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Background: Secondary public hospitals play a pivotal role in China’s hierarchical

medical system, serving as a critical intermediary tier. However, in rapidly

urbanizing cities such as Guangzhou, these hospitals face mounting

challenges including widening efficiency disparities, imbalanced resource

allocation, and weak governance structures. This study aims to systematically

evaluate the evolution and spatial dynamics of service capacity among

secondary general public hospitals in Guangzhou, offering empirical evidence

to support capacity improvement and policy optimization.

Methods: A composite evaluation framework was constructed across three

dimensions: medical quality, operational efficiency, and sustainability. Based on

panel data from 12 secondary general public hospitals in Guangzhou between

2019 and 2023, we applied a combination of Entropy-TOPSIS model, Kernel

Density Estimation (KDE), and the Dagum Gini Coefficient to assess overall

service capacity levels, temporal trends, and spatial inequalities.

Results: The findings indicate a general upward trend in service capacity;

however, disparities among hospitals have intensified. While indicators of

medical safety (e.g., mortality and complication rates) have steadily improved,

there remains significant divergence in surgical ratios and pharmaceutical

service coverage—particularly in peripheral areas. KDE analysis reveals a

transition from unimodal to bimodal distribution, indicating stratification of

service capacity. Decomposition of the Dagum Gini Coefficient shows that

transvariation (inter-group overlaps) is the main source of inequality,

underscoring increasing cross-regional capacity divergence.

Conclusions: Although Guangzhou’s secondary public hospitals have shown overall

improvement, challenges remain in terms of regional coordination and internal

structural disparities. This study recommends differentiated interventions such as

specialty alliances, performance-based resource allocation, and workforce

optimization to enhance system resilience and equity. The proposed evaluation

model demonstrates strong applicability and scalability, offering theoretical and

empirical insights forhealthcaresystemgovernance inother rapidlyurbanizing regions.
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1 Introduction

Amid the deepening reform of global health systems,

enhancing the service capacity of public hospitals—particularly

secondary-level general public hospitals in urban areas—has

become a focal issue in health policy development worldwide.

These hospitals, positioned between primary care institutions and

tertiary hospitals, are essential for receiving referrals from the

community level and managing moderately complex conditions.

They serve a bridging role within China’s hierarchical diagnosis

and treatment system.

However, in the context of rapid urbanization, secondary

hospitals in many developing countries face significant

challenges, including underdeveloped resource allocation and

insufficient attention to their service capacity. Studies have

shown that in Nanjing, China, for example, healthcare resources

are unevenly distributed, with high concentration in central

districts and much weaker capacity in peripheral areas (1). In

Nigeria, urbanization has resulted in medical personnel migrating

toward cities, thereby reducing healthcare accessibility in rural

areas—especially for the elderly (2). Similarly, in Thailand, urban

expansion has widened the accessibility gap between urban and

rural medical facilities, highlighting the need for spatial planning

interventions to ensure more equitable resource distribution (3).

These cases reflect a common challenge: urbanization places

significant pressure on the equity and sustainability of

healthcare systems.

To respond to these challenges, the global community is

increasingly recognizing the need to strengthen hospital service

capacity, especially by empowering “middle-tier” institutions. As

urbanization alters the structure of healthcare demand, scientifically

evaluating and optimizing resource allocation and hospital capacity

has become a shared concern among health policymakers.

In recent years, various international organizations and

research institutes have introduced frameworks to support

performance-based resource planning. The World Health

Organization (WHO) has promoted performance-oriented

allocation models that emphasize service integration to improve

the efficiency of healthcare systems. Strengthening secondary

hospitals is a key part of this effort, with WHO advocating for

them to act as regional service “hubs” that support integration

with primary care and public health services, thereby optimizing

resource use for specific populations (4). In 2003, the WHO

Regional Office for Europe developed the Performance

Assessment Tool for Quality Improvement in Hospitals (PATH),

which evaluates hospital performance across dimensions such as

clinical effectiveness, efficiency, and staff orientation. After being

piloted in six countries between 2004 and 2006, PATH expanded

in 2007–2008 to 140 hospitals across eight European countries

including Belgium, France, and Germany (5, 6). In 2010, the

WHO and USAID jointly launched the Service Availability

and Readiness Assessment (SARA), offering manuals (7) and

implementation guides (8) to assess the accessibility and

readiness of health services. This framework has since been

adopted in Bangladesh, Burkina Faso, Ghana, Mozambique, and

other countries (9–13).

Meanwhile, methodological innovations in healthcare capacity

evaluation are trending toward diversification and integration.

These methods are widely used in assessing service efficiency,

optimizing resource allocation, and analyzing regional equity.

Multi-Criteria Decision Analysis (MCDA) approaches, including

entropy-weighted TOPSIS, Analytic Hierarchy Process (AHP),

and Stochastic Frontier Analysis (SFA), have been broadly

applied in hospital performance evaluation and healthcare

efficiency comparisons (14, 15).

In pursuit of Sustainable Development Goal 3—“Ensure

healthy lives and promote well-being for all at all ages”—scholars

are increasingly integrating spatial and inequality analytics. For

example, Kernel Density Estimation (KDE), a non-parametric

method, has been widely used to explore spatial clustering and

evolution of healthcare capacity (16). In contrast, the Dagum

Gini coefficient offers decomposable metrics that allow more

detailed examination of within-region, between-region, and

transvariation (overlap) inequality, outperforming the traditional

Gini index in explaining structural disparities (17).

