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Impact of haemoglobinopathies
on asymptomatic Plasmodium
falciparum infection and
naturally acquired immunity
among children in
Northern Ghana
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Accra, Ghana, 3Centre for Medical Parasitology, Department of Immunology and Microbiology,
Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,
4Department of Biochemistry and Molecular Biology, Faculty of Biosciences, University for
Development Studies, Nyankpala, Ghana, 5Department of Infectious Diseases, Rigshospitalet,
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Background: The protective effect of certain haemoglobinopathies, such as HbS,

HbC, and a-thalassaemia, against severe malaria has long been established;

however, there is only limited and equivocal evidence regarding their impact on

asymptomatic parasitaemia. Here, we investigated the effect of HbS, HbC, and a-
thalassaemia on asymptomatic P. falciparum parasitaemia and acquired

immunity among children in Northern Ghana.

Materials and methods: A cross-sectional study was conducted among 1,017

healthy children (1-17 years) in 13 malaria-endemic communities in Northern

Ghana. The children were screened for structural Hb phenotypes using

SickleSCAN, for P. falciparum infection using anti-HRP2 malaria RDT and

subsequently confirmed by capillary electrophoresis and PCR, respectively. a-
thalassaemia genotyping was done using PCR. Levels of IgG specific for six

recombinant malaria antigens (PfCSP, GLURP, MSP3, Pfs230, HB3VAR06, and

IT4VAR60) and crude asexual blood-stage antigens were evaluated by ELISA.

Results: 266 out of the 1,017 participants had either HbAC (18%) or HbAS (8.4%),

whereas 35% had a‐thalassaemia. Twenty-five percent and 6% HbAC individuals

co-inherited heterozygous and homozygous a-thalassaemia respectively.

Similarly, 25% and 10.5% of HbAS co-inherited heterozygous and homozygous

a-thalassaemia. Asymptomatic parasitaemia rates were 23%, 24%, and 19% in

those with HbAA, HbAC and HbAS, respectively. The overall parasite carriage

rates in heterozygous (21%) and homozygous a-thalassaemia (25%) individuals

were similar to that of individuals without a-thalassaemia (23%). P. falciparum
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parasite carriage risk was about three times higher among homozygous a-
thalassaemia individuals with HbAC (OR = 2.97; 95% CI 0.83-10.62) and

heterozygous carriers with HbAS variants (OR = 2.86; 95% CI 0.85-9.60)

compared to the wildtype. In HbAS individuals, IgG levels to IT4VAR60 and

HB3VAR06 were significantly lower, whereas anti-CSP levels were higher than in

HbAA and HbAC.

Conclusions: Co-inheritance of HbAS and HbAC with a-thalassaemia increased

the risk of asymptomatic parasitaemia, an indication of a negative epistatic effect

between these Hb variants. Antibody levels against non-PfEMP1 antigens were

slightly higher among HbAS children, but quite similar in all study groups,

indicating differences in parasite exposure.
KEYWORDS

antibodies, asymptomatic infection, parasite carriage, Plasmodium falciparum,
a-thalassaemia, haemoglobinopathies, Ghana
Introduction

Haemoglobinopathies are highly prevalent in malaria-endemic

communities (1–3). Haldane in 1949 (4) and Allison in 1954 (5)

first speculated about the protective effect of these, giving rise to the

‘malaria hypothesis’. HbS, HbC, and HbE result from single amino

acid substitutions in the b-globin gene in adult haemoglobin (HbA),

whereas the thalassaemias are the consequence of reduced

production of globins (6).

HbC (7, 8) HbS (9), HbE (10), a-thalassemia, and b-
thalassaemia protect against severe malaria (1, 11) and are hence

common in malaria-endemic areas (12). The protective effect

against severe forms of malaria is most pronounced for HbS (1),

with the highest level of protection in HbAS individuals (91%). The

homozygous HbCC provides up to 73% protection, and 37% for

homozygous and heterozygous a-thalassaemia, as well as 20% for

the HbAC phenotypes (1). HbS is widely distributed across Africa,

whereas HbC is restricted to parts of West Africa (13–15). In

Ghana, HbC is most frequent in the northern part of the country

(19.7% to 20.7%) (16, 17). a-thalassemia is highly prevalent in the

sub-Saharan region (up to 50%) (18, 19) and in Southeast Asia

(40%) (20).

