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Abatacept and T-cell
costimulation blockade—shifting
the paradigm in the prevention
of graft-versus-host disease

Suparno Chakrabarti 1,2* and Sarita Rani Jaiswal1,2

1Cellular Therapy and Immunology, Manashi Chakrabarti Foundation, New Delhi, India,
2Department of Blood and Marrow Transplantation, Dharamshila Narayana Super-Speciality Hospital,
New Delhi, India
Despite advances in transplantation techniques and immunosuppressive

therapies, graft-versus-host disease (GVHD) remains a significant cause of

morbidity and mortality, necessitating the use of innovative strategies for its

prevention. T-cell activation plays a crucial role in the pathogenesis of GVHD,

and T-cell costimulation blockade (COSBL) has emerged as a promising

approach to prevent this devastating condition. This review aims to explore the

concept of COSBL and its potential as a paradigm-shifting strategy in the

prevention of GVHD, in the context of the existing modalities for

the prevention of GVHD and the preclinical and clinical studies on COSBL. The

unique property of abatacept (CTLA4Ig) is not just limited to dampening T-cell

activation. The salutary effect of abatacept on natural killer (NK) cells and Tregs

alike provides a unique opportunity to dissociate T-cell-mediated GVHD from

NK cell-mediated graft-versus-leukemia. Further research is warranted to

explore other modalities of COSBL, determine the optimal dosing and

combinations for COSBL, and identify predictive biomarkers for patient

stratification, ultimately paving the way for improved outcomes in

hematopoietic cell transplantation recipients.
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1 Introduction

Despite several advances in the field of medicine, allogeneic hematopoietic cell

transplantation (HCT) remains the only curative option for a vast majority of

hematological disorders, both benign and malignant. Since its successful clinical

implementation in 1969, courtesy of a series of diligent canine experiments carried out by

Thomas and colleagues, certain paradigms established at the outset remain the cornerstone

of the success in the field of HCT (1–7). One such paradigm is the inevitable immunological

confrontation between immune cells of the donor graft and those of the host, with the
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ultimate goal being the establishment of immune tolerance.

Although the process of conditioning directed at myeloablation

and immunosuppression could result in successful engraftment of

donor hematopoietic stem cells (HSCs) in the majority of recipients

who are fully matched at major histocompatibility complex (MHC)

class 1 and 2 genes of the donor, the donor lymphocytes

accompanying the graft would invariably mount an alloreactive

response directed at the mismatched minor histocompatibility

antigens of the host, manifesting as graft-versus-host disease

(GVHD). Pharmacological interventions directed at the prevention

of activation and the proliferation of alloreactive donor T

lymphocytes were deemed to be essential, as evident from canine

studies (7). Thus, the pharmacological prevention of GVHD was

established as an inseparable component of any allogeneic HCT

protocol employing unmanipulated donor graft.
2 Preventing GVHD—an unfulfilled
promise

2.1 Pathogenesis—the more we know…

There are three absolute requirements in the occurrence of

acute GVHD, as described by Billingham in 1966 (8). First is the

presence of immunologically competent cells in the graft, the

second is the disparity in the major or minor histocompatibility

antigens between the donor and the host, and the third is the

inability of the host to eliminate the alloreactive immunocompetent

cells of the graft. GVHD is typically viewed as the result of a three-

step process (9, 10), wherein conditioning regimen-induced tissue

damage and disruption of gut microbes results in the release of

damage-associated molecular patterns (DAMPs) and pathogen-

associated molecular patterns (PAMPs). This results in an

inflammatory cascade wherein the antigen-presenting cells

(APCs) in the host are matured and activated, enabling the

presentation of host antigens via activated host APCs to

the alloreactive T cells in the graft. Antigen recognition is the

prerequisite, but not sufficient, for T-cell activation. Additional

costimulatory signals are essential to the initiation of T-cell

activation. Once activated, the alloreactive T cells home to the

target organs, such as the skin, gut, and liver, where the abundance

of APCs and host antigens result in a cascading process of T-cell

activation, proliferation, and tissue damage, which can be either

cytokine mediated or directly cytotoxic by way of cytotoxic T cells

(CTL) (10). Once the alloreactive process is let loose in its full

vigor, restoration of normal T-cell homeostasis, as witnessed in the

case of pathogen-mediated T-cell activation, rarely happens. The

abatement of this process almost always requires a pharmacological

intervention and might proceed uncontrolled despite every

available intervention being implemented, resulting in a fatal

outcome. Such is the power of uncontrolled alloreactivity. On the

other hand, donor T cells are the key effectors of the antitumor

effect directed against leukemia or the underlying malignancy

following HCT. This is termed as the graft-versus-leukemia/

tumor (GVL/GVT) response. The GVL effect is often inseparable
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from a generalized GVH effect. The past 50 years have seen untiring

efforts from transplant immunologists to separate the GVL effect

from GVHD, but with little success. Although this might be the

paradigm in the approach to HCT in malignant diseases, one can

afford to focus less on the preservation of a GVL effect in non-

malignant diseases (NMDs). However, aggressive attempts at the

elimination of GVHD in NMD patients are often complicated by

delayed immune reconstitution and serious opportunistic infection.

This puts in context the primacy of an effective GVHD prophylaxis

protocol in allogeneic HCT, which does not compromise the GVL

effect or adversely affect immune reconstitution.
3 Pharmacological prevention—the
choice is not easy

Corticosteroids have been the agent of choice in subduing

inflammation and lymphocyte activation and were considered for

GVHD prophylaxis in the early days. However, the introduction of

calcineurin inhibitors (CNIs), such as cyclosporine (CSA), a cyclic

peptide derived from a soil fungus in 1969, combined with a short

course of intermittent low-dose methotrexate (MTX), a folate

antagonist used as an anticancer agent, was shown to be superior

to either drug alone and became the gold standard of GVHD

prophylaxis (11, 12). The incidence of grade 2–4 acute GVHD

ranged from 30% to 50%, depending on the donor source, and the

incidence of chronic GVHD ranged from 50% to 70%.

Several modifications to this approach have been attempted

over the last five decades. Tacrolimus (FK506), a fungus-derived

macrolide antibiotic found to prevent T-cell activation via the

NFAT pathway, which is similar to CSA, was introduced in the

1980s, with its potency being 100 times that of CSA. At the same

time, another fungus-derived product, mycophenolate mofetil

(MMF), was found to be a potent inhibitor of T and B cells via

the inhibition of purine metabolism pathways. Tacrolimus has been

employed in combination with either MMF or MTX in related and

unrelated HCT, with no significant reduction in the incidence of

either acute or chronic GVHD as compared with CSA/MTX (13).

Another derivative from a fungal species, sirolimus, was found to be

an immunosuppressant (ISA) by coincidence. Sirolimus bears

structural similarities to FK506 and often binds to similar

intracellular proteins. Yet, sirolimus stands out by dint of its

effect through distinct pathways. Sirolimus dampens signaling

through the mammalian target of rapamycin (mTOR) pathway in

effector T cells (Teffs) and restricts the cell cycle pathways; however,

the availability of alternate pathways, via phosphatidylinositol

mannoside 2 (PIM2) and STAT5 for cell cycle and metabolism,

allow the proliferation of Tregs (14). However, none of these drugs

in combination was significantly superior to CSA/MTX, and the

combinations of these agents are often guided by the host

comorbidities vis-à-vis the toxicity profile. For example, sirolimus,

when used with myeloablative doses of busulfan, increased the risk

of hepatic sinusoidal obstruction syndrome (SOS), and there was

an increase in the risk of thrombotic microangiopathy when

tacrolimus and sirolimus were combined (15, 16).
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4 T-cell depletion—one way or
the other

Antibodies against T cells, either in the form of polyclonal

horse- or rabbit-derived antibodies, known as antithymocyte

globulin (ATG) (17, 18), or monoclonal antibodies, such as

alemtuzumab (anti-CD52) (19) or OKT3 (anti-CD3) (20), have

been used both for host immunosuppress ion and/or

lymphodepletion of the infused graft in vivo. Despite numerous

clinical studies showing a greater reduction in both acute and

chronic GVHD, the dosing of such agents remains empirical and

outcomes remain unpredictable. The concerns that are associated

with the use of ATG or alemtuzumab are the risks of serious viral

reactivations and, in cases of malignant diseases, relapse (21, 22).