China’s healthcare system is structured into three levels, with

secondary general public hospitals playing a central role in the

implementation of hierarchical diagnosis and treatment. These

hospitals primarily serve urban and peri-urban populations by

offering general diagnostic, inpatient, and outpatient care. They

are also essential in public health initiatives such as chronic

disease management and epidemic response. However, compared

with tertiary hospitals, secondary hospitals often fall into a

“resource valley”—marked by shortages in manpower,

equipment, and policy attention. Moreover, their contribution is

frequently overlooked in policy prioritization and funding, which

leads to weakened functional roles. Although academic interest in

secondary hospitals has grown, most studies remain focused on

single-year financial or performance metrics, lacking insight into

the dynamic evolution of capacity or structural inequality—

especially in megacities with pronounced development

imbalances (18, 19). Furthermore, the COVID-19 pandemic

exposed the vulnerabilities of hospital systems, prompting a re-

evaluation of the resilience and load-bearing capacity of non-core

hospitals. Secondary hospitals played a crucial role in initial

diagnosis and triage, yet lacked the tertiary hospitals’

infrastructure and resources—highlighting the need for more

refined evaluation tools and targeted governance strategies (20, 21).

In light of this context, this study focuses on Guangzhou, a

major city in South China, and examines 12 secondary general

public hospitals from 2019 to 2023. A comprehensive evaluation

framework is developed based on three key dimensions:

• Medical Quality (e.g., average length of stay, surgical

complication rates),

• Operational Efficiency (e.g., income structure, cost

containment),

• Sustainability (e.g., staffing ratios, physician workload intensity).

Methodologically, the study integrates three analytical tools:

• Entropy-weighted TOPSIS, which enables objective weighting

and ranking of hospitals based on service capacity;
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• Kernel Density Estimation (KDE), to examine the evolution of

score distributions over time;

• Dagum Gini Coefficient decomposition, to measure and

decompose spatial inequality in service capacity.

By triangulating results from these methodologies, this study

proposes a replicable and transferable evaluation framework

tailored to secondary hospitals in urban China. It aims to

support local policy evaluation in Guangzhou and offer

insights for improving healthcare system governance in other

rapidly urbanizing regions. In addressing the global challenges

of “filling the gaps” and “strengthening mid-tier institutions,”

this study seeks to contribute reform strategies and analytical

methods that are both empirically grounded and

globally applicable.

2 Materials and methods

2.1 Data sources

This study targets 12 secondary general public hospitals located

within the administrative boundaries of Guangzhou.

A comprehensive evaluation index system was developed to

assess their healthcare service capacity (see Table 1). The index

system is structured into three primary dimensions, each

representing a core pillar of institutional performance:

• Medical Quality: This dimension evaluates clinical outcomes

and safety. Indicators include average length of stay, low-risk

group mortality rate, surgical rate, complication rate. These

measures reflect the hospital’s ability to deliver safe, effective,

and timely care—essential to meeting patient expectations and

improving health outcomes.

• Operational Efficiency: This component assesses resource use

and cost containment. It includes the ratio of service revenue

to total revenue, personnel cost ratio, asset-liability ratio,

outpatient and inpatient cost growth. These indicators are

crucial for evaluating financial sustainability and

responsiveness to health payment reforms, such as Diagnosis-

Related Group (DRG)–based funding.

• Sustainability: This dimension captures human resource

adequacy and service resilience. It includes nurse-to-doctor

ratio, physician workload, pharmacist staffing. These

indicators help identify whether hospitals possess the staffing

capacity to maintain stable service delivery under both routine

and emergency conditions.

The selection of these three dimensions ensures a balanced and

policy-relevant assessment framework. It integrates clinical

effectiveness, economic performance, and long-term institutional

resilience—aligning with national healthcare reform goals and

international standards in health systems evaluation.

Each secondary indicator is defined with its unit, orientation

(positive/negative), and coded numerically (X1–X14). The

indicators collectively form a multidimensional representation of

hospital service capacity. Data were drawn from multiple sources

spanning 2019 to 2023, including the Guangzhou Statistical

Yearbook, official reports from the Guangzhou Health

Commission, and municipal government publications.

2.2 Research methods

To ensure robustness and multidimensional insights, three

quantitative methods were employed:

2.2.1 Entropy weight-TOPSIS method
The Entropy-Weighted TOPSIS method integrates entropy-

based weight assignment with the TOPSIS (Technique for Order

Preference by Similarity to Ideal Solution) approach to handle

multi-criteria decision-making problems (22–24). It addresses

challenges associated with subjective weighting and correlation

among indicators, and is widely applied in healthcare,

construction, and industrial evaluation scenarios (23, 25–27, 28).

Stepwise procedure:

Step 1: Normalization of the Original Data Matrix

TABLE 1 Evaluation index system for healthcare service capacity of
secondary public hospitals.

Primary
dimension

Secondary
indicator

Unit Indicator
orientation

Code

Medical quality Average length of stay Days Negative X1

Mortality rate of low-

risk patients

% Negative X2

Proportion of

discharged patients who

underwent surgery

% Positive X3

Complication rate

among surgical patients

% Negative X4

Operational

efficiency

Proportion of medical

service revenue

(excluding drugs,

consumables, and

diagnostic fees)

% Positive X5

Personnel expenditure

as a proportion of

operational expenditure

% Positive X6

Asset-liability ratio % Negative X7

Growth rate of per

outpatient visit cost

% Negative X8

Growth rate of per

outpatient drug cost

% Negative X9

Growth rate of per

inpatient cost

% Negative X10

Growth rate of per

inpatient drug cost

% Negative X11

Sustainability Nurse-to-doctor ratio % Positive X12

Average daily inpatient

workload per licensed

physician

Bed-

days

Negative X13

Number of pharmacists

per 100 hospital beds

Persons Positive X14
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Let there be n evaluation objects (e.g., hospitals) and m evaluation

indicators. The original data matrix is denoted as:

X ¼

x11 x12 . . . x1m
x21 x22 . . . x2m
. . . . . . . . . . . .

