperability

constraints with existing EHR systems (45). Future research

should focus on optimizing blockchain frameworks to address

scalability limitations, integrating federated learning models for

privacy-preserving genomic analysis, and establishing universal

standards for blockchain-based genomic data exchange to

enhance security and interoperability in precision medicine.

4.4.2 NLP-driven patient engagement

PCC frameworks rely on effective communication,

personalized feedback mechanisms, and real-time decision

support, yet many digital health platforms lack advanced tools

for dynamic patient-provider interactions (42). Natural Language

Processing (NLP)-driven models are increasingly being explored

to enhance patient engagement by enabling AI-powered chatbots,

automated summarization of clinical records, and sentiment

analysis of patient-reported outcomes (46).

These technologies facilitate real-time symptom monitoring,

adaptive health recommendations, and conversational AI

interfaces that improve accessibility for patients with limited

digital literacy (44). NLP models can also extract clinically

relevant information from unstructured text, enabling automated

documentation, enhanced decision support, and improved

clinical workflow efficiency (47). Nonetheless, challenges persist

in ensuring the accuracy of AI-driven patient responses, reducing

bias in NLP models, and integrating these tools into existing

EHR systems without introducing additional cognitive load for

clinicians (48).

4.4.3 Toward global inclusivity: low- and middle-
income countries’ perspectives on digital health

Recent contributions from underrepresented regions reinforce

the need to contextualize interoperability, patient-centered care,

and genomic data integration within low- and middle-income

countries (LMICs). These studies highlight both progress and

persistent structural challenges, offering a broader global lens

that complements the thematic synthesis presented earlier.

Recent developments in digital health systems from

underrepresented regions reinforce the urgency and complexity

of achieving true interoperability. A viewpoint analysis of health
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data integration strategies in India, Kenya, Nigeria, and Indonesia

identified FHIR as the preferred standard due to its modular

design, open-source availability, and adaptability to LMIC

contexts (49). A separate evaluation of eHealth strategies across

34 African countries, based on the World Health Organization–

International Telecommunication Union (WHO–ITU) and

Findable, Accessible, Interoperable, and Reusable (FAIR)

frameworks, revealed significant disparities in interoperability

maturity, particularly within national health information

exchange infrastructures (50). These studies collectively illustrate

the progress made in LMICs as digital health infrastructure

continues to evolve in the aftermath of the COVID-19 pandemic,

underscoring the importance of technically appropriate standards

and regionally responsive governance frameworks.

Recent literature from underrepresented regions also

contributes to the evolving conceptualization and implementation

of PCC. A 2023 scoping review analyzing PCC definitions across

Latin American countries revealed strong alignment with

internationally established models, while also highlighting region-

specific emphases such as the importance of community

involvement and the influence of infrastructural limitations on

care delivery (51). In South Africa, a 2024 quantitative survey

involving both patients and diagnostic radiographers identified

several practical gaps in PCC, including insufficient inclusion of

family members during care discussions, limited attention to

individualized patient needs, and communication breakdowns

between healthcare providers and patients (52). These findings

emphasized the importance of embedding culturally grounded

values, such as the principle of Ubuntu, into PCC frameworks to

support compassionate, context-sensitive care. While PCC

principles are widely endorsed, successful adoption in LMICs

requires local adaptation to systemic and cultural constraints.

The integration of genomic data into clinical care remains an

evolving but essential component of health system

transformation in low- and middle-income countries. A 2023

review of personalized medicine efforts across Africa examined

several region-led genomic initiatives, including Human Heredity

and Health in Africa (H3Africa), African Centre of Excellence

for Genomics of Infectious Diseases (ACEGID), and the

Southern African Human Genome Programme (SAHGP) (53).

These initiatives aim to improve genetic diversity representation,

build federated bioinformatics infrastructures, and close the

clinical implementation gap. However, barriers such as limited

data-sharing capacity, underrepresentation in global datasets, and

lack of population-specific genomic references still limit the

scalability of integration. This highlights the need for contextual

frameworks that enable equitable access to precision medicine

across African health systems.