A more predictable and measurable approach to the elimination

of donor-derived T lymphocytes has been physical manipulation of

the graft with depletion of T lymphocytes or its subsets and/or

selection of CD34+ HSCs (23). With these processes being much

refined over the last two decades, the immunomagnetic depletion of

TCRab+ or CD45RA+ T cells from the graft remain the most

common approach to graft manipulation (24). Such approaches

have drastically reduced the incidence of acute and chronic GVHD,

but often at the cost of morbidity and mortality arising out of viral

reactivations (22). Moreover, T-cell depletion of the graft might be a

preferred option in NMDs, but relapse remains a major concern in

those with advanced malignancies (25).
5 Post-transplantation
cyclophosphamide—simple
yet elegant

The existing approaches to serotherapy or immunomagnetic

depletion of T cells are largely non-selective if the aim of the process

is to restrict the alloreactive T-cell population alone. In a series of

preclinical studies, groups from Japan and Johns Hopkins

Univers i ty in the USA have shown tha t h igh-dose

cyclophosphamide (Cy), if administered 2–3 days after graft

infusion, can result in long-term tolerance in mismatched mice

models (26, 27). Cy and its active metabolite are rapidly

metabolized by aldehyde dehydrogenase (ALDH) and cells that

lack ALDH are far more susceptible to Cy-induced death. On the

other hand, cells endowed with high amounts of ALDH are

inherently protected from Cy-induced damage. In general,

quiescent cells are Cy-resistant as they possess sufficient amounts

of ALDH, and rapidly proliferating cells remain susceptible due to

the scarcity of the enzyme (28). Following infusion of the graft in

the absence of pharmacological immunosuppression as in standard

GVHD prophylaxis, alloreactive T cells, both from the donor graft

and the host, unaffected by the conditioning regimen, would be

activated and proliferate in such an unhinged immune-enabling

environment. This proliferation peaks at 72 h and if Cy is

administered around this time, they might spare the non-

alloreactive T cells and HSCs and selectively target proliferating

alloreactive T cells of both donor and host origin.
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Based on this principle, the Johns Hopkins University group

initiated a clinical trial with non-myeloablative conditioning followed

by two doses of post-transplantation Cy (PTCy) on days +3 and +4,

followed by FK506 and MMF, in patients receiving a HLA-

haploidentical family donor (HFD) graft. The results were

astounding in terms of both engraftment and GVHD, with over 90%

of patients having sustained engraftment and less than 20% of patients

experiencing severe GVHD, acute or chronic (29, 30). Subsequently,

PTCy-based approaches have become the standard of care in HFD-

HCT, and are currently expanding their sway in matched and

mismatched unrelated donor (UD) HCT (31).
6 Has PTCy ended five decades
of strife?

With a unique mechanism of action, along with ease of access

and delivery, PTCy seems to have broken the glass ceiling in

alternative-donor HCT, particularly those with HLA-mismatched

donors, both related and unrelated. However, delayed engraftment,

infectious complications, high-dose Cy-associated bladder and

cardiac toxicities, and the increased risk of disease relapse remain

some of the major concerns associated with the PTCy approach.

Although PTCy has definitely made HFD-HCT a global possibility,

severe GVHD or other forms of alloreactivity remain a concern,

particularly in children with NMDs who have been heavily

transfused (32). Apart from GVHD, aberrant alloreactivity

manifests as hemophagocytic syndrome (HPS) or macrophage

activation syndrome (MAS) in the immediate post-transplant

period in children with NMDs receiving HFD-HCT. Our group

was the first to report a high incidence of post-transplant HPS

(PTHPS) following HFD-HCT in children, in addition to early-

onset severe acute GVHD (33). We had postulated that GVHD and

HPS were two ends of the spectrum of T-cell alloreactivity. When

T-cell cytotoxicity is dominant, the manifestation is that of classic

GVHD, but abortive cytotoxicity in the face of APC-driven

alloreactivity manifests primarily as PTHPS. Both conditions, if

manifesting early and progressing unabated, result in high rates

of mortality.

It was hypothesized that children possibly metabolized Cy

differently than adults and PTCy along with CNI/MMF might not

suffice as an optimum GVHD prophylaxis regimen in children with

NMDs undergoing HFD-HCT (32, 34, 35).
7 Unraveling the T-cell
costimulation pathway,
and a serendipitous discovery

An understanding of T-cell biology effectively began in the

1980s, with recognition of the T-cell receptor (TCR) complex as the

putative protein critical to ascribing specificity in antigen

recognition. However, contemporaneous studies also highlighted

the insufficiency of antigen recognition as the sole trigger for T-cell

activation. It was realized that if antigen recognition is the first step
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in the process of T-cell activation, a second step is necessary in

imparting fruition to the process (36). This was recognized as the

“costimulation pathway”, without whose engagement T cells are not

activated, despite recognition and ligation with the cognate antigen

taking place. With the advent of monoclonal technology in the

1980s, a search for costimulatory molecules brought the CD28

receptor into the limelight, the extracellular domain of which was

homologous to the immunoglobulin (Ig)V region. CD28 was found

to be constitutively expressed in both CD4+ and CD8+ T cells (37).

The ligands of CD28 were soon identified on APCs and named B7/

BB-1 or B7-1 (later named CD80) (38, 39). Interestingly, antibodies

directed at CD80 failed to prevent T-cell activation, leading to

speculation regarding the existence of other ligands for CD28. This

prompted further studies and the identification of another ligand

B7-2 (CD86) (40). Similar to CD28, CD86 is constitutively

expressed on APCs and is responsible for initiation of the

costimulation process. CD80, on the other hand, is induced on

activation of APCs and is involved more in the sustenance and

modulation of the T-cell activation process.

Antigen recognition and costimulation could result in a process

of uncontrolled activation, which is not what happens in

physiological conditions. Hence, a pathway for putting the brakes

on the process of T-cell activation and proliferation had to exist.

Moreover, soluble CD28 fusion proteins developed at the time were

found to be of low affinity, making it unfeasible as a therapeutic

proposition, as immense amounts of antibody would be required

for any meaningful biological activity (41).

A molecule homologous to CD28 was discovered on screening

the murine cytolytic T-cell library. The gene for this molecule,

named cytotoxic T-lymphocyte-associated antigen protein 4

(CTLA4), was mapped to the same chromosomal region as CD28

and found to be expressed on activated T cells. The close

resemblance to CD28 in every aspect prompted Linsley and

colleagues from the BMS Research Institute to create a fusion

protein consisting of an extracellular domain of CTLA4 and an

IgG1 heavy chain (42). They found that this fusion protein, named

CTLA4Ig, had a much higher affinity and binding avidity to B7

ligands than CD28 and was a potent inhibitor of immune responses

involving T and B lymphocytes. The function of CTLA4 was yet to

be discerned, but the potential of CTLA4Ig to block the CD28-B7

pathway was recognized.
8 CTLA4 and the coinhibitory
pathways—when saying “NO”
is not enough

The interaction between CD28 and B7 ligands results in the

upregulation of the PI3K pathway, the antiapoptotic pathway, and

increased IL2 production. CTLA4 was found to bind to the same

ligands with 20 times greater avidity than CD28, resulting in

abrogation of the activation pathway, thus tempering the process

of T-cell activation and proliferation (43, 44). However, in contrast

to CD28, CTLA4 is not constitutively expressed on conventional T

cells (Tconv) and is upregulated only on the ligation of CD28 to B7
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ligands. This is probably due its higher binding affinity to B7 ligands

and the resultant competitive displacement of CD28, as CTLA4 is

internalized rapidly following cell surface expression (45).

In addition to the competitive inhibition of CD28-B7 pathway,

CTLA4 was found to act in a unique cell-extrinsic and cell-intrinsic

manner (46). CD28 was found to mediate the trogocytosis of CD80

and CD86 along with MHC class 2 peptides to the T-cell surface

and provide stimulation to fellow T cells in a cis manner. This

process results in the autostimulation of T cells independent of

APCs (47). CTLA4 can inherently interrupt this process by the

trans-endocytosis of B7 molecules on APCs, in addition to

molecules trogocytosed via the CD28–B7 interaction (47, 48).

These pathways, which have been uncovered recently, focus on

the critical role of CTLA4 in the process of T-cell regulation.

Although we have focused primarily on the CD28/CTLA4-B7

pathways, there are several other costimulatory and coinhibitory

pathways. We shall discuss the relevance and therapeutic

implication of each pathway in the clinical context in

subsequent sections.
9 Costimulation blockade and
transplantation tolerance—
the other story

As we have discussed earlier, T-cell activation is a two-step

process. Antigen-primed T cells, in the absence of costimulation,

become anergic to the specific antigen. Hence, COSBL excited

transplant immunologists in pursuit of lasting transplant tolerance.

The serendipitous discovery of CTLA4Ig allowed overcoming the

disappointment of CD28-directed antibodies. Early studies in

xenogeneic models showed long-term allograft survival with

CTLA4Ig treatment (49, 50). This initial hype was tempered by

later studies showing COSBL-resistant graft rejection, particularly in

non-human primates (51). This called for the engagement of other

costimulatory pathways in the act of transplant tolerance.