The proposed protective mechanisms for these erythrocyte

polymorphisms include reduction in parasite growth (21–23),

parasite invasion (24, 25), and in the adhesion of parasitised

erythrocytes to endothelial vessels and uninfected erythrocytes

(26, 27). These last two phenotypes are mediated by PfEMP1 on

the parasitised erythrocyte surface (28). However, the exact

mechanism of protection is unknown, and little is known about

the impact of these variants on uncomplicated malaria and

asymptomatic infections (29, 30). In addition, HbS could have an

indirect effect on malaria susceptibility because it enhances

phagocytosis and activates inflammatory cytokines (31–33).

Overall, the impact of these haemoglobinopathies on parasite
02
carriage appears to be minimal (1), but little is known about how

co-inheritance of these haemoglobinopathies affects parasite

carriage, malaria pathogenesis, and naturally acquired immunity.

We assessed the impact of HbS and HbC, a-thalassaemia and their

co-inheritance in P. falciparum parasite carriage and acquired

immune response in Ghanaian children.
Materials and methods

Ethics statement

This study was approved by the Ethics Review Committee of the

Ghana Health Service (GHS; GHS-ERC 008/07/19) and by the

Noguchi Memorial Institute for Medical Research (NMIMR)

Institutional Review Board (Federal-wide Assurance FWA

00001824, NMIMR-IRB CPN 006/19). A declaration of free

willingness to participate in the study and written informed

consent were obtained from all participants or guardians

before enrolment.
Study design and study site

A cross-sectional study was conducted between August and

September 2020 in 13 rural communities in the Kumbugu, Nanton,

and Tolon Municipalities, Northern Region, Ghana (Figure 1), to

assess the prevalence of the above haemoglobinopathies and their

association with the risk of P. falciparum infection among children.

Detailed information on the study is given elsewhere (Seidu et al.

submitted for publication). The Northern Region is the largest in

Ghana, and situated in the savannah woodland zone (34). The

region is relatively dry, with a single rainy season from April to

September or October, a dry season from November to March/
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April, and severe harmattan winds between December and early

February (35). The population of the municipalities is

approximately 300,000.
Study population and data collection

One-thousand-and seventeen healthy children aged 1-17 years

participated in the study (60% males and 40% females). Children

from randomly selected households in the communities were

recruited and assembled at community health facilities for sample

collection and screening. A structured questionnaire was used for

in-person interviews with children’s guardians to collect socio-

demographic information. Finger-prick blood samples were

collected to measure Hb levels using a URIT-12 haemoglobin

instrument (URIT Medical Electronic Ltd, China), and to test for

P. falciparum infection and structural Hb phenotypes by RDT.

Dried blood spots (DBS) on filter paper (Whatman, USA) were used

for retrospective confirmation of P. falciparum infection and a-
thalassaemia genotyping by PCR. In addition, venous plasma was

stored at ‐20°C to determine malaria-specific IgG levels later.
Determination of P. falciparum infection
with anti-HRP2 RDT and PCR

The First Response Malaria Antigen-HRP2 Card Test (Premier

Medical Corporation, Gujarat, India) was used for on-site diagnosis

of P. falciparum infection, following the manufacturer’s

instructions. DNA was extracted from DBS using the Chelex

method (36), and P. falciparum infection was confirmed

retrospectively by PCR as described (Seidu et al., submitted for

publication). Children both RDT and PCR positive were classified

as having asymptomatic infection.
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Screening for structural Hb variants and a-
thalassaemia status

The Hb phenotyping was carried out using the Sickle-SCAN

(Bioline, USA), point-of-care test (37, 38) and retrospectively

confirmed with iso-electric focusing (IEF) electrophoresis method,

using a Multiphor II electrophoresis unit (GE Healthcare, Little

Chalfont, England) as described (39). The a 3.7 deletion in the a
globin gene was used for a-thalassaemia detection in this study, as

described (40). Participants were categorised as wildtype,

heterozygous a-thalassaemia, or as homozygous a-thalassaemia

based on band size after genotyping.
Recombinant proteins

Recombinant glutamate-rich protein domain R0 (GLURP) was

produced in E. coli (41), while the merozoite surface protein 3

(PfMSP3) (42) and a 230-kDa sexual stage protein (Pfs230) (43)

were produced in Lactococcus lactis. The entire ectodomain of two

PfEMP1 proteins, HB3VAR06 and IT4VAR60, were produced in

baculovirus-transfected Sf9 insect cells, as described (44).