xn1 xn2 . . . xnm

8
>><

>>:

9
>>=

>>;
n�m

To standardize the original matrix X, we apply min-max

normalization to obtain the normalized matrix R ¼ (rij)n�m,

where rij [ [0, 1] represents the normalized score of the i -th

object on the j-th indicator:

• For positive indicators (the higher, the better): rij ¼
xij�min(xj)

max(xj)�min(xj)

• For negative indicators (the lower, the better): rij ¼
max(xj)�xij

max(xj)�min(xj)

• Step 2: Entropy-Based Weight Calculation and Weighted Matrix

Construction

Let lij denote the normalized proportion of indicator j for object i,

computed from matrix R:

lij ¼
rijPn
i¼1 rij

Define ej as the entropy value for indicator j. The weight wj is then

calculated as:

wj ¼
1�ejPm

j¼1
(1�ej)

, 0 � wj � 1,
Pm

j¼1

wj ¼ 1

The weighted normalized matrix Z is obtained by:

Z ¼ wj � R ¼

w1r11 w2r12 . . . wmr1m
w1r21 w2r22 . . . wmr2m
. . . . . . . . . . . .

w1rn1 w2rn2 . . . wmrnm

8
>><

>>:

9
>>=

>>;

¼

z11 z12 . . . z1m
z21 z22 . . . z2m
. . . . . . . . . . . .

zn1 zn2 . . . znm

8
>><

>>:

9
>>=

>>;

Step 3: Identify Ideal and Anti-Ideal Solutions

For each indicator j, determine the best (ideal) and worst (anti-

ideal) values:

• Ideal solution: zþj ¼max(z jj), thus z
þ
j ¼ (zþ1 , z

þ
2 , . . . , z

þ
m)

• Anti-ideal solution: z�j ¼min(z jj), thus z
�
j ¼ (z�1 , z

�
2 , . . . , z

�
m)

• Step 4: Calculate Euclidean Distances

For each evaluation object i, compute its distance to the ideal and

anti-ideal solutions:

• Distance to ideal: dþi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pm

j¼1

(zij � zþj )
2

s

• Distance to anti-ideal: d�i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pm

j¼1

(zij � z�j )
2

s

• Step 5: Compute Relative Closeness to the Ideal Solution

The relative closeness coefficient vi is calculated as:

vi ¼
d�i

dþi þd�i
, 0 � vi � 1

A higher vi indicates stronger service capacity of the

corresponding hospital. The ranking of vi values reflects the

comparative performance across all evaluated hospitals.

2.2.2 Kernel density estimation (KDE)
KDE is a non-parametric method for estimating the probability

density function of a continuous variable, offering flexibility in

modeling data distributions without assuming a parametric form

(29–31). It is especially valuable in visualizing temporal evolution

and regional heterogeneity in healthcare quality

assessments (32–34).

The Gaussian kernel function is adopted:

bfh(x) ¼
1

nh

Xn

n¼1

K
xi � �x

h

� �

where K(�) is the Gaussian kernel, h is the bandwidth, and n is the

sample size.

KDE allows the visualization of capacity distribution shifts and

stratification patterns across years, highlighting convergence or

divergence trends.

2.2.3 Dagum Gini coefficient decomposition
The Dagum Gini coefficient, proposed by Argentine-Canadian

economist Camilo Dagum in the 1970s, represents a significant

advancement over the traditional Gini index. It is based on the

three-parameter Dagum probability distribution, which offers

superior fitting performance—particularly in capturing

inequalities at both tails of a distribution. Its key advantage lies

in its decomposability, enabling the total inequality to be

separated into within-group inequality, between-group inequality,

and transvariation (overlapping) inequality components. This

makes the Dagum Gini model a powerful analytical tool for

examining the structural dimensions of inequality (35, 36). Due

to its enhanced explanatory capacity, it has been widely applied

across economics, social sciences, public policy, and healthcare

resource allocation to investigate the deep structures and

dynamic mechanisms underlying inequality (37, 38).

In this study, the Dagum Gini coefficient is applied using

subgroup decomposition to assess the spatial differentiation in

healthcare service capacity among secondary public general

hospitals in Guangzhou. The total inequality G is composed of

the following three components:

G ¼ Gw þ Gnb þ Gt

The respective formulas are defined as follows:
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• Total Gini Coefficient:

G ¼

Pk
j¼1

Pk
h¼1

Pnj
i¼1

Pnh
r¼1 jy ji � yhrj

2n2�y

• Within-Region Inequality:

G jj ¼

Pnj
i¼1

Pnj
r¼1 jy ji � yhr j

2yjn
2
j

• Between-Region Inequality:

G jh ¼

Pnj
i¼1

Pnh
r¼1 jy ji � yhr j

njnh(yj þ yh)

• Decomposition of Within-Region Inequality:

Gw ¼
Xk

j¼1

G jjpjsj

• Decomposition of Between-Region Inequality:

Gnb ¼
Xk

j¼2

Xj�1

h¼1

G jh( pjsh þ phsj)D jh

• Transvariation (Overlapping Component):

Gt ¼
Xk

j¼2

Xj�1

h¼1

G jh( pjsh þ phsj)(1� D jh)

Where y ji and yhr denote the healthcare service capacity of

hospital i in region j and hospital r in region h, respectively. �y

represents the overall average service capacity across all hospitals,

while �yj denotes the mean capacity within region j. n is the total

number of hospitals, and nj , nh are the number of hospitals in

regions j and h, respectively. The term pj ¼
nj
n

indicates the

proportion of hospitals in region j, and sj ¼
n j yj
n�y

reflects the

weighted contribution of region j to the overall capacity level.

D jh is a directional influence index that measures the relative

dominance of region j compared to region h in terms of

healthcare service capacity.