Simultaneously, and subsequently, several other costimulation

pathways were discovered. The most studied of them is the CD40-

CD40L (CD154) pathway, where CD40 is constitutively expressed

on APCs, including B cells and the ligand, and CD154 is expressed

predominantly on CD4+ T cells, resulting in the reverse

costimulation of the APCs (52, 53). This pathway is the prime

driver of T-cell-dependent B-cell maturation, and, hence, deemed to

be an attractive target in solid organ transplantation (SOT).

Although blocking the CD40-CD154 pathway alone prevented

acute rejection in organ transplantation models, it did not result

in durable tolerance (54). This was, however, achieved by the co-

administration of CTLA4Ig with or without rapamycin (55, 56).

The encouraging preclinical findings prompted introduction of

anti-CD154 antibodies in a phase 1 clinical trial. Unfortunately,

serious thromboembolic complications were noted, resulting in the

abandonment of the trial (57). It was realized that CD154 is also

expressed on activated platelets with CD40 being constitutively

expressed on the endothelia, which resulted in collateral

damage (58).
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Most of the costimulatory molecules discovered belong to either

the Ig superfamily or the tumor necrosis factor (TNF) receptor

(TNFR) superfamily. Inducible costimulatory molecule (ICOS),

OX-40 (CD134), and 41BB (CD137), all belonging to the TNFR

group, are inducible receptors on activated T cells and/or memory T

cells (59). These pathways synergize with the CD28-B7 pathway in

upregulating T-cell activation and/or B-cell maturation along with

class switch recombination. 41BB activates CD8 T cells in a CD28-

B7-independent manner, and all these costimulation pathways

seem to drive CTLA4Ig-resistant T-cell activation (60).
10 CTLA4Ig and the dilemma of anergy,
tolerance, and regulatory suppression

Although the terms anergy and tolerance are often used

interchangeably, they are distinct functional states. The classic

example of anergy is the absence of costimulation following

binding to the cognate antigen, as in classic COSBL with

monoclonal antibodies (61). This is believed to be the primary

modus operandi of CTLA4Ig. Anergy is a dysfunctional state akin

to functional paralysis of T-cell function, which does not require

persistence of the antigen and can be reversed via IL2 and restoration

of the PI3/AKT/NFAT pathway (62). Adaptive tolerance, on the

other hand, is a more permanent state of antigen-specific

unresponsiveness, which is not reversible with IL2 and does require

persistence of the antigen. Thus, COSBL combined with CTLA4Ig

leads to a state of anergy that might prevent and delay graft rejection

in SOT, but it is not the same as tolerance (63). Even though a state of

anergy is induced by COSBL, conversion to a state of tolerance would

require invocation of the regulatory pathways. Despite identification

of several regulatory pathways, the one involving regulatory T cells

(Tregs) remains the most widely understood.

Tregs are best described as thymic or natural (tTregs) and

peripheral or induced (pTregs). The tTregs arise out of thymic

selection, where CD4+T cells with intermediate affinity to self-

antigens go on to constitutively express a high-affinity IL2

receptor (CD25) and forkhead box protein 3 (FoxP3), which are

defining characteristics (64, 65). On the other hand, CD4+CD25+ T

cells can convert to CD4+CD25+FoxP3+ T cells, which are referred

to as pTregs, on antigen and IL2 stimulation in an anti-

inflammatory cytokine milieu of IL10, and transforming growth

factor beta (TGFb) (66).
When CTLA4Ig blocks the CD28-B pathway in Tconv, CTLA4

expression is not induced and the state of anergy does not convert to

a state of tolerance due to a lack of CTLA4 binding with B7 ligands.

Unlike in Tconv, where CTLA4 is induced following T-cell

activation via the CD28-B7 pathway, it is constitutively expressed

on Tregs, and this determines and often initiates the regulatory

cascade (67). However, PD1 is also upregulated in Tregs and the

PD1-PDL1 pathway takes primacy when CTLA4 ligation is

attenuated due to occupation of B7 ligands by CTLA4Ig (68).

Tregs mirror Tconvs in terms of receptor expression and antigen-

activated effector phenotypes, but the functions vary widely (69). In

fact, the functional implications of many of these pathways remain

poorly understood.
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It is a widely held view that the survival of Tregs depends on the

availability of IL2, and in an environment where availability of IL2 is

limited, Tregs mop up all available IL2, starving the Teffs (70). It is

indeed ironic that the apoptosis of Tregs in an IL2-depleted

environment is driven by FoxP3, the defining transcription factor

(71). Thus, the thymic microenvironment only supports

CD4+FoxP3+ cells which have a strong expression of CD25. The

situation is further complicated by the plasticity of Tregs in

the periphery, where the balance between IL6 and TGFb decides

the functional fate, that is whether CD4+CD25+ T cells will take a

Th17 or Treg pathway (72).

The CD28/CTLA4-B7 and PD1-PDL1 axes both play critical

and differential roles in functions of Tconv and Tregs (73). CD28

ligation is critical to the activation of the majority of CD4+ and most

CD8+ T cells. However, this pathway is not an absolute requirement

for Treg function, except during the initial stage of thymic selection.

CTLA4 on Tregs plays a critical role both in the competitive

inhibition of CD28-B7 pathway for Tconvs and the depletion of

B7 molecules and MHC class II-derived peptides from the APC

surface via-endocytosis (47, 74). PD1-PDL1 is a coinhibitory

pathway for Teff cells and PD1 is upregulated on Teffs following

chronic antigen exposure. In contrast, in Tregs, the upregulation of

PD1 is critical both to its survival and suppressive activity,

particularly when it is exposed to CTLA4Ig, that is, when natural

CTLA4 and B7 ligation is inhibited (68). PD1 expression on Tregs

was associated with reduced apoptosis and greater suppression in

presence of low-dose IL2 (75). In fact, higher levels of expression of

PD1 on Tregs was associated with an improved clinical response in

patients with chronic GVHD treated with low-dose IL2. In addition,

PD1 expression on Tregs was found to be critical in allograft

tolerance in CTLA4Ig-mediated COSBL blockade (68). Preclinical

models have demonstrated a synergistic effect of CTLA4, PD1, and

ICOS on Treg-mediated suppression of Teffs (68, 76).

Finally, it has been demonstrated in recent times that CD80

and PDL1 molecules on APC surfaces can form heterodimers in a

cis interaction. This makes both molecules unavailable to the

respective inhibitory receptors CTLA4 and PD1. Interestingly,

CD80 can engage with CD28 in its heterodimerized form and

simultaneously protects itself from trans-endocytosis by CTLA4

(77). This rescues activated Teff from inhibitory pathways.

However, CTLA4Ig can effectively bind to CD80 and prevent its

dimerization with PDL1, thus preventing CD28-CD80 ligation and

facilitating PD1–PDL1 interaction at the same time.

CTLA4Ig has led to divergent outcomes in experimental mice

models. For example, in NODmice, exposure to CTLA4Ig has resulted

in the earlier onset of diabetes and concomitant reduction in Tregs (78,

79). The same has been reported in preclinical SOT models (80). This

might be attributable to the blockade of CD28-mediated costimulation,

which has been shown to induce the chromatin modifying enzyme,

enhancer of zeste homolog 2 (Ezh2). Ezh2 has been shown to play a key

role in the stability of Tregs post activation in knockout mice models

(81). The CD28 pathway has also been shown to be critical for

peripheral homeostasis of tTregs (82). Thus, it is possible that by

blocking the CD28 pathway, CTLA4Ig might inadvertently

compromise the stability of tTregs and result in adverse outcomes in

certain autoimmune diseases (AIDs) and SOTs.
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This anti-Treg effect of CTLA4Ig is probably limited to tTregs,

as a substantial body of evidence demonstrates the induction of

pTregs by CTLA4Ig (83). This differential effect probably arises due

to the fact that, in contrast to tTregs, pTregs are not entirely

dependent on CD28 ligation (84). CTLA4Ig has been shown to

convert CD4+CD25+ T cells to FoxP3+CD4+CD25+ Tregs in murine

lymph nodes (83). TCR ligation is a prerequisite for this process and

it is APC dependent, mediated primarily via CD86 and not CD80.

This process is also not dependent on high doses of IL2. Although,

this study did not find this process to be dependent on TGFb,
another study demonstrated that the suppressive effect of CTLA4Ig

on Teff is dependent on the presence of both Tregs and TGFb (85).

Furthermore, CTLA4-Ig monotherapy in a fully mismatched heart

transplant model (BALB/c onto C57BL/6), administered on days 0,

4, 14, and 28 and every 4 weeks thereafter was shown to be

dependent on Tregs to maintain its suppressive effect at a dose of

10 mg/kg (86).