Circumsporozoite protein (PfCSP) was purchased from IPG

Technologies (Germany) and a crude asexual P. falciparum lysate

was prepared from the 3D7 clone in our laboratory.
Measuring P. falciparum-specific IgG levels

Levels of IgG specific for six recombinant P. falciparum proteins

and crude 3D7 antigens were measured using an indirect ELISA, as

reported (45, 46). Briefly, 96-well flat-bottom microtiter plates

(Nunc MaxiSorp; Thermo Fisher Scientific) were coated with 0.5

µg/mL of recombinant proteins (CSP, GLURP, PfMSP3, or Pfs230),
FIGURE 1

Location of the study sites. Ghana is shown on the left. The location of the study site in the Northern Region and the study communities are shown
in the enlarged map. The GIS coordinates of the thirteen study communities were used to construct a graphical plot using the ArcMap tool
employed in ArcGIS v10.1. (ESRI, Redlands, California, USA). The shapefiles used for constructing the map are publicly available at https://
data.humdata.org/dataset/cod-ab-gha.
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2µg/mL of the PfEMP1-type recombinant proteins or 5 × 105 IEs/

mL of the crude antigen lysate. After blocking with 1% BSA in PBS,

plasma samples (1:300) were added in duplicate, followed by

horseradish peroxidase-conjugated rabbit anti-human IgG

(1:3,000; Dako, Denmark). Bound plasma antibodies were

detected by adding TMB (Abcam, UK), and the reaction was

stopped with 0.2 M H2SO4. The optical density (OD) was read at

450 nm (Varioskan LUX; Thermofisher, USA). The specific

antibody levels were calculated in arbitrary units (AU) using the

equation [(ODSAMPLE - ODBLANK)/(ODPOSITIVE CONTROL -

ODBLANK)] × 100. Plasma samples from malaria-unexposed

Danish individuals and malaria-exposed Ghanaian children were

included as negative and positive controls, respectively.
Statistical analysis

Data were analysed using R version 3.6.3 (R Core Team, 2020)

in Rstudio and GraphPad Prism version 9.3.1 (GraphPad Software,

San Diego, CA, USA). The data were converted into frequencies,

and subgroup proportion tables were generated using the “publish”

package (47). The proportions between different categories were

compared by Chi-square test or Fisher’s exact test. The “glm”

function in R and the “publish” package were used for

multivariate analysis using a logistic regression model. P-values <

0.05 were considered statistically significant.
Frontiers in Hematology 04
Results

Demographic and clinical characteristics of
the study population

The study included 1,017 children aged 1-17 years, most of

them with HbAA (wild type; 73%), whereas 18% and 8.4% had

HbAC and HbAS, respectively (Table 1). Thirty percent had

heterozygous a‐thalassaemia, while 6% were homozygous.

Additionally, 25% (45/181) and 6.1% (11/181) of HbAC

individuals co-inherited heterozygous and homozygous a-
thalassaemia respectively. Similarly, 25% (21/85) and 10.5% (11/

85) of the HbAS individuals co-inherited heterozygous and

homozygous a thalassaemia respectively. Overall, the mean Hb

level was 10.9 g/dL. Children with homozygous a‐thalassaemia had

the lowest Hb levels (p = 0.04).
Association of haemoglobinopathies with
P. falciparum parasite carriage

The association of the Hb phenotypes and a-thalassaemia with P.

falciparum infection was determined by comparing parasite carriage by

PCR among the different haemoglobinopathies groups. The parasite

carriage rates were similar among individuals with HbAA (23%),

HbAC (24%), and HbAS (19%; p = 0.73; Table 1). With respect to
TABLE 1 Demographic and clinical characteristics of the study population.