3 Results and analysis

3.1 Descriptive analysis of Key indicators

Based on the statistical summary in Table 2, the healthcare

service capacity of Guangzhou’s 12 secondary general public

hospitals demonstrated a combination of progress and divergence

across the three key dimensions between 2019 and 2023.

3.1.1 Medical quality (X1–X4)

• The average length of stay (X1) increased from 7.93 days in 2019

to 9.68 days in 2023, indicating a slowdown in patient turnover

efficiency. The substantial rise during 2020–2021 corresponds to

COVID-19 control policies that extended hospitalization

duration. The increasing standard deviation over time suggests

growing variability in treatment efficiency among hospitals.

• The mortality rate for low-risk patients (X2) dropped sharply

from 0.999% to 0.247%, alongside a dramatic decrease in

variance. This reflects notable improvements in medical safety

and standardization in treatment practices across facilities.

• The surgical discharge ratio (X3), which peaked at 26.97% in

2020, dropped significantly to 16.88% in 2023. This could be

attributed to shifts in disease case-mix, surgical policy

adjustments, or redistribution of surgical resources during

the pandemic.

• The surgical complication rate (X4) decreased modestly

throughout the period, indicating an overall improvement in

surgical safety and intraoperative risk management.

TABLE 2 Descriptive statistics of Key evaluation indicators for 12 secondary public hospitals in Guangzhou (2019–2023).

Code Indicator 2019 2020 2021 2022 2023

X1 Average length of stay (days) 7.93 ± 2.56 9.18 ± 2.45 9.18 ± 2.55 8.94 ± 2.54 9.68 ± 2.78

X2 Mortality rate of low-risk patients (%) 1.00 ± 0.94 0.59 ± 0.37 0.42 ± 0.33 0.29 ± 0.15 0.25 ± 0.11

X3 Surgical discharge ratio (%) 21.66 ± 9.16 26.97 ± 9.30 24.57 ± 9.80 23.02 ± 9.01 16.88 ± 5.78

X4 Complication rate among surgical patients (%) 0.64 ± 0.31 0.57 ± 0.32 0.50 ± 0.29 0.51 ± 0.32 0.46 ± 0.29

X5 Proportion of service revenue (non-drug, non-consumable, %) 33.88 ± 4.76 34.21 ± 3.75 33.66 ± 4.24 33.54 ± 3.38 33.78 ± 4.04

X6 Personnel cost ratio (%) 50.42 ± 4.13 47.11 ± 4.30 45.61 ± 5.21 43.09 ± 5.28 39.53 ± 6.24

X7 Asset-liability ratio (%) 28.62 ± 6.79 29.18 ± 6.33 28.84 ± 6.49 28.95 ± 6.64 27.49 ± 7.31

X8 Outpatient cost growth rate (%) 2.73 ± 4.52 3.37 ± 3.70 4.79 ± 3.98 5.25 ± 4.12 41.77 ± 20.86

X9 Outpatient drug cost growth rate (%) 3.06 ± 5.81 2.54 ± 5.17 4.66 ± 4.77 4.15 ± 4.69 43.94 ± 21.57

X10 Inpatient cost growth rate (%) 6.58 ± 5.31 7.35 ± 4.74 −2.69 ± 6.17 −2.18 ± 5.87 −3.17 ± 6.99

X11 Inpatient drug cost growth rate (%) 6.17 ± 6.09 7.01 ± 5.33 −1.83 ± 5.64 −2.10 ± 5.13 −2.73 ± 6.44

X12 Nurse-to-doctor ratio (%) 1.44 ± 0.24 1.50 ± 0.26 1.52 ± 0.24 1.54 ± 0.25 1.59 ± 0.25

X13 Inpatient workload per physician (bed-days/day) 3.23 ± 0.51 3.22 ± 0.49 3.18 ± 0.50 3.13 ± 0.49 3.11 ± 0.47

X14 Pharmacists per 100 beds (persons) 4.29 ± 1.20 4.17 ± 1.08 4.01 ± 0.96 3.98 ± 0.91 3.95 ± 0.93

Values are presented as mean ± standard deviation.
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3.1.2 Operational efficiency (X5–X11)

• The proportion of service revenue (X5) remained relatively

stable (∼33.5%), reflecting consistent reliance on core medical

services over drugs or diagnostics.

• The personnel cost ratio (X6) declined steadily from 50.42% to

39.53%, suggesting improved financial efficiency. However,

increasing standard deviation indicates widening disparity in

cost control strategies across hospitals.

• The asset-liability ratio (X7) remained stable with a slight

downward trend in 2023, but high dispersion points to

unequal debt structures and financial pressure

between institutions.

• The growth rates of outpatient costs (X8) and outpatient drug

costs (X9) surged significantly in 2023, exceeding 40%. Such

spikes imply possible lapses in cost regulation or changes in

insurance pricing structures.

• Meanwhile, inpatient cost (X10) and drug cost growth (X11) both

entered negative territory post-2021. This aligns with national

efforts to reduce hospitalization expenditures under DRG and

insurance payment reforms.

3.1.3 Sustainability (X12–X14)

• The nurse-to-doctor ratio (X12) improved incrementally,

reflecting minor adjustments in workforce composition and

possibly enhanced nursing investment.

• The average daily inpatient workload per physician (X13)

showed a steady decline, suggesting a reduction in individual

burden, although at the potential cost of system efficiency.

• The pharmacist-to-bed ratio (X14) continued its downward

trend, raising concerns over pharmaceutical care capacity and

drug-use governance.