Thus, anergy which is achieved by CTLA4Ig exposure, can

translate to durable tolerance only in the presence of continued

Treg-mediated suppression in an antigen-specific manner.
11 CTLA4Ig—from bench to bedside

Durab l e to l e r ance in the absence o f con t inued

immunosuppression has been the holy grail of SOT. The concept

of COSBL was indeed appealing in terms of the prevention of T-cell

activation and graft rejection. Although long-term graft survival

was achievable in smaller animals with CTLA4Ig, this was not quite

achieved in non-human primates (51). Combined therapy with

CTLA4Ig and anti-CD154 antibodies seemed to provide superior

results than either alone (56). However, the protocol could not be

escalated to the clinic due to the abandonment of phase 1 trials

involving anti-CD154 antibodies, as discussed above. The problem

was partly addressed by modifying CTLA4Ig to LEA29Y, which had

greater binding to CD86. Subsequently, in 2011, LEA29Y was

approved in renal transplantation as belatacept (Nulojix®) (87,

88). The parent molecule, CTLA4Ig, on the other hand, was

extensively explored in a whole host of preclinical AID models.

Although it showed excellent results in some, it also resulted in

paradoxical worsening in a few (89–93). In due course, it was

realized that CTLA4Ig would be effective in conditions where the

pathophysiology is driven by the CD28-B7 pathway. It might be

counterproductive in situations where the disease progression is

dependent on insufficiency of a coinhibitory pathway, where

CTLA4Ig would further downregulate CTLA4 expression. Finally,

through extensive phase 3 clinical trials demonstrating long-term

benefit, the parent CTLA4Ig molecule [abatacept (Orencia®)] was

approved for patients with rheumatoid arthritis (94–96).

The inherent caveat in CTLA4Ig-mediated competitive

inhibition of CD28-B7 ligation could abort T-cell activation

upfront, but was found to decrease the population of Tregs in

SOT models. This was ascribed to the failure of upregulation of

CTLA4 in Teffs, as this is an event consequent to CD28–B7

interaction. In addition, CTLA4 is constitutively expressed on

Tregs, but without binding to B7 molecules occupied by
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CTLA4Ig, they fail to execute its regulatory function (97, 98). In

an attempt to address these problems, antibodies against both CD80

and CD86 were developed, but this did not translate to the clinic.

TGN1412, a partial-agonist antibody, was developed against CD28,

aimed at the expansion of Tregs. This was found to be safe in

preclinical models. However, in the first eight healthy controls in a

phase 1 trial, rapid polyclonal expansion of T cells was noted with

disastrous consequences, bringing the development of CD28-

directed treatment to a halt (99). Thus, CTLA4Ig remained the

only safe and effective agent for COSBL, either in transplantation or

in autoimmunity.
12 CTLA4Ig in HCT—the
preclinical promise

Several preclinical models showed the efficacy of CTLA4Ig

alone or in combination with anti-CD154 and anti-T cell

antibodies in inducing engraftment across major MHC mismatch

without thymic irradiation (56). This has been achieved in several

models without employing myelotoxic agents. Durable donor

chimerism was observed and the mechanism of tolerance was

interrogated with various gene knockout models. Observations

made through a series of experiments, which were subsequently

summarized by Wekerle and Sykes (80), were as follows:
1) In SOT, COSBL can prevent early rejections and sustain a

graft. However, long-term tolerance was a rarity if the

thymus was intact.

2) COSBL-resistant graft rejection was observed across all

models of SOT with CTLA4Ig and/or anti-CD154.

3) Bilateral tolerance can be established across major MHC-

mismatched HCT with CTLA4Ig and anti-CD154, if CD8+

T cells were depleted. This was not achievable with CD4+ T-

cell depletion, indicating the dependence on CD4+ T cells

for anergy-associated tolerance.

4) Thymic irradiation was not essential to establish long-term

tolerance, if CD8 depletion of the graft was carried out. The

peripheral clonal deletion of alloreactive T cells was deemed

more important.

5) Escape from the state of anergy was possible with either IL2

exposure or the alternative activation pathway of the

costimulatory pathway and forced entry into the cell cycle

pathway.

6) Establishment of anergy was abrogated if viral infection was

experienced during the induction of tolerance (100).
13 CTLA4Ig in HCT—the proof
of principle

The group from the Dana–Farber Cancer Institute carried out

the first clinical trial employing COSBL with CTLA4Ig. In a series of

in vitro experiments, the researchers demonstrated that in mixed-
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leukocyte reactions (MLRs), T-cell proliferation was inhibited by

over 90% if both CD80 and CD86 were blocked by either individual

antibodies or CTLA4Ig (101). Although the same was achievable

with CSA or the blockade of adhesion pathways, antigen-specific

anergy could only be established by COSBL. This was demonstrated

when T-cell proliferation remained muted on rechallenge to donor

APCs but not to third-party antigens for CTLA4Ig-treated cells, and

not for those exposed to CSA or adhesion blockade. They also

identified that the minimum time needed to achieve an anergic state

with CTLA4Ig in MLR conditions was 36 h. Donor precursor helper

T lymphocytes (pHTLs) were detected at 10–4 in HLA-matched

donors and one log higher in HLA-mismatched donors. Although

CSA reduced T-cell proliferation in MLR, it did not affect the

pHTLs. However, pHTLs were reduced below the critical threshold

for the alloreactivity of 10–5 by COSBL in both matched and

mismatched settings. A key observation was the absolute necessity

for allorecognition prior to COSBL, which was impaired in the

presence of CSA or adhesion blockade. Another critical observation

was the reversal of the state of anergy with continued exposure to

suprathreshold amounts of IL2. Thus, allorecognition, blockade of

both CD80 and CD86, and lack of signaling through common

gamma (Ɣ) chains via IL2, were deemed to be the prerequisites for

COSBL-based HCT (101). Based on these observations, the group

undertook a study on haploidentical HCT with alloanergized

marrow following myeloablative conditioning in 12 young

patients with acute leukemia, refractory (n = 7) or multiply

relapsed (n = 3) (102). The marrow was incubated for 36 h with

CTLA4Ig with irradiated host mononuclear cells and subsequently

infused unmodified along with a standard GVHD prophylaxis of

CSA/MTX. The median CD3+, CD4+, and CD8+ T cell counts were

16, 8, and 6 million/kg, respectively, with pHTL frequency having a

median value of 0.0005. Although the absolute number of T cells

and its subsets increased after incubation, the frequency of pHTL

reduced by three logs.

Only one patient had graft failure. One patient had grade 3

GVHD, with another two patients experiencing grade 2 gut GVHD,

which was responsive to steroids. Five early-non-relapse mortality

(NRM)) cases were observed in this heavily pretreated cohort. The

most notable fact was a low incidence of viral infections, along with

the rapid recovery of CD4+ T cells and immunoglobulin levels. The

proliferative response of engrafted T cells to recipient and third-

party antigens was monitored in a few patients after the

discontinuation of CSA. The alloresponse to the host was 6–12

times lower than the third-party response. In addition, antiviral T-

cell response was also detectable. This was the first demonstration of

successful establishment of antigen-specific anergy via COSBL and

preceded the landmark publication on megadose CD34-selected

haploidentical HCT by an Italian research group in 1998 (103). The

subsequent lack of enthusiasm in pursuing this approach might

seem baffling in retrospect, but the muted enthusiasm in pursuing

the parent molecule of CTLA4Ig among SOT immunologists might

have acted as a dampener. The same group reported on another 12

patients transplanted on this protocol one decade later (104). The

use of myeloablative conditioning in poor-risk older patients

accounted for a treatment-related mortality (TRM) in excess of

50%, even though the incidence of GVHD remained low,
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particularly in younger patients, who had a much lower mortality

as well. This experience goes on to highlight the complexity of a

HCT protocol, where success in one aspect of the procedure, that is,

the prevention of GVHD, can be overshadowed by the adverse

impact of other aspects, which were patient selection and regimen-

related toxicity (RRT) in this case. Nonetheless, the proof of

principle was there in the clinic that COSBL can effectively

induce anergy and prevent GVHD in HLA-MM HCT.
14 CTLA4Ig (abatacept)—from
rejection in SOT to approval in HCT

Abatacept received approval for treatment of rheumatoid

arthritis in 2005. Soon thereafter, based on the preceding

preclinical studies, Kean and colleagues adopted a schedule of

abatacept at 10 mg/kg on days 0, + 5, +15, and +30, as GVHD

prophylaxis along with conventional CSA/MTX. In 2013, the results

of the first trial on the use of abatacept in vivo in unrelated donor

(URD)-HCT in 10 patients with acute leukemia following

myeloablative conditioning were published (105). Four of these

were 8/8 HLA-matched and the rest were 7/8 HLA-matched. All

were engrafted, with two patients developing grade 2–4 acute

GVHD by 100 days and another patient after 100 days. All

patients were steroid responsive, and five developed cGVHD.

Two died of relapsed leukemia and another died of multiple

causes, partly contributed by cGVHD of the liver. Most

importantly, consistent peak and trough levels of abatacept were

achieved in this four-dose schedule, with no drug-related toxicity.

Only half of the patients developed cytomegalovirus (CMV)

reactivation, and definite instances of Epstein–Barr virus (EBV)

lymphoproliferative disease (LPD) were observed.