Hb phenotypes

Variable Level HbAA (n=751) HbAC (n=181) HbAS (n=85) Total (n=1,017) p-value

Gender Male 450 (59.9) 105 (58.0) 57 (67.1) 612 (60.2)

Female 301 (40.1) 76 (42.0) 28 (32.9) 405 (39.8) 0.36

Age (years) mean (SD) 7.3 (3.4) 7.2 (3.5) 6.9 (3.4) 7.2 (3.4) 0.63

Hb level g/dL mean (SD) 10.9 (1.3) 10.8 (1.2) 10.7 (1.1) 10.9 (1.3) 0.56

Parasite carriage

Yes 157 (21.0) 41 (23.6) 17 (20.0) 215 (21.4)

No 590 (79.0) 133 (76.4) 68 (80) 791 (78.6) 0.72

a-thalassaemia status

Variable Level Wildtype (n=568) Heterozygous (n=261) Homozygous (n=50) Total (n=879) p-value

Gender Male 352 (62.0) 150 (57.5) 30 (60.0) 532 (60.5)

Female 216 (38.0) 111 (42.5) 20 (40.0) 347 (39.5) 0.47

Age (years) mean (SD) 7 (3.3) 7.7 (3.6) 7.8 (3.3) 7.2 (3.4) 0.01

Hb level g/dL mean (SD) 10.9 (1.3) 10.9 (1.2) 10.4 (1.3) 10.9 (1.3) 0.04

Parasite carriage

Yes 130 (22.9) 54 (20.8) 12 (25.0) 196 (22.4)

No 437 (77.1) 205 (79.2) 36 (75.0) 678 (77.6) 0.73
fron
aaa/-a; -a/-a. p-value was calculated using Pearson’s chi-squared and Fisher’s exact test.
Numbers in bold are statistically significant p-values.
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a-thalassaemia, parasite carriage rates were similar among

homozygous (25%) and heterozygous (21%), and wildtype

individuals (23%) (p = 0.75; Figure 2B). However, using a logistic

regressionmodel with interaction, it was observed that parasite carriage

was about three times higher among homozygous a-thalassaemia

HbAC individuals (OR = 2.97, p = 0.09) and among heterozygous

HbAS individuals (OR = 2.86, p = 0.09; Table 2). However, for the

HbAS individuals carrying the homozygousa-thalassaemia phenotype,

no significant difference was observed with the risk of parasite carriage

(OR = 0.71, p = 0.77; Table 2).
Levels of P. falciparum antigen-specific IgG
as a measure of malaria exposure

To further explore the effect of the haemoglobinopathies on

malaria parasite exposure, IgG specific levels were measured against

recombinant P. falciparum proteins from several parasite stages,

sporozoite (PfCSP), merozoite (GLURP, MSP3), gametocyte

(Pfs230), and infected erythrocytes (PfEMP1) (Figure 2) and

crude antigens (Supplementary Figure 1). Children with HbAS

had significantly higher IgG levels to PfCSP than in HbAA (p =

0.03) and HbAC (p = 0.03; Figure 2A). In contrast, levels to

HB3VAR06 (p = 0.09) and IT4VAR60 (p = 0.02) were lower in
Frontiers in Hematology 05
HbAS compared to HbAA (Figures 2E, F). No significant

differences in IgG levels to GLURP, MSP3, and Pfs230 (non-
D

A B

E F

C

FIGURE 2

IgG-specific levels to P. falciparum antigens in HbAA, HbAS, and HbAC individuals. IgG levels to (A) PfCSP, (B) GLURP, (C) PfMSP3, (D) Pfs230,
(E) HB3VAR06, and (F) IT4VAR60 determined by ELISA, respectively. The x-axis is the Hb phenotypes (HbAA, HbAC and HbAS). IgG levels are
expressed in arbitrary log units (AU) on the y-axis. P-values using Kruskal-Wallis test followed by Dunnett’s test for multiple comparisons are shown.
TABLE 2 Interaction among HbAA, HbAS, HbAC, a-thalassaemia, and
parasite carriage.