3.2 Comprehensive evaluation via entropy-
TOPSIS

3.2.1 Indicator weights and discrimination power

As presented in Table 3, the entropy analysis yielded

consistently high values for most indicators (ej . 0:95),

suggesting strong uniformity of hospital performance in many

dimensions. However, certain variables exhibited greater

discriminative potential. Surgical discharge ratio (X3) showed a

relatively low entropy and the highest weight (17.46%), indicating

its substantial role in differentiating service complexity and

procedural capabilities among hospitals. Pharmacists per 100

beds (X14) ranked second in weight (16.03%), reflecting the

importance of pharmaceutical staffing in assessing service

comprehensiveness and support quality. Inpatient drug cost

growth rate (X11) held the third highest weight (13.06%),

highlighting the growing relevance of cost control and insurance

adaptability as policy pressure on inpatient costs intensifies.

Conversely, outpatient drug cost growth (X9) and surgical

complication rate (X4), despite high entropy values, received

minimal weight due to excessive variance or weak inter-hospital

differentiation, suggesting limited evaluation utility under current

measurement conditions.

3.2.2 Ranking results and hospital trajectories

As shown in Table 4, the composite TOPSIS scores reveal a

dual pattern: overall capacity improved marginally, yet internal

divergence intensified. The score range widened from [0.2667,

0.6982] in 2019 to [0.2711, 0.6199] in 2023, indicating slower

progress among lagging hospitals and greater gains among

leaders. Hospital A8, which fell to the bottom in 2021, surged to

1st place in 2023, implying effective strategic transformation or

targeted investment in capacity domains with high weight.

Hospital A10, once ranked 2nd in 2019, plummeted to last place

by 2023, reflecting long-term stagnation, management

inefficiencies, or weakened policy support. Hospitals A4 and A12

remained consistently above average, showing stable and

balanced development across all three dimensions. These

transitions suggest that secondary public hospitals can rapidly

upgrade their service capacity with focused resource reallocation,

though without consistent intervention, structural weaknesses

persist over time.

3.2.3 Kernel density distribution and polarization

trends
To analyze the dynamic evolution of service capacity across

institutions, a 3D Kernel Density Estimation (KDE) was

constructed using MATLAB, based on composite TOPSIS scores

from 2019 to 2023. As shown in Figure 1, the distribution of

scores has undergone significant structural changes. In 2019–

2020, the KDE surface displays a unimodal and symmetric peak,

centered around the 0.4–0.6 interval. This reflects a relatively

cohesive system, with most hospitals clustered around a

TABLE 3 Entropy values and weights of service capacity evaluation
indicators (2019–2023).

Code Indicator Entropy
value (ej)

Entropy
weight (wj)

X1 Average length of stay (days) 0.9574 0.0278

X2 Mortality rate of low-risk

patients (%)

0.9689 0.0198

X3 Surgical discharge ratio (%) 0.9127 0.1746

X4 Complication rate among

surgical patients (%)

0.9785 0.0142

X5 Proportion of service revenue

(non-drug, non-consumable, %)

0.9564 0.0287

X6 Personnel cost ratio (%) 0.9511 0.0321

X7 Asset-liability ratio (%) 0.9623 0.0236

X8 Outpatient cost growth rate (%) 0.9596 0.0253

X9 Outpatient drug cost growth

rate (%)

0.9796 0.0134

X10 Inpatient cost growth rate (%) 0.9563 0.0288

X11 Inpatient drug cost growth rate

(%)

0.9337 0.1306

X12 Nurse-to-doctor ratio (%) 0.9495 0.0335

X13 Inpatient workload per

physician (bed-days/day)

0.9649 0.0213

X14 Pharmacists per 100 beds

(persons)

0.9183 0.1603
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moderate level of service capacity. Starting in 2021, under the

continued impact of the COVID-19 pandemic, the distribution

began to diverge. A portion of hospitals improved significantly—

moving above 0.6—while others fell behind. This shift produced

a bimodal distribution, signaling the initial onset of performance

polarization. By 2022–2023, the divide had further intensified.

A new density peak formed in the 0.6–0.8 range, indicating the

rise of high-performing institutions. Meanwhile, a persistent

group of hospitals remained in the <0.4 score range, suggesting

stagnation at the lower end. These changes point to a clear dual

structure in institutional performance: top-tier hospitals advanced

rapidly, while bottom-tier facilities failed to catch up. The density

peaks grew sharper during 2021–2022, suggesting accelerated

reordering of institutional capacity. Although the overall curve

shifted rightward in 2023, indicating general improvement, the

expanded variance suggests growing internal stratification across

the hospital system. This pattern underscores the urgency for

differentiated policy support: capacity enhancement strategies for

TABLE 4 Composite service capacity scores and rankings of 12 secondary public hospitals in Guangzhou (2019–2023).

Hospital
code

2019
score

2019
rank

2020
score

2020
rank

2021
score

2021
rank

2022
score

2022
rank

2023
score

2023
rank

A1 0.4348 9 0.4682 7 0.5304 6 0.5047 9 0.5486 6

A2 0.4043 10 0.4472 8 0.4424 9 0.4505 11 0.4692 9

A3 0.4776 7 0.4656 9 0.5244 7 0.5352 7 0.4961 8

A4 0.6309 2 0.6359 2 0.5943 2 0.5923 2 0.6176 2

A5 0.5229 5 0.5006 5 0.4743 8 0.5072 8 0.5046 7

A6 0.2667 12 0.3359 11 0.4012 10 0.4329 12 0.4385 11

A7 0.6982 1 0.6185 3 0.5934 3 0.5836 3 0.5982 3

A8 0.4917 6 0.4982 6 0.2932 12 0.5136 6 0.6199 1

A9 0.4138 8 0.4193 10 0.4284 11 0.5396 5 0.5569 5

A10 0.6678 3 0.6636 1 0.6081 1 0.5949 1 0.2711 12

A11 0.6065 4 0.5824 4 0.5882 4 0.5612 4 0.5828 4

A12 0.5193 6 0.5152 5 0.5406 5 0.5503 5 0.5702 5

FIGURE 1

3D Kernel Density Estimation of composite service capacity scores for 12 secondary public hospitals in Guangzhou (2019–2023).
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lagging hospitals, and performance stabilization and innovation

support for emerging leaders.