Buoyed by the results of the phase 1 study, establishing the

general feasibility and safety of abatacept, a phase 2 study (ABA2)

was carried out using the same schedule of GVHD prophylaxis in

both 8/8 and 7/8 HLA-matched URD-HCT (106). A total of 142

patients were randomized in the 8/8 HLA-matched cohort to

receive or not receive abatacept along with CNI/MTX. The

abatacept group had a 20% reduction in grade 2–4 acute GVHD

at 100 days (43.1% vs. 62.1%; p = 0.006) and 180 days (44.8% vs.

63.7%: p = 0.006). Severe aGVHD-free survival (SGFS) at 180 days

was 93.2% in the abatacept group (vs. 82%; p = 0.05), with an overall

survival of 74.3% at 2 years (vs. 64%; p = 0.15). Randomization in

the 7/8 HLA-matched cohort in this study was aborted due to

reluctance on the part of the participating centers to subject patients

with HLA-MM donors to conventional CNI/MTX prophylaxis, as

the expected rates of grade 3–4 GVHD and TRM were in excess of

35%–45%. Hence, for the 7/8 cohort, a single-arm open-label design

was adopted, with a comparator arm consisting of 127 age-matched

patients from the CIBMTR registry, who had received 7/8 URD-

HCT without ATG.

The outcomes in the 7/8 abatacept cohort were quite

exceptional in that no grade 3–4 aGVHD were witnessed in those

who received the study drug (n = 39), and 2.3% in the intention-to-

treat (ITT) analysis, compared with 30.2% in the comparator arm

(p < 0.001). This held true for all grades of aGVHD across all the
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study time points, translating to a better SGFS, TRM, and OS in the

7/8 abatacept group. Based on these encouraging results, abatacept

became the first drug to be approved for GVHD prophylaxis in

URD-HCT in December 2021. Furthermore, a post hoc analysis of

these trial data showed a reduced incidence of aGVHD and a

comparable survival in the 7/8 HLA-mismatched abatacept cohort

when compared with an 8/8-matched cohort who received only

CNI/MTX (107). In addition, an analysis of 50 patients not enrolled

in the ABA2 trial, but treated on the same protocol, yielded very

similar results (108) (Table 1).
15 Abatacept in HFD-HCT—
finding the perfect partner
for durable tolerance

HFD-HCT was attempted in the 1980s using standard GVHD

prophylaxis, with disastrous consequences (112). However, the

Perugia group established the feasibility of engrafting positively

selected CD34+ HSC at a megadose from HFD in patients following

intense myeloablation and immunoablation, with the near-
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complete elimination of GVHD occurring in mid-1990 (103).

Even though the proof of principle was established, very high

TRM was reported due to opportunistic infections resulting from

the complete absence of T cells in the graft and the extended

recovery of the adaptive immune system from the engrafted donor

cells. Although the first trial of a CTLA4Ig-induced alloanergized

graft took place around the same time, with a pattern of immune

recovery superior to that reported in the CD34 megadose trial, this

approach was not met with much acceptance (102). The downside

of non-selective removal of T cells, both naive and memory, was

shown to be detrimental to the overall outcome. Particularly, when

only a small fraction of T cells is actually alloreactive, the blanket

removal of all T cells seems to be overkill. Incubation with CTLA4Ig

in the presence of host APCs has shown that donor-specific

anergy can be achieved without interrupting the third-party

response (101).

As highlighted earlier, although PTCy had vastly improved the

outcome of HFD-HCT, concerns remained associated with its use

in children with non-malignant diseases and those at high risk of

relapse (25, 32). Introducing the same schedule of abatacept with

CNI/MTX, as was used in the ABA2 trial, was deemed inadequate
TABLE 1 Abatacept for GVHD prophylaxis in Malignant diseases.

Author
(Ref no)

Year/
Donor

Patients Disease Conditioning GVHD
prophylaxis

Engraftment/
median days

(range)

Acute
GVHD

Chronic
GVHD

Relapse NRM

Guinan EC et.
al. (102)

1999 /
HFD

12 Myeloid -3
Lymphoid -8
Others-1

MAC Abata-
alloanergised
BM/CNI/MTX

91%
21(14-24)

Gr II: 2
Gr III-IV:1
Overall:30%

mild-mod:1
severe: 0

1
(8.3%)

6
(50%)

Davies JK
et al. (104)

2008 /
HFD

24 Myeloid -8
Lymphoid
-14
Others-2

MAC Abata-
alloanergised
BM/CNI/MTX

90%
21 (13-29)

Gr II:3
Gr III-IV: 5
Overall:33%

mild-mod:1
severe: 0

4
(16.6%)

12
(50%)

Kaura DT
et al. (105)

2013 /
URD

10 Myeloid -7
Lymphoid -3

MAC- 6
RIC - 4

Abata/
CNI/MTX

100%
16(11-47)

Gr II: 2
Gr III-IV: 2
Overall:40%

mild-mod:4
severe: 2
Overall: 60%

2 (20%) 1
(10%)

Jaiswal et al.
(109)

2019/
HFD

30 Myeloid -14
Lymphoid
-16

MAC-30 Abata-DLI/
PTCy/CSA

100%
15(11-17)

Gr II: 0
Gr III-IV: 2
Overall:6.7%

mild-mod:5
severe: 0
Overall: 20%

7
(23.3%)

1
(4.5%)

Jaiswal et al.
(110)

2020 /
HFD

75 Myeloid -32
Lymphoid
-43

MAC-61
RIC - 14

Abata-DLI/
PTCy/CSA

100%
16(11-17)

Gr II: 2
Gr III-IV: 5
Overall:9.6%

mild-mod:9
severe: 1
Overall:15.3%

11
(15.7%)

3
(4%)

Jaiswal et al.
(111)

2019 /
HFD

12 Aggressive B
cell
lymphoma

RIC - 14 Abata-DLI/
PTCy/CSA

100%
15(12-18)

None mild-mod:2
severe: 0
Overall:16.6%

3/12
(25%)

None

Watkins B
et al. (106)

2021 /
URD
8/8
Cohort
7/8
Cohort

73
38

Myeloid -46
Lymphoid
-25
Others-2
Myeloid -25
Lymphoid
-10
Others-3

MAC-55
RIC - 18
MAC-28
RIC - 10

Abata/
CNI/MTX
Abata/
CNI/MTX

NA Gr II-IV:
44.5%
Gr III-IV:
6.8%
Gr II-IV:
39%
Gr III-IV:
0%

mod-severe:
44.6%
Overall:52%
mod-severe:
57.9%
Overall:62%

21%
7.9%

12.8%
16.7%

Raghunandan
S, et al. (108)

2023 /
URD

50 Myeloid -38
Lymphoid-8
others 4

MAC-27
RIC -23

Abata/
CNI/MTX

90% Gr II-IV
33%
Gr III-IV
6%

mod-severe:
51%
Overall:NA

NA 10%
frontie
Abata, Abatacept; BM, bone marrow; CNI, calcineurin inhibitor; CSA, cyclosporin; DLI, donor lymphocyte infusion; GVHD, graft, versus, host disease; Gr, grade; HFD, haploidentical family
donor; MAC, myeloablative conditioning; mod, moderate; MTX, methotrexate; NA, not available; NRM, nonrelapse mortality; PTCy, posttransplant cyclophosphamide; RIC, reduced intensity
conditioning; URD, unrelated donor.
rsin.org

https://doi.org/10.3389/frhem.2023.1243247
https://www.frontiersin.org/journals/hematology
https://www.frontiersin.org


Chakrabarti and Jaiswal 10.3389/frhem.2023.1243247
by our group for HFD-HCT employing peripheral blood stem cell

(PBSC) graft. Instead, we conceptualized the combination of

COSBL with PTCy along with sirolimus in HFD-HCT for NMD

patients. The rationale for this combination was as follows:
15.1 Abatacept was to be administered
to the patient in vivo prior to infusion of
the graft

This should be able to interrupt the primary costimulatory

CD28-B7 pathway and induce anergy in the large majority of

alloreactive T cells. However, COSBL-resistant T cells could

possibly escape this intervention; these could be CD28-negative

memory T cells (113, 114) or Th17-Teff cells (115), which are less

dependent on the CD28-B7 pathway. Such cells would proliferate in

response to the host’s alloantigens and vice versa in the next 72 h,

when the administration of PTCy would essentially take care of

COSBL-resistant alloreactive pathways. Given the large quantum of

T cells administered with an unmanipulated peripheral blood stem

cell (PBSC) graft, the synergistic efficacy of abatacept and PTCy

might be the ideal platform to selectively target the alloreactive T

cells in an HLA-MM HCT.
15.2 Establishment of anergy, as discussed
above, is not synonymous with tolerance

Anergy-induced hyperresponsiveness to donor antigen can be

abrogated by inflammatory milieu and ɣ-chain signaling (101),

which is typically present in the immediate post-conditioning

phase. Hence, the early and repeated administration of abatacept

for COSBL was deemed important in maintaining a continued state

of anergy. Equally important is the need to avoid any early viral

reactivation or acquired viral infections, which could also abrogate

the achievement and maintenance of anergy (100).
15.3 Ex vivo alloanergization with CTLA4Ig
or the administration of abatacept in vivo
with CNI/MTX did not reduce the
incidence of cGVHD

This clearly indicates that the early anergy achieved with

COSBL does not translate to long-term anergy or tolerance when

used in combination with CNI. The engagement of TCR and the

MHC allopeptide, that is, allorecognition, is impeded by CNI.