Interaction variables Odds Ratio [95% CI] p-value

aa/aa: (HbAC vs HbAA) 0.88 [0.52-1.47] 0.62

aa/aa: (HbAS vs HbAA) 0.55 [0.24-1.26] 0.16

‐a/‐a: (HbAC vs HbAA) 1.33 [0.60-2.94] 0.49

‐a/‐a: (HbAS vs HbAA) 2.12 [0.80-5.63] 0.13

aa/-a: (HbAC vs HbAA) 3.06 [0.69-13.57] 0.14

aa/-a: (HbAS vs HbAA) 0.46 [0.05-4.42] 0.50

HbAA: (aa/-a vs aa/aa) 0.74 [0.48-1.13] 0.16

HbAA: (aa/-a vs aa/aa) 0.85 [0.34-2.16] 0.74

HbAC: (aa/-a vs aa/aa) 1.11 [0.48-2.60] 0.80

HbAC: (‐a/‐a vs aa/aa) 2.97 [0.83-10.62] 0.09

HbAS: (aa/‐a vs aa/aa) 2.86 [0.85-9.60] 0.09

HbAS: (‐a/‐a vs aa/aa) 0.71 [0.08-6.63] 0.77
fron
Multivariate analysis with interaction using logistic regression. P value using Chi-square test.
Hetero-mutant: heterozygous (aa/-a); Homo-mutant: homozygous mutant (-a/-a). 95% CI:
95% confidence interval.
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PfEMP1-type) antigens were observed among the HbAA, HbAC,

and HbAS individuals.

The IgG specific levels to all the antigens except Pfs230 and

IT4VAR60 positively correlated with age in the HbAA individuals

(Figure 3A). There was no correlation between age and the IgG

levels to HB3VAR06, IT4VAR60, PfS230 and PfMSP3 in HbAC

individuals (Figure 3B). Additionally, among the HbAS individuals,

there was no correlation between age and the IgG levels to all

antigens (Figure 3C).

A principal component analysis (PCA) indicated variation in

the IgG levels among HbAA, HbAC, and HbAS individuals

(Figure 3D) but did not differentiate the Hb phenotypes. The

PCA also revealed that PfEMP1-specific IgG levels are completely

different from the non-PfEMP1 antigens. Among the non-PfEMP1

antigens, levels against PfCSP, the only pre-erythrocytic stage

antigen, were also different.

Individuals with homozygous a-thalassaemia had significantly

higher IgG levels to PfCSP (p=0.01) and GLURP (p=0.02) and lower

IgG levels to HB3VAR60 (p=0.07) and IT4VAR06 (p=0.03) than

both the heterozygous mutants and wildtype individuals. They also

had slightly higher IgG levels to MSP3 and Pfs230 (Figure 4).

There is virtually no correlation between age and IgG levels

against all the antigens in both the wildtype a-thalassaemia

individuals and homozygous mutation (Figures 5A, C). In

contrast, IgG levels against GLURP, PfMSP3 and the crude

antigens positively correlated with age (Figure 5B).

The PCA for a-thalassaemia status revealed that IgG levels to

the PfEMP1 antigens differed from the non-PfEMP1 antigens, with

the IgG levels against the PfCSP differentiated from the rest of the

antigens (Figure 5D), as observed for Hb phenotype.
Frontiers in Hematology 06
Discussion

HbAS, HbAC, and a-thalassaemia have been reported to

protect against severe P. falciparum malaria (1, 48); however, the

effect on these highly frequent haemoglobinopathies on the risk of

P. falciparum parasite carriage is less clear. Here, we show lower but

not statistically significant parasite carriage (19%) in individuals

carrying the HbAS phenotype compared to HbAA (23%) and

HbAC (24%) as evidenced in literature, that this could be an

indication of enhanced parasite clearance in those carrying the

sickle cell trait (16). In contrast, individuals carrying homozygous

a-thalassaemia had higher parasite carriage (25%) compared to the

heterozygous (21%) and wild type (23%). We also report that co-

inheritance of homozygous a-thalassaemia with HbAC and

heterozygous a-thalassaemia with HbAS increased the risk of P.

falciparum asymptomatic parasitaemia about threefold compared

to wild-type. Our results agree with previous reports of protection

against severe malaria but not asymptomatic infections conferred

by HbAS and HbAC phenotypes (1, 8, 16, 39, 49–51), and

protection against severe malaria anaemia but not against parasite

carriage in homozygous a-thalassaemia (52, 53). Taken together,

our findings and previous studies reinforce the hypothesis that

reduced cytoadhesion of infected RBCs (54) rather than a

parasitaemia reduction in vivo is the most likely explanation for

the protection afforded by these haemoglobinopathies.