3.3 Regional disparity analysis via Dagum
Gini decomposition

3.3.1 Regional division principles

To systematically assess spatial differences in healthcare service

capacity, the 12 secondary public hospitals in Guangzhou were

grouped according to the city’s official spatial development

strategy into four functional regions, each aligned with distinct

policy orientations and urban development priorities:

• C: Central Administrative Core— Includes Yuexiu, Liwan, and

Haizhu districts. This area represents Guangzhou’s traditional

urban center, housing many longstanding hospitals and

administrative institutions.

• E: Eastern Innovation Corridor— Includes Tianhe, Huangpu,

and Zengcheng districts. This zone serves as a technology and

education hub, with growing investment in research-based

healthcare facilities.

• S: Southern Bay Area Gateway— Covers Panyu and Nansha

districts, representing the interface between Guangzhou and

the Guangdong–Hong Kong–Macao Greater Bay Area. It

features newly established or upgraded hospitals under port-

oriented urban expansion policies.

• N: Northern Ecological Corridor— Includes Baiyun, Huadu,

and Conghua districts. This zone focuses on ecological

protection and suburban development, where many hospitals

serve sparsely distributed populations.

These divisions reflect Guangzhou’s “multi-center, polycentric

spatial layout”, which underpins its urban healthcare planning.

Such classification allows for a more accurate analysis of service

capacity disparities by spatial typology and functional mandate.

3.3.2 Temporal patterns and inequality dynamics
Using the Dagum Gini coefficient and its subgroup

decomposition, Table 5 and Figure 2 provide insight into the

spatial structure of inequality in service capacity from 2019 to

2023.The overall inequality index (G) remained relatively stable,

with a notable peak in 2021 (G≈ 0.1241), reflecting structural

shocks during the mid-phase of the COVID-19 pandemic. By

2023, G slightly rebounded after a temporary decline in 2022,

indicating partial re-concentration of capacity. The Southern

Gateway (S) region consistently displayed the highest intra-

regional inequality. This reflects the uneven development

between Panyu’s mature hospitals and Nansha’s emerging but

still under-resourced institutions. The area’s transitional status—

between metropolitan core and new development frontier—has

led to fragmented service capability. In contrast, the Central Core

(C) experienced a sharp but short-lived surge in internal

disparity in 2020, likely due to extreme performance variations in

a few large institutions during the pandemic. The Eastern (E)

and Northern (N) zones maintained relatively balanced internal

distributions, though E-region scores surged in 2022, suggesting

successful infrastructure upgrades in one or more hospitals in the

science-tech corridor.

3.3.3 Inter-Regional disparity and component

contributions
Figure 2B illustrates the inter-regional Gini coefficients between

the six pairwise region combinations (e.g., C–S, C–E, E–S).The

most pronounced inequality occurred in C–S and C–E during

2020, driven by differences in surge capacity and infection

control preparedness between central and peripheral areas. The

E–S combination maintained high inequality levels through

2021–2022, suggesting delayed convergence between the

innovation belt and southern port corridor. By 2023, all inter-

regional gaps showed a decline, indicating improved coordination

and policy harmonization under post-pandemic reforms.

Figure 2C shows the annual contributions of inequality

components. Inter-regional inequality (Gnb) accounted for ∼47%

in 2020, but decreased steadily to under 30% in 2023, implying

that regional gaps are narrowing. Intra-regional inequality (Gw)

increased slightly in 2023 (∼32%), pointing to emerging

fragmentation within zones, especially in S and E regions. Most

TABLE 5 Decomposition of Dagum Gini coefficients and inequality components of hospital service capacity in four functional regions of Guangzhou
(2019–2023).

Component Subcomponent/Region pair 2019 2020 2021 2022 2023

Total Gini soefficient (G) — 0.1135 0.1208 0.1241 0.0959 0.1098

Within-region inequality (Gw) Central Administrative Core (C) 0.0023 0.2212 0.1418 0.0145 0.0162

Eastern Innovation Corridor (E) 0.0088 0.0239 0.0294 0.159 0.1021

Southern Bay Area Gateway (S) 0.1368 0.1053 0.1103 0.0866 0.122

Northern Ecological Corridor (N) 0.0516 0.0223 0.0045 0.0326 0.0438

Between-region inequality (Gnb) C–E 0.115 0.1925 0.1471 0.1521 0.0962

C–S 0.134 0.2114 0.1585 0.0635 0.0929

C–N 0.0513 0.1887 0.1328 0.0437 0.1145

E–S 0.0935 0.09 0.172 0.1573 0.1292

E–N 0.12 0.032 0.1004 0.1458 0.1079

S–N 0.1422 0.1034 0.0971 0.0824 0.1233

Contribution rates (Gz , %) Within-region 32.38% 26.27% 27.37% 27.70% 31.78%

Between-region 39.19% 46.61% 37.79% 30.58% 29.45%

Transvariation (Overlapping Density) 28.43% 27.11% 34.84% 41.73% 38.77%
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notably, the transvariation component (Gt)—reflecting overlapping

capacity differences across hospitals from different zones—rose

significantly after 2022, exceeding 40% in 2023, and became the

dominant inequality source. This shift reveals that inequality is

no longer driven solely by spatial location, but increasingly by

individual institutional divergence, regardless of region. It

highlights the importance of hospital-specific reforms, such as

digital infrastructure, workforce incentives, and clinical

specialization, over region-wide structural investment alone.