However, allorecognition is a prerequisite to successful anergy

following COSBL. Therefore, CNI in combination with CTLA4Ig

was associated with a lack of durable tolerance in preclinical studies,

explaining the lack of impact of COSBL with CNI on cGVHD (116,

117). On the other hand, preclinical models have amply

demonstrated the synergy between mTOR inhibition with

sirolimus and COSBL in the achievement of durable tolerance

without thymic irradiation (118, 119). Pilat and Wekerle

demonstrated in a mismatched mice model that the addition of
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sirolimus to CTLA4Ig can override COSBL-resistant rejection.

More importantly, the addition of sirolimus rendered the CD40

pathway redundant, allowing mixed chimerism and the acceptance

of fully mismatched cardiac allograft. This was primarily driven by

the sirolimus-induced upregulation of the Treg pathway (120).

Sirolimus can induce FoxP3 expression on naive CD4+ T cells in

the periphery through both dependent- and independent-TGFb-
SMAD3 pathways (14). In addition, some evidence exists regarding

protection against herpes viruses when this combination was

employed (121). We employed this principle in our protocol,

combining sirolimus with abatacept and PTCy. In addition,

abatacept was planned for prolonged admission, that is, in a 4-

weekly schedule for 6 months, with sirolimus tapering after

9 months.
15.4 Finally, it is necessary to acknowledge
that tolerance following HCT is driven by
regulatory pathways

One of the reasons for not being able to induce tolerance in a

COSBL-CNI-based protocol is the downregulation of Tregs (122,

123). On the other hand, sirolimus has a salutary effect on Tregs,

both in terms of number and function (124–126). Although the

conventional wisdom in SOT is that CTLA4Ig has a negative impact

on tTregs, this is less than linear in the setting of HCT, which is

primarily related to the amount of Tregs infused in the graft and its

lineage plasticity. In the presence of TGFb, abatacept has been

shown to promote T-cell suppression, which could be translated in

the setting of HCT as discussed below. Abatacept with sirolimus has

the potential to convert peripheral CD4+CD25− T cells to

CD4+CD25+FoxP3+ Tregs, further augmenting the regulatory

network (127). In addition, PTCy seems to critically spare the

Tregs (128), accounting for further synergy in the combination of

abatacept, PTCy, and sirolimus. Hence, in contrast to AIDs

and SOT, finding the right partner for abatacept might actually

promote and induce long-term tolerance via a Treg-driven

regulatory pathway.

The above considerations translated to the clinical protocol

combining abatacept, PTCy, and sirolimus (AbaCyS) for HFD-

HCT in NMD patients with a PBSC graft (Figure 1A).
16 Abatacept, PTCy, and sirolimus
(AbaCyS)—translation into the clinic

The first study on extended abatacept, PTCy, and sirolimus was

reported by our group in 2016 (129). In 10 patients with severe

aplastic anemia (SAA), this protocol was associated with 90% OS

and 10% incidence of GF, aGVHD, and cGVHD. Similar results

were obtained in a pilot study on 10 patients with thalassemia and

sickle cell anemia, with an extremely low incidence of complications

(i.e., < 10%) (130). In addition, the significant attenuation of PTHPS

was observed. In an extended study on 40 patients, with a median

follow-up of 4.4 years, NMD patients treated on a AbaCyS protocol

showed a GVHD and event-free survival (GEFS) of 82%, with
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aGVHD in 2.6%, and cGVHD in 14.5% (131). The incidence of

both CMV and adenovirus (AdV) reactivation was low, with a

NRM of 5%. The quality of life was excellent for all patients at 1 year

and beyond, with late infections witnessed almost exclusively in

patients with cGVHD. In a multicenter retrospective analysis of

children and young adults with SAA, a comparison of 15 patients

receiving AbaCyS with 64 patients receiving standard PTCy found

lower incidences of TRM, aGVHD, and cGVHD, and improved

GEFS and OS, in the AbaCyS cohort as compared with the standard

PTCy group (132).

Following these studies, a similar extended schedule of

abatacept was employed in URD-HCT for sickle cell disease,

resulting in the reduction of cases of severe GVHD, both acute

and chronic, with improved survival (133). However, the protocol

employed abatacept in combination with CNI, and the overall

incidences of aGVHD and cGVHD were 28.6% and 57%,

respectively, probably highlighting the failure of the combination

of CNI and abatacept to induce tolerance, as witnessed with the

AbaCyS protocol. The same protocol in 10 children with bone
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marrow failure has been reported on recently, with very similar

results (134) (Table 2).
17 Early and sustained
reconstitution of Tregs—
the key to GVHD-free survival

Immune reconstitution was studied quite extensively in the

patients on the AbaCyS protocol, and the findings can be

summarized as follows:
17.1 T-cell recovery was not affected with
the AbaCyS protocol.

CD4+ T cell recovery to over 200 cells/mL was achieved by

3 months post HCT, with predominantly memory phenotype,

suggesting peripheral expansion of infused donor cells, followed
A

B

FIGURE 1

(A) Abatacept, PTCy, Sirolimus (AbaCyS) protocol for Non-malignant Disease. (B) Abatacept-DLI, PTCy, Cyclosporine (AbaDCyC) protocol for
Malignant Disease.
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by the subsequent recovery of naive T cells, both CD4+ and CD8+ T

cells (130, 131). The more rapid recovery of both CD4+ and CD8+ T

cells was seen in patients with an ex vivo CTLA4Ig-alloanergized

graft. In the ABA2 study on URD-HCT, CD4+ T cell recovery was

delayed in the initial months but was comparable to the standard

CNI/MTX group at 3 months and beyond (106).
17.2 Contrary to the ABA study, the
recovery of Tregs was much more rapid
with the AbaCyS protocol

The percentage of CD4 + 25 + 127dimFoxP3+ T cells was

significantly higher in the AbaCyS group at days +30, +60, and +90,

when compared with the non-abatacept cohort in the first 10

patients (129). This trend was sustained in the larger cohort of 40

patients (131). Furthermore, earlier and better Treg recovery

correlated with a lower incidence of chronic GVHD.
17.3 Davies and Guinan reported
on the effect of CTLA4Ig-alloanergized
HFD-HCT on recovery of Tregs in five
long-term survivors

Similar to the AbaCyS study, the authors showed a rapid and

sustained rise in Tregs (135). In addition, they documented in the

MLR assays that alloanergization in vitro increased the frequency of

Tregs, which suppress Teff proliferation. In addition, it was also

demonstrated that the suppression of the alloresponse of donor-

derived Tregs against the host was antigen specific. Both of these

studies, therefore, establish the primacy of abatacept in augmenting

donor Tregs in vitro and in vivo.
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Thus, early and sustained donor-specific anergy was possible

with the AbaCyS protocol in NMD patients undergoing HFD-HCT.

The long-term survival without cGVHD was possibly influenced by

the early expansion of infused Tregs from the donor followed by

sustenance of high levels of Tregs, inducing donor-specific

tolerance, which was not witnessed with the abatacept- and CNI-

based protocols.
18 Can intravenous immunoglobulin
enhance the suppressive effect
of abatacept?

TGFb and Tregs have been shown to be critical in maintaining

the suppressive effects of CTLA4Ig in murine models. In addition,

TGFb is critical in diverting naive T cells down the Treg pathway

following antigen exposure (127, 136–138). In fact, in the absence of

TGFb and abundance of IL6, even CD4+CD25+ T cells can

differentiate to Th17 cells (136). Thus, we hypothesized that the

efficacy of CTLA4Ig in vivo could be optimized in the presence of

TGFb. Unfortunately, TGFb is not commercially available for

clinical use, but has been shown to be present in substantial

amounts in intravenous immunoglobulin (IVIG) preparations,

and increased levels of different isoforms of TGFb were

documented immediately following administration of IVIG in

children with AIDs (139). In addition, IVIG has been shown to

upregulate Tregs either directly or via the induction of tolerogenic

DCs (140, 141).

Based on these considerations, we have modified the AbaCyS

protocol to administer IVIG at 500 mg/kg 6 hours before abatacept.