The increased risk of parasite carriage among individuals that

co-inherited a‐thalassaemia, with HbAC or HbAS suggests a

negative epistasis between a-thalassaemia and HbAC/HbAS in

Ghana, as reported previously in a study in Kenya on negative

epistasis associated with co-inheritance of HbAS and a-
D

A B

C

FIGURE 3

Correlation of IgG levels and age according to Hb phenotypes. Pearson’s correlation matrixes of specific IgG levels and age in (A) HbAA, (B) HbAC,
and (C) HbAS individuals. The values displayed are r values, deep blue colour shows strength of the variation among the variables. Insignificant
correlations are crossed. (D) principal component analysis (PCA) based on the IgG levels to the antigens. The x-axis and y-axis on the PCA show the
proportion of variance explained by Principal Component (PC) 1 and 2, respectively.
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thalassaemia (55). It is also consistent with reports of chronic

parasite carriage in HbAS and HbAC individuals (56, 57).

Previously, reduction in PfEMP1 expression and cytoadhesion of

HbAS erythrocytes has been reported (27); however, co-inheritance

of HbAS with a-thalassemia might reverse this effect (58), which

might explain the loss of protection observed in vivo (55). We

observed no significant risk of parasite carriage among HbAS

individuals co-inherited with the homozygous a-thalassaemia

phenotype, this could be due to sample size in our cohort. The

conflicting effects of the HbAS heterozygous and HbAS

homozygous on parasite carriage could be that the AS-

heterozygous a-thalassaemia co-inheritance supports preferential

persistence of parasites, but AS-homozygous a-thalassaemia co-

inheritance may retard parasite growth (58). However, this

hypothesis was not tested in this work, we hope to test this in

future studies.

Naturally acquired immunity to malaria is sustained by

premunition (59), and the clinical and epidemiological

consequences of reduced parasite exposure on protective

immunity are reported, with rebounds of malaria in previously

eliminated areas (60, 61). On the other hand, haemoglobinopathies

might act like a ‘double-edged’ sword in malaria-endemic areas,
Frontiers in Hematology 07
operating against severe malaria on the one hand and promoting

asymptomatic parasitaemia on the other. Hence, such chronic

parasite carriage could facilitate parasite transmission (57) but

also sustain naturally acquired protective immunity to malaria.

To assess the impact of these haemoglobinopathies on naturally

acquired immunity, we measured antibody levels to several

recombinant P. falciparum antigens spanning the various life

cycle stages. The selected antigens have been associated with

protection against malaria and are potential vaccine candidates

(62–64). Here, we found higher IgG levels against PfCSP and lower

to IT4VAR60 in HbAS individuals than in HbAA and HbAC.

Similarly, children carrying the homozygous a-thalassaemia

mutation had significantly higher IgG levels to PfCSP and

GLURP but lower to HB3VAR06 and IT4VAR60 than the

heterozygous a-thalassaemia and wildtype individuals.

The higher antibody responses observed to some malaria

antigens measured (non-PfEMP1 antigens) in our study among

the HbAS, HbAC compared to the wild type, and the homozygous

a-thalassaemia agrees with previous studies, which found higher

antibody responses among individuals with various Hb variants and

these have been associated with clinical protection from malaria

(31, 33, 65). This finding could also be associated with the higher
D

A B

E F

C

FIGURE 4

IgG levels to non-PfEMP1 and PfEMP1 antigens in individuals with a-thalassaemia. (A–F) shows total IgG responses to PfCSP, GLURP(R0), PfMSP3,
Pfs230, HB3VAR06, and IT4VAR60, respectively. The x-axis is the a-thalassaemia status of participants (wildtype, heterozygous, and homozygous
mutants). IgG levels are expressed in arbitrary log units (AU) on the y-axis. P-values were determined using Kruskal-Wallis test followed by Dunnett’s
test for Multiple Comparisons.
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asymptomatic infection rate in haemoglobinopathy individuals, as

chronic parasitaemia could boost antibody responses (46, 63, 66,

67). Studies have proposed that HbAS and HbAC have similar

mechanisms of conferring protection through impaired

cytoadhesion, which enhances the acquisition of protective IgG

responses to clear parasites (31, 68). However, studies found no

association with acquisition of protective IgG responses (69) or

lower IgG levels (70) in HbAS compared to HbAA individuals,

perhaps due to limited exposure to malaria. Since acquiring IgG

antibodies only to merozoite antigens does not reduce the risk of

malaria in HbAS individuals (69–71), other factors concerning

transmission intensity and different repertoire of antigens should

also be considered.