4 Discussion

Based on panel data from 12 secondary public hospitals in

Guangzhou between 2019 and 2023, this study utilized entropy-

weighted TOPSIS, Kernel Density Estimation, and Dagum Gini

decomposition to comprehensively assess the temporal evolution

and spatial disparities in hospital service capacity. Results indicate

a general improvement in performance across medical quality,

operational efficiency, and sustainability dimensions. However,

these gains were accompanied by increasing internal divergence

and persistent regional inequality. In light of international

evidence and China’s ongoing healthcare reforms, this section

discusses critical challenges and future policy directions across

four domains: problem identification, capacity development

strategies, governance pathways, and institutional resilience.

4.1 Key issues and systemic challenges

4.1.1 Medical quality: efficiency–safety trade-offs

and functional regression
In the quality dimension, Guangzhou’s secondary hospitals

exhibited signs of a trade-off between treatment efficiency and

patient safety. The prolonged average length of stay (X1)—

particularly in hospitals like A3 and A10—may partially reflect

COVID-19 protocols but also indicates poor bed turnover and

inefficient case management. The significant decline in surgical

case ratios (X3) suggests a functional hollowing effect due to

tertiary hospital siphoning and insufficient technical capabilities

within secondary hospitals. This nationwide trend, if unchecked,

could lead to the erosion of core competencies in secondary-level

care (39). While the improvement in mortality among low-risk

patients (X2) reflects better basic care quality, the fluctuating

surgical complication rate (X4) underscores ongoing weaknesses

in perioperative safety and clinical governance.

4.1.2 Operational efficiency: cost-structure

imbalances and fiscal stress
Hospitals face mounting tension between cost containment and

revenue structure optimization. For instance, A7 and A11 reported

over 40% annual growth in outpatient and drug costs (X8/X9),

highlighting a problematic reliance on pharmaceuticals and

diagnostics, contrary to the policy goals of the “restructuring

revenue mix” reform agenda. Although declining inpatient costs

(X10/ X11) suggest effective insurance payment control, excessive

cost-cutting may compromise diagnostic scope and financial

sustainability, as seen in A3’s declining rankings. Hospitals with

high asset–liability ratios (e.g., A7 reaching 75%) face

sustainability risks, especially when paired with declining

personnel expenditure ratios (X6), which reflect a dilemma: lower

spending does not necessarily yield higher efficiency.

4.1.3 Sustainability: workforce structure and
professional burnout

In terms of long-term sustainability, persistent workforce

structural weaknesses hinder the development of resilient service

capacity. While the nurse-to-doctor ratio (X12) has improved

overall (reaching 0.734), understaffed pharmacy units (X14)

remain a barrier to pharmaceutical services and rational drug

use. Unequal physician inpatient workloads (X13)—exceeding two

beds per day in hospitals like A6 and A10—may lead to burnout

FIGURE 2

Decomposition of regional inequality in service capacity among secondary public hospitals in Guangzhou (2019–2023).
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and undermine care consistency. These personnel imbalances

reveal fundamental constraints in human resource planning that

could hinder hospitals’ adaptive capacity in the face of public

health crises.

4.1.4 Spatial disparities: fragmentation and cross-
regional competition

The spatial pattern of healthcare service capacity has become

increasingly fragmented. The Southern Bay Area Gateway (S)

exhibited the highest intra-regional inequality (Gw = 0.1220),

driven by gaps between newly established hospitals in Nansha

and mature institutions in Panyu. Moreover, the rise in

transvariation contribution (Gz = 38.77%) indicates intensified

cross-regional overlap in hospital performance. For example,

Hospital A8 (Eastern Innovation Corridor) and Hospital A4

(Central Core) now compete in overlapping patient markets,

reflecting unbalanced spatial allocation of resources and system-

wide coordination challenges. These trends call for a dual focus

on regional integration and differentiated policy design, to both

strengthen underperforming institutions and foster synergy

across urban functional zones. A more equitable and resilient

health system requires nuanced governance beyond mere

expansion of infrastructure.

4.2 Strategic pathways for capacity
optimization

Drawing on the findings of this study, a coherent reform

strategy is essential to enhance the capacity, resilience, and

coordination of secondary public hospitals in Guangzhou. Key

insights suggest that while service quality has generally improved,

operational efficiency remains uneven, and structural challenges

persist in sustainability.

4.2.1 Quality-led differentiated development
The evaluation results show diverging trends in quality

indicators: while low-risk mortality rates declined and

complication rates slightly improved, average length of stay

increased, and surgical discharge rates declined, especially in

hospitals like A3 and A10. These trends suggest a weakening of

procedural functionality and the fragmentation of surgical

capacity in some institutions—possibly due to case siphoning by

tertiary centers or internal capability stagnation. To address these

issues, reforms should: Designate clinical specialization tracks for

underperforming hospitals—e.g., those with high length of stay,

low surgical output, or redundant catchment areas—to evolve

into focused hubs in areas like rehabilitation or geriatrics; Define

eligibility thresholds using capacity metrics (e.g., surgical

discharge rate <20%, stay >9 days, or domain-specific staffing

strengths); Align with national zoning and global best practices,

such as China’s Health Service Plan, NHS trust models, and

Mayo’s hub-and-spoke frameworks, to enhance service clarity

and resource efficiency.

4.2.2 Efficiency-oriented financial and human

resource governance
The divergence in outpatient and drug cost growth in 2023 (over

40% in some hospitals) reflects a growing gap in cost control

capabilities. Asset-liability ratios also indicate uneven financial

health, with some hospitals approaching high-risk thresholds (40).