The results of this protocol are still pending, but no short-term

adverse effects have been reported so far.
TABLE 2 Abatacept for GVHD prophylaxis in Non-Malignant diseases.

Author
(Ref
no)

Year /
Donor

Patients Disease Conditioning GVHD pro-
phylaxis

Engraftment/
median days

(range)

Acute
GVHD

Chronic
GVHD

Graft
Failure

NRM

Jaiswal
et al.
(129)

2017 /
HFD

10 SAA RIC Abata-
Extended/
PTCy/
Sirolimus

9/10
14 (12-17)

Gr II: 0
Gr III-IV:1
Overall:10%

mild-mod:0
severe: 1
Overall:12.5%

1 (10%) 1
(10%)

Jaiswal
et al.
(130)

2020 /
HFD

10 TM-5
SSD-5

MAC Abata-
Extended/
PTCy/
Sirolimus

9/10
15 (14-20)

None None 1 (10%) 1
(10%)

Ngwuba
A, et al.
(133)

2021 /
URD

7+7 SSD RIC Abata-
Extended/
CNI/MTX

13/14
14 (10-24)

Gr II-
IV:28.6%
Gr III-IV:
7%

mild-mod:6
severe: 2
Overall: 57%

1 (7.1%) None

Stenger
E.O et al.
(134)

2023 /
URD

10 Inherited
Bone
marrow
failure

RIC Abata/
CNI/MTX

9/10 Gr II-
IV:30%
Gr III-IV:
0%

mild-mod:4
severe: 0
Overall: 40%

2 (20%) 1
(10%)
frontie
Abata, Abatacept; BM, bone marrow; CNI, calcineurin inhibitor; CSA, cyclosporin; DLI, donor lymphocyte infusion; GVHD, graft, versus, host disease; Gr, grade; HFD, haploidentical family
donor; MAC, myeloablative conditioning; mod, moderate; MTX, methotrexate; NA, not available; NRM, nonrelapse mortality; PTCy, posttransplant cyclophosphamide; RIC, reduced intensity
conditioning; SAA, severe aplastic anemia; SSD, sickle cell disease; TM, thalassemia major; URD, unrelated donor.
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19 Abatacept and relapse in malignant
diseases—a twist in the tale

In contrast to other interventions, which result in the non-

selective depletion of T cells, abatacept has not been associated with

increase in the relapse risk. In the initial cohort of patients

undergoing HFD-HCT with CTLA4Ig-alloanergized graft (102),

three out of four patients in second or third complete remission

(CR) remained disease free. In those transplanted with persistent

disease, only one experienced disease progression and two remained

in long-term remission. The rest of the five died of infections or

RRT. Interestingly, autopsies conducted on four of them did not

show evidence of residual leukemia. This trend was maintained in

the extended cohort of 24 patients reported a decade later (104).

In the ABA study of 2013, only 2 out of 10 patients with acute

leukemia had relapsed (105). In the extended ABA2 trial, only 7.9%

patients in the ABA-ITT arm of the 7/8 cohort relapsed compared

with 21.4% in the comparator group (106). In the 8/8 group, the

relapse rate was 21.5% in the abatacept group, compared with 23.6%

in the placebo group. The effect of abatacept on relapse could be

corroborated by preclinical studies showing the abrogation of GVL

effect in murine models by blocking the CD40-40L pathway, but

CTLA4Ig-mediated COSBL left the GVL effect intact (142).

Thus, these clinical studies uniformly concluded in an

understated manner that the relapse risk was not increased with

the use of abatacept. However, our group had a different

interpretation of these findings.
20 CTLA4Ig (abatacept) and natural
killer cells—an affair lost in serendipity

While the researchers working on COSBL in SOT had focused

largely on COSBL-resistant T-cell subsets, those indulging in

preclinical HCT models made a different observation. CTLA4Ig

was employed as a part of non-myeloablative protocols in HLA-

MM models. The group from Seattle observed that CTLA4Ig with

200 Gy radiation was able to overcome the T-cell barrier in

haploidentical canine pairs, but NK cells remained unaffected,

resulting in eventual rejection (143). In murine models, when

COSBL was combined with non-myeloablative doses of busulfan,

donor engraftment failed to occur without large doses of BM cells.

However, depletion of NK cells in the host with the anti-NK1.1

antibody resulted in a striking increase in the stable engraftment of

donor cells. Further assays showed no involvement of the CD28 and

CD40 pathways in NK cell cytotoxicity and the blocking of LFA1

was associated with reversal of NK-mediated rejection (144). These

studies clearly indicate that NK cells were resistant to CTLA4Ig-

mediated suppression.

However, the lack of an increase in malignancies observed in

patients receiving CTLA4Ig for AIDs, prompted a group from

China to explore the underlying mechanism, if any (145). They

showed that CTLA4Ig reduced tumor metastasis and prolonged

survival in B16 mice melanoma models. Interestingly, this effect was

abrogated by the NK-cell depletion of the host mice. CTLA4Ig
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enhanced the antitumor effect of NK cells in vitro with increased

expression of CD86, which ligates with CTLA4Ig. In addition, the

antitumor cytotoxicity of NK cells was blocked by blocking CD86.

The effect of CTLA4Ig on NK cells, which thus far was perceived to

be only a sparing effect, could actually be a potentiator of NK-

cell cytotoxicity.
21 Abatacept-dissociating T-cell-
mediated alloreactivity from NK
cell cytotoxicity

NK cells are probably the most potent antitumor cells, apart

from antigen-directed CTLs. NK cells are endowed with a plethora

of activating receptors, which can bind to a diverse array of ligands,

many of which are upregulated with stress, viral infections, or the

malignant transformation of cells. Due to such an extensive armory

of activating receptors and the ability to mount direct cytotoxic and

cytolytic attack against target cells, NK cells are kept under

inhibitory control via the interaction of inhibitory KIRs and

corresponding self-MHC class 1 ligands.

GVL was conceived as a T cell-mediated effect, until the Perugia

group demonstrated a potent antileukemia effect mediated via NK

cells following CD34-selected HFD-HCT. This was primarily

observed in patients with myeloid leukemia receiving grafts from

donors who were mismatched at NK cell KIR ligands in the GVH

direction. This is called NK-ligand mismatch or NK-alloreactivity,

which is demonstrable only in the presence of HLA class 1-

mismatched HCT. NK cells are the first lymphocyte subset to

recover after an allogeneic HCT. In contrast to T cells, NK cells

do not drive an organ-directed GVH reaction. In fact, the

cytotoxicity is directed toward the hematopoietic compartment.

Thus, NK cells are uniquely placed to mount a GVL response

without invoking generalized alloreactivity. Following HCT with a

T cell-replete graft, NK cells surge briefly at around 3–4 weeks post

HCT. However, following a T-cell-depleted (TCD) HCT, NK cells

remain the dominant lymphocyte population until T-cell recovery.

In a TCD HCT, post-transplant immunosuppression is generally

not necessary. Under these circumstances, in the absence of T cells,

NK cells gain a unique opportunity to proliferate and exert

cytotoxicity against leukemia cells, a phenomenon that is not

witnessed in T-replete HCT.

However, NK cells traverse through stages of maturation and

can only deliver the optimum GVL effect if they have achieved a

fully mature state with CD56dimCD16bright phenotypes and if they

are released from inhibitory control by losing the expression of

NKG2A receptors with the expression of requisite activating and

inhibitory molecules in the right cytokine milieu. Despite NK ligand

mismatch, donor-derived NK cells seemed to lack these capabilities

in the first few months after HCT, as observed following CD34-

selected HFD-HCT. Thus, the mere presence of NK cells is not

sufficient for a strong GVL effect. In addition, immature CD56bright

NK cells could promote T-cell-mediated alloreactivity in the

context of a T-replete HLA-MM HCT. We thus hypothesized

that the serendipitous sparing and potentiation of NK cells by
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abatacept while abrogating T-cell-mediated alloreactivity might

provide a unique opportunity to explore the NK cell-mediated

GVL effect without invoking the wrath of GVHD.

Abatacept was shown to anergize alloreactive T cells in both

preclinical and clinical studies, without impeding response against

pathogens or third-party antigens and inducing long-term tolerance

in combination with PTCy and sirolimus in NMD patients.

However, the tolerance-inducing protocol, AbaCyS, was not

deemed to be ideal in HCT for advanced malignancies, where a

strong GVL effect would be necessary. It was contemplated that it

might be best to optimize the GVL effect via the unique NK cell-

sparing/-promoting property of abatacept and abrogate T-cell-

mediated alloreactivity through COSBL. While designing the

abatacept-based protocol for malignant diseases, we deliberated

on the following:
Fron
1. Sirolimus adversely affects NK cell proliferation and

cytotoxicity (146, 147). CNI, on the other hand, does not

restrict the NK cell pathway. Hence, if NK-mediated GVL

was to be optimized, sirolimus needs to be replaced with

CNI. This would be carried out with full cognizance of the

fact that the incidence of cGVHD might increase as

compared with the AbaCyS protocol. In ex vivo

experiments, Comoli and colleagues demonstrated that

the combination of CTLA4Ig and low-dose CSA is able

to induce anergy without compromising antiviral and

antileukemia-specific CTLp. However, the NK cell-

mediated antileukemia effect was not looked into in this

study. Thus, based on these considerations, CSA was

planned at a lower dose targeting a trough level of 50–

150 ng/mL, with tapering planned at day +60.