4.4.4 Divergent findings across studies
While the thematic synthesis revealed broad areas of alignment

across studies, it also exposed notable contradictions that warrant

further attention. Some studies reported successful FHIR-based

integration within national health information exchanges, while

others highlighted ongoing implementation gaps driven by

infrastructural deficiencies and inconsistent semantic mapping. In

patient-centered care, although strong conceptual frameworks

were common, their translation into practice varied significantly.

Some studies emphasized shared decision-making, whereas others

reported limited direct patient involvement and a reliance on

provider-driven metrics. Similarly, genomic initiatives in Africa

such as H3Africa and ACEGID reflect leadership in regional data

generation, yet several studies noted challenges in clinical

translation due to poor EHR integration or a lack of population-

specific genomic references. These divergences underscore the

complexity of digital health advancement and reinforce the

importance of context-sensitive implementation strategies.

4.4.5 Limitations of existing literature
In addition to the methodological limitations of this review,

several recurring weaknesses were noted across the included

studies. Many employed small sample sizes or localized

populations, limiting the generalizability of findings. Others

relied heavily on self-reported data, lacked longitudinal designs,

or provided limited methodological transparency. The

heterogeneity in study quality and reporting practices also

complicated comparative interpretation, particularly across

different regions and healthcare contexts. These limitations

underscore the need for more robust, multicenter, and

implementation-oriented research to inform future digital health

integration efforts.

4.5 Future directions

Addressing the identified challenges in healthcare data

integration requires advancing scalable, secure, and AI-driven

interoperability models. While blockchain technology, NLP-

driven decision-support tools, and ontology-based frameworks

present promising solutions, their integration into existing

healthcare ecosystems remains limited (39). Future research must

focus on bridging these gaps by optimizing interoperability

models, enhancing regulatory alignment, and improving

scalability in healthcare IT infrastructures (40).

For genomic data security, blockchain technology has been

proposed as a privacy-preserving solution, yet challenges such as

scalability limitations, computational overhead, and lack of

regulatory harmonization hinder its widespread adoption (44).

To overcome these barriers, future efforts should explore

lightweight blockchain architectures, federated learning for

decentralized data analysis, and interoperability frameworks that

enable secure genomic data transactions (54). Strengthening data

governance policies will also be critical in ensuring ethical

compliance and patient data sovereignty (55).

In PCC, NLP technologies are increasingly applied to support

patient engagement through tools such as AI-driven chatbots,

automated summaries of clinical interactions, and sentiment

analysis of patient-reported data (42). Yet, their practical utility

remains limited by persistent issues of data quality, algorithmic

bias, and accessibility across diverse populations (56). Future

research should explore the integration of ontology-driven

clinical decision-support tools in multi-modal datasets, leveraging
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knowledge graphs and AI reasoning to enhance predictive analytics

in precision medicine. Unlike traditional NLP-based tools,

ontology-driven systems can infer complex relationships between

clinical, genomic, wearable, and EHR data, facilitating adaptive

and personalized recommendations (57).

Blockchain security innovations such as zero-knowledge proofs

(ZKPs) and multi-party computation (MPC) could further enhance

secure data sharing in genomic research while ensuring privacy

compliance with GDPR and HIPAA (58). Expanding the role of

AI-driven patient engagement through context-aware digital

interventions, predictive health analytics, and real-time remote

monitoring could revolutionize personalized medicine and

support the long-term management of chronic diseases (59).

To ensure long-term impact, a holistic approach is needed—

one that aligns AI, blockchain, and ontology-based solutions with

standardized healthcare regulations, real-world feasibility studies,

and cross-disciplinary collaborations (40). By addressing these

technological, ethical, and regulatory gaps, the healthcare

industry can transition toward truly integrated, patient-driven,

and secure data ecosystems, ultimately enhancing precision

medicine, interoperability, and healthcare decision-making (59).