In contrast with our findings using two recombinant proteins,

studies conducted in Gabon and Burkina Faso found higher

antibody levels in HbAS children compared to HbAA to variant

surface antigens expressed by clinical isolates (31, 68). However, no

differences were found in Mali using a few PfEMP1 recombinant

proteins (72). A recent study among HbAS and HbAC Beninese

pregnant women showed no differences in the IgG levels to selected

PfEMP1 variants (46, 73). Hence analysis with a broader range of

PfEMP1 variants would be more informative. Less is known in a-
thalassaemia, but our data indicate a lower exposure to those

specific proteins used here. The differences in IgG levels to Pf-

EMP1 could be due to transmission intensity.

We acknowledge that the nature of our study may bias the

results with respect to protection in certain Hb variants, since a

longitudinal study may provide a better estimate of the exposure

status. However, this study confirmed the lack of protection for

asymptomatic parasitaemia conferred by Hb variants and the
Frontiers in Hematology 08
increased risk of parasite carriage among children carrying on a-
thalassaemia and HbAS or HbAC. Therefore, screening for these

haemoglobinopathies in malaria-endemic communities is

important to help reduce the risk it might pose to chronic

parasite carriage. Differences in IgG levels to the antigens tested

here also indicate changes in the exposure and potentially reduced

exposure of PfEMP1 on the infected erythrocytes of HbAS and a-
thalassaemia individuals. Identifying P. falciparum antigens that

would induce protective antibody responses in future vaccine

development must consider these Hb variants in endemic

populations since they influence naturally acquired immunity in

these individuals.
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Hemoglobin c associated with protection from severe malaria in the dogon of Mali,
a West African population with a low prevalence of hemoglobin S. Blood (2000) 96
(7):2358–63. doi: 10.1182/blood.V96.7.2358

9. Williams TN, Mwangi TW, Wambua S, Alexander ND, Kortok M, Snow RW,
et al. Sickle cell trait and the risk of plasmodium falciparum malaria and other
childhood diseases. J Infect Dis (2005) 192(1):178–86. doi: 10.1086/430744

10. Chotivanich K, Udomsangpetch R, Pattanapanyasat K, Chierakul W, Simpson J,
Looareesuwan S, et al. Hemoglobin e: a balanced polymorphism protective against high
parasitemias and thus severe p falciparum malaria. Blood (2002) 100(4):1172–6. doi:
10.1182/blood.V100.4.1172.h81602001172_1172_1176

11. Willcox M, Björkman A, Brohult J, Pehrson PO, Rombo L, Bengtsson E. A case-
control study in northern Liberia of Plasmodium falciparum malaria in haemoglobin S
and beta-thalassaemia traits. Ann Trop Med Parasitol (1983) 77(3):239–46. doi:
10.1080/00034983.1983.11811704

12. Weatherall D. From genotype to phenotype: genetics and medical practice in the
new millennium. Philos. Trans R Soc Lond B Biol Sci (1999) 354(1392):1995–2010. doi:
10.1098/rstb.1999.0539

13. Piel FB, Howes RE, Patil AP, Nyangiri OA, Gething PW, Bhatt S, et al. The
distribution of haemoglobin c and its prevalence in newborns in Africa. Sci. Rep (2013)
3:1671. doi: 10.1038/srep01671

14. Williams TN, Weatherall DJ. World distribution, population genetics, and
health burden of the hemoglobinopathies. Cold Spring Harbor Perspect Med (2012) 2
(9):a011692. doi: 10.1101/cshperspect.a011692

15. Piel FB, Patil AP, Howes RE, Nyangiri OA, Gething PW, Williams TN, et al.
Global distribution of the sickle cell gene and geographical confirmation of the malaria
hypothesis. Nat Commun (2010) 1:104. doi: 10.1038/ncomms1104

16. Danquah I, Ziniel P, Eggelte TA, Ehrhardt S, Mockenhaupt FP. Influence of
haemoglobins s and c on predominantly asymptomatic plasmodium infections in
northern Ghana. Trans R Soc Trop Med Hygiene (2010) 104(11):713–9. doi: 10.1016/
j.trstmh.2010.08.001

17. Mockenhaupt FP, Ehrhardt S, Otchwemah R, Eggelte TA, Anemana SD, Stark K,
et al. Limited influence of haemoglobin variants on plasmodium falciparum msp1 and
msp2 alleles in symptomatic malaria. Trans R Soc Trop Med Hygiene (2004) 98(5):302–
10. doi: 10.1016/j.trstmh.2003.10.001