To address this, reforms should: Standardize cost governance

mechanisms, including bundled payments and global budgeting

pilots; Adjust personnel expenditure structures, rewarding

performance while ensuring workforce retention; Build digital

financial dashboards to allow real-time monitoring of cost drivers,

flagging anomalies in outpatient and pharmaceutical expenses.

4.2.3 Sustainability-focused workforce and
institutional resilience

Human resource data reveal a stable yet suboptimal trajectory:

the nurse-to-doctor ratio has slightly improved (from 0.713 to

0.734), and physician workload shows minor relief. However,

pharmacist staffing has declined, raising concerns about

pharmaceutical governance. Therefore: Revise workforce

standards to reflect differentiated service needs across specialties;

Incentivize pharmacy and public health professionals to

counterbalance current personnel imbalances; Embed resilience

benchmarks into hospital evaluations—e.g., surge capacity,

staffing flexibility, and supply chain autonomy.

These pathways align with the broader goals of China’s

hierarchical medical system reform and the WHO’s call for

resilient, integrated health systems. Through differentiated

development, refined financial governance, and targeted

workforce strategies, secondary hospitals can better fulfill their

role as stable, adaptable, and equitable pillars within urban

health systems.

4.3 Implementation roadmap

To ensure policy effectiveness, the proposed capacity

enhancement strategies should be implemented in a phased

manner—short-term, medium-term, and long-term—tailored to

institutional readiness and policy capacity. Figure 3 presents a

strategic roadmap that outlines the temporal and functional

dimensions of reform.

Short-term (1–2 years): Target hospitals with abnormal cost

growth for focused remediation. Leverage DRG-based payment

reform as an entry point. Joint inspections by the Health

Commission and Medical Insurance Bureau should be

conducted, with penalties such as budget reductions for non-

compliant institutions. These actions will help restore

expenditure discipline and enhance accountability.

Medium-term (3–5 years): Establish 3–5 regional specialty

alliances to optimize resource allocation and improve

professional collaboration. Municipal funding should support

equipment upgrades and pharmacist deployment across alliance

hospitals. Resource sharing will enhance service integration

across zones.
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Long-term (5+ years): Develop a resilience evaluation

framework for hospitals that includes emergency response

capacity. Performance in crisis response and service conversion

should be incorporated into hospital leadership assessments,

enabling hospitals to evolve in both “routine” and “emergency”

dimensions. This dual-track capacity model ensures system-wide

adaptability and public health readiness (41).

4.4 Potential challenges and strategic
countermeasures

While well-designed, the implementation of these strategies

may encounter multiple barriers, including fiscal constraints,

data silos, and institutional inertia. Given limited public

finance, local governments could issue dedicated municipal

health bonds, prioritizing investment in high-weight indicators

such as surgical capability and pharmacist allocation. This

ensures targeted reinforcement of structural bottlenecks.

Fragmented information systems across the Medical Insurance

Bureau, Health Commission, and Human Resources

departments hinder policy synergy. Authorities should develop

a real-time data visualization platform based on KDE, enabling

dynamic surveillance, early warnings, and resource

redeployment. Resistance to role reform among medical staff

remains a persistent problem. Reforming promotion and

evaluation systems to include indicators such as surgical

volume, grassroots service, and technical outreach will help

incentivize downward mobility and skill transfer to

community settings, thereby improving service equity and

accessibility (39).

5 Conclusion

This study investigates the evolution of service capacity across

12 secondary public general hospitals in Guangzhou from 2019 to

2023. A multidimensional evaluation framework was constructed,

incorporating four core dimensions: medical quality, operational

efficiency, sustainability, and regional coordination. By

integrating the entropy-weighted TOPSIS method, Kernel

Density Estimation (KDE), and Dagum Gini decomposition, the

analysis revealed the spatiotemporal dynamics of institutional

performance and inequality.

The results suggest that while overall service capacity has

improved, significant inter-hospital and inter-regional disparities

persist. Key structural bottlenecks—particularly in surgical

capability and pharmacist staffing—remain critical obstacles to

realizing the functional positioning and high-quality development

of secondary hospitals.

At the methodological level, this research contributes an

innovative modeling approach, validating the combined

application of entropy-TOPSIS and Dagum Gini decomposition

in capturing spatial divergence and performance trends. The

proposed strategy emphasizes a dual-pathway approach:

precision-targeted capacity enhancement, and adaptive

governance, incorporating DRG-based payment reform, KDE-

driven real-time monitoring, regional specialty alliance building,

and human resource restructuring. These policy

recommendations aim to strike a balance between efficiency,

equity, and resilience.

In terms of global relevance, the study outlines a potential

“Guangzhou Model” that could inform capacity-building in

urbanizing middle-tier hospital systems across Southeast Asia

and other fast-growing urban regions.

FIGURE 3

Strategic roadmap for implementing capacity enhancement in secondary public hospitals.
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Nonetheless, several limitations remain. First, the current

indicator system is primarily structural and does not capture

subjective measures such as patient satisfaction or staff

experience. Future research should incorporate survey-based

metrics to improve sensitivity and completeness. Second,

methodological expansion is needed—e.g., introducing machine

learning techniques like random forests for predictive modeling

and scenario classification. Third, the strategic pathways

proposed in this study have not undergone longitudinal

validation. Future evaluations should focus on dynamic

monitoring of reform implementation, particularly the long-term

effects of regional specialty alliances on surgical volume, cost

structure, and service quality post-2025.

In conclusion, strengthening the capacity of secondary public

hospitals in Guangzhou is not only vital for internal optimization

of the healthcare system but also foundational to the efficiency of

hierarchical diagnosis and treatment and the realization of

equitable, accessible healthcare. Moving forward, a data-driven,

problem-oriented, and regionally coordinated strategy is essential

to support the long-term development of a modernized Chinese

healthcare system.
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