4.6 Methodological limitations of this
review

While this review followed PRISMA 2020 guidelines and used a

structured thematic synthesis approach, several methodological

limitations must be acknowledged. First, the search strategy was

limited to selected databases including PubMed, MEDLINE,

Scopus, WHO, and Google Scholar. Although these sources are

comprehensive, others such as Embase, CINAHL, and IEEE

Xplore were not included. As a result, relevant literature indexed

in those databases may have been missed, potentially narrowing

the scope of included studies. Although an English-language

filter was applied during the database search, 26 studies were still

excluded during the full-text screening phase due to non-English

content, as documented in the PRISMA flow diagram. This

reflects a common limitation in automated indexing systems,

where articles may be retrieved based on English metadata (such

as titles or abstracts) despite lacking full English translations.

Consequently, the exclusion of non-English full texts may have

introduced language bias and limited the global generalizability

of findings.

Furthermore, purely quantitative studies and statistical meta-

analyses were excluded unless they contributed conceptual

insights relevant to our research questions. This may have

limited the inclusion of outcome-focused evidence, particularly

regarding measurable health improvements. Thematic synthesis

was chosen due to the heterogeneity of study designs and

outcome measures across the included literature. This approach

is well-suited for analyzing qualitative and descriptively reported

studies, including those that used mixed-methods designs, and it

inherently involves subjective interpretation.

In this review, initial coding was performed manually by

identifying key concepts and excerpts from each included study

using an inductive approach. Codes were recorded using a

structured extraction template and then grouped into broader

themes based on recurring patterns across the data. The initial

coding was conducted by the first author (RA) and

independently reviewed and validated by the second (RSS) and

third (JM) reviewers. Discrepancies were resolved through

consensus discussions. No statistical inter-rater reliability metric

such as Cohen’s kappa was calculated, as our approach

emphasized conceptual refinement through group consensus

rather than quantifying coder agreement.

Risk of bias was assessed using a structured Excel framework

that included judgments on study design and reporting

transparency. Although this ensured internal consistency, we did

not use validated tools such as ROBIS or JBI because our dataset

included both qualitative and descriptive implementation studies

that did not fully align with the standardized criteria required by

those tools. While supplementary sources such as Google Scholar

and WHO repositories were included to reduce publication bias,

some grey literature and conference abstracts may have offered

only partial or preliminary data, which could impact the depth

of evidence synthesis. Finally, because most of the included

studies were conducted in high-income countries, the findings

may not fully apply to underrepresented regions.

5 Conclusion

This systematic review underscores the persistent challenges in

healthcare data integration, specifically in interoperability, PCC,

and genomic data integration. The findings highlight critical gaps

in semantic consistency, standardized data-sharing mechanisms,

and regulatory alignment, all of which impact the effectiveness of

healthcare systems. Despite advancements in health IT

frameworks such as HL7 FHIR, SNOMED CT, and ontology-

driven data models, interoperability barriers persist due to

fragmented architectures, inconsistent adoption of terminologies,

and limited cross-platform data exchange capabilities. Addressing

these limitations is essential for enhancing clinical workflows,

improving data accessibility, and ensuring seamless

communication among healthcare providers.

PCC remains central to modern healthcare transformation, yet

significant challenges exist in implementing real-time patient

feedback mechanisms, NLP-driven engagement tools, and AI-

assisted decision support systems. Future healthcare frameworks

must integrate dynamic, patient-centric digital tools that facilitate

self-monitoring, shared decision-making, and adaptive care

models. Genomic data integration presents substantial privacy,

security, and ethical concerns, particularly in the context of SSI,

consent management, and cross-border genomic data exchange.

Blockchain-based governance models and federated learning

approaches hold promise for enhancing genomic data security

while maintaining regulatory compliance and patient autonomy.

To support both research and practice, this review highlights

actionable priorities across three critical domains. Scaling

ontology-based interoperability models is essential to ensure

alignment with diverse regulatory environments and enable real-
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time clinical data exchange. Equally important is the integration of

culturally resonant PCC strategies into patient-facing technologies,

which can enhance real-time feedback, shared decision-making,

and coordination in chronic care. At the same time, advancing

genomic data security through federated learning and

decentralized consent models will help protect privacy while

ensuring equitable access to precision medicine. Collectively,

these targeted directions provide a foundation for designing

integrated, patient-centered, and ethically governed healthcare

systems capable of supporting scalable and sustainable digital

health infrastructures.
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