18. Lamptey H, Ofori MF, Adu B, Kusi KA, Dickson EK, Quakyi I, et al. Association
between alpha-thalassaemia trait, plasmodium falciparum asexual parasites and
gametocyte carriage in a malaria endemic area in southern Ghana. BMC Res Notes
(2019) 12(1):134. doi: 10.1186/s13104-019-4181-8

19. Mockenhaupt FP, Ehrhardt S, Gellert S, Otchwemah RN, Dietz E, Anemana SD,
et al. Alpha(+)-thalassemia protects African children from severe malaria. Blood (2004)
104(7):2003–6. doi: 10.1182/blood-2003-11-4090

20. Fucharoen S, Winichagoon P. Haemoglobinopathies in southeast Asia. Indian J
Med Res (2011) 134(4):498–506.
frontiersin.org

https://www.frontiersin.org/articles/10.3389/frhem.2023.1150134/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frhem.2023.1150134/full#supplementary-material
https://doi.org/10.1016/S1473-3099(12)70055-5
https://doi.org/10.1016/S2352-3026(18)30110-8
https://doi.org/10.1093/hmg/ddm350
https://doi.org/10.1111/j.1601-5223.1949.tb03339.x
https://doi.org/10.1136/bmj.1.4857.290
https://doi.org/10.1016/S0140-6736(00)02073-0
https://doi.org/10.1038/35104556
https://doi.org/10.1182/blood.V96.7.2358
https://doi.org/10.1086/430744
https://doi.org/10.1182/blood.V100.4.1172.h81602001172_1172_1176
https://doi.org/10.1080/00034983.1983.11811704
https://doi.org/10.1098/rstb.1999.0539
https://doi.org/10.1038/srep01671
https://doi.org/10.1101/cshperspect.a011692
https://doi.org/10.1038/ncomms1104
https://doi.org/10.1016/j.trstmh.2010.08.001
https://doi.org/10.1016/j.trstmh.2010.08.001
https://doi.org/10.1016/j.trstmh.2003.10.001
https://doi.org/10.1186/s13104-019-4181-8
https://doi.org/10.1182/blood-2003-11-4090
https://doi.org/10.3389/frhem.2023.1150134
https://www.frontiersin.org/journals/hematology
https://www.frontiersin.org


Lamptey et al. 10.3389/frhem.2023.1150134
21. Fairhurst RM, Fujioka H, Hayton K, Collins KF, Wellems TE. Aberrant
development of plasmodium falciparum in hemoglobin CC red cells: implications
for the malaria protective effect of the homozygous state. Blood (2003) 101(8):3309–15.
doi: 10.1182/blood-2002-10-3105

22. Friedman MJ, Roth EF, Nagel RL, Trager W. The role of hemoglobins c, s, and
nbalt in the inhibition of malaria parasite development in vitro. Am J Trop Med Hygiene
(1979) 28(5):777–80. doi: 10.4269/ajtmh.1979.28.777

23. LaMonte G, Philip N, Reardon J, Lacsina JR, Majoros W, Chapman L, et al.
Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum
inhibits parasite translation and contributes to malaria resistance. Cell Host Microbe
(2012) 12(2):187–99. doi: 10.1016/j.chom.2012.06.007

24. Brockelman CR, Wongsattayanont B, Tan-ariya P, Fucharoen S. Thalassemic
erythrocytes inhibit in vitro growth of plasmodium falciparum. J. Clin. Microbiol (1987)
25(1):56–60. doi: 10.1128/jcm.25.1.56-60.1987

25. Cyrklaff M, Sanchez CP, Kilian N, Bisseye C, Simpore J, Frischknecht F, et al.
Hemoglobins s and c interfere with actin remodeling in plasmodium falciparum-
infected erythrocytes. Science (2011) 334(6060):1283–6. doi: 10.1126/science.1213775

26. Krause MA, Diakite SA, Lopera-Mesa TM, Amaratunga C, Arie T, Traore K,
et al. a-thalassemia impairs the cytoadherence of plasmodium falciparum-infected
erythrocytes. PloS One (2012) 7(5):e37214. doi: 10.1371/journal.pone.0037214

27. Cholera R, Brittain NJ, Gillrie MR, Lopera-Mesa TM, Diakité SA, Arie T, et al.
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