2. The choice of the third agent, if abatacept and CNI were to

be combined, would be either MTX or MMF, if one

considers the ABA2 study. However, the success of the

AbaCyS protocol prompted us to consider abatacept and

PTCy as the backbone of the protocol, along with

cyclosporine as the CNI of choice. Both MMF (146) (not

MTX) and PTCy would affect NK cell proliferation (148),

but the effect of PTCy would be limited to the early post-

HCT period alone. PTCy eliminates the majority of

proliferating NK cells immediately after its infusion,

resulting in immature NK cells repopulating the NK cell

pool in the early post-HCT period, compromising the NK

cell-mediated GVL effect (148). MMF significantly

attenuates both NK cell proliferation and cytotoxicity

in a continuous and protracted manner, seriously

compromising early NK cell recovery. It might be apt to

state that the perseverance of the transplant community

with CNI/MTX could be attributed to the salutary impact

on disease relapse. Both the agents at lower doses spare NK

cells in an understated manner, which might contribute to

the early GVL effects.

3. Thus, to override the adverse impact of PTCy and optimize

NK cell-mediated GVL effect early after HCT, we developed

the concept of “CTLA4Ig (abatacept)-primed donor

lymphocyte infusion (DLI)”, where donor lymphocytes
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capped by CD3+ T-cell dose are administered 6 h

following the administration of abatacept. The dose

capping and scheduling of DLI were developed based on

earlier studies on unmanipulated DLIs aliquoted and

cryopreserved from a granulocyte colony-stimulating

factor (G-CSF)-mobilized PBSC collection (mDLI) and

CD56+DLI following HFD-HCT (149, 150). Twenty-one

patients with relapsed/refractory myeloid leukemia were

administered mDLI at days +21, +35, and +60, with

significant improvement in DFS of 61.9% at 2 years,

compared with one of 25% in those on an identical

protocol without DLI. This was not associated with an

increase in aGVHD. However, cGVHD was observed in

41% of patients in the mDLI group. In a pilot study on 10

patients with relapsed/refractory myeloid leukemia,

CD56+DLI isolated from a lymphapheresis product was

administered on day +7 (150). This resulted in excellent NK

cell reconstitution. Despite the presence of CD3+CD56− T

cells up to 1 × 106/kg, no acute GVHD grade 2–4 was

observed. Based on the observations from these studies,

abatacept-DLI was planned for days +7, +21, and +35. The

first dose on day +7 was aimed at replenishing NK cells in

the window of a PTCy-induced IL15 surge (151) and aimed

to achieve the maximum NK-GVL effect at the peak of

lymphopenia and minimum tumor burden.
The above considerations resulted in a protocol (AbaDCyC)

consisting of abatacept on day 0; abatacept with DLI on days +7, +21,

and +35; and PTCy on days +3 and +4, along with low-dose, short-

course CSA, from day +5 to day +60 (Figure 1B).
22 AbaDCyC (CTLA4Ig-primed DLI)—
realizing the promise of dissociating
GVHD and GVL?

In the first 30 patients with advanced leukemia treated on this

protocol, the incidences of aGVHD, cGVHD, and NRM were 6.7%,

21%, and 4.5%, respectively, with a relapse risk (RR) of 23.3% and

an OS of 79% at 18 months (109). Almost all patients received the

day +7 dose of DLI without any acute toxicity. The pattern of early

mature NK cell recovery mimicked that observed with CD56+DLI.

In addition, early surges of CD56dim16+ NK cells with lower levels

of NKG2A expression were associated with a lower relapse rate.

Interestingly, CD86 was upregulated on mature NK cells in this

cohort, suggesting a direct effect of CTLA4Ig on NK cells.

A further 75 patients receiving AbaDCyC were compared with

50 patients receiving mDLI (110). Acute and chronic cases of

GVHD in the AbaDCyC group were 9.6% and 15.3%,

respectively, compared with 18.8% and 36.5%, respectively, in the

mDLI group. Both NRM (4% vs. 14.4%) and RR (15.7% vs. 31.1%)

were lower in the AbaDCyC CTLA4Ig-DLI group. Distinct patterns

of immune recovery were observed in the two groups. Although an

early and sustained recovery of T-cell subsets correlated with a

reduced RR in the mDLI group, this correlated with mature NK cell

recovery in the AbaDCyC group. It is worth noting that the
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hallmark of NK cell recovery after both PTCy and CD34-selected

HFD-HCT has been a distinctly immature phenotype with a high

level of expression of the inhibitory receptor, NKG2A (148, 152).

NK cell recovery after abatacept-DLI, on the other hand, was

marked by the early recovery of CD56dimKIR+NKG2Alow

phenotypes. Early T-cell recovery in the AbaDCyC group was

characterized by the dominance of memory phenotypes. The

same trend was observed in 12 patients with relapsed/refractory

lymphoma treated on this protocol (111). No instances of aGVHD

were reported, with only two patients developing mild-to-moderate

GVHD. The DFS at 2 years was 75%.

Another notable observation was a superior recovery of Tregs in

the AbaDCyC cohort and this did not adversely affect the RR. In

addition, there was the rapid and sustained recovery of

NKG2C+NKG2A-adaptive NK cells (ANK), which expands in

response to CMV infection in a normal physiological state (153).

These ANK cells have been shown to be associated with a reduced

RR of leukemia by Miller and colleagues (154). Similar observations

were made in the AbaDCyC cohort, albeit with a more prompt and

greater number of these cells than previously observed.

Another observation from these studies with AbaDCyC in

HFD-HCT relates to the lower incidence of cGVHD than that

reported in patients receiving Abata-CNI/MTX following URD-

HCT (106, 110). The use of mDLI following PTCy was associated

with a higher incidence of cGVHD than the conventional PTCy

protocol (149). However, this was not observed in the AbaDCyC

cohort, where cGVHD was strongly associated with lower numbers

of ANK cells and vice versa (155). The association between

NKG2C+ANK cells and reduced GVHD has been reported earlier

(156). However, the mechanistic explanation for this phenomenon

remains unclear. One explanation could be the possible coexistence

of Tregs and ANK cells in this protocol. In contrast to conventional

NK cells, ANK cells are not downregulated by Tregs via IL37 (157).

Thus, both Tregs and ANK cells can rapidly reconstitute, with Tregs

offering protection from T cell-mediated alloreactivity and ANK

cells mediating a sustained GVL effect. Further studies are ongoing

to understand the mechanistic pathway behind the bonhomie of

ANK cells and Tregs in the context of HFD-HCT receiving

AbaDCyC (CTRI : REF/2021/08/046552), and these might herald

a paradigm shift in our approach to dissociation of GVHD and

GVL (Figure 2).
23 Abatacept has arrived—but
questions remain

Although the incidence of aGVHD was reduced in the URD-HCT

and HFD-HCT groups, we observed certain disconcerting patterns in

cases of severe aGVHD, as and when it happened and however rare it

might be. The onset of aGVHD was early (by day +30), severe, and

restricted to the gut. This has been alluded to by the group using

CTLA4Ig-alloanergized grafts and was not discussed in the ABA2

study. The reason for selective trafficking of COSBL-resistant

alloreactive T cells to the gut remains unclear at this time. One of
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the observations has been severe infective enterocolitis during the early

post-HCT period, in those who went on to develop severe gut GVHD.

This might instigate both the mobilization of alloreactive donor T cells

to the gut and the abrogation of COSBL-induced anergy. Another

hypothesis is that COSBL-resistant T cells are most likely of Th17

lineage, which has an inherent propensity for trafficking to the gut.

However, if this pattern is consistently observed, exploration of the

mechanistic pathways and early biomarkers would be warranted.

In this context, we analyzed the influence of immunogenetic

factors on the outcome of 136 patients undergoing HFD-HCT on

the AbaDCyC protocol (158). The heterozygous deletion of KLRC2

(the gene encoding for NKG2C) in the donor was associated with a

higher incidence of aGVHD and NRM.

Another interesting observation is that derived from the

pharmacokinetics of abatacept in the ABA2 study (159). A trough

level of less than 39 mg/mL after the first dose of abatacept

correlated with a higher incidence of aGVHD grade 2–4. Those

with higher trough levels of abatacept had a significantly lower

incidence of aGVHD without any adverse impact on relapse or

viral reactivations.

Based on the above observations, the following questions need

to be addressed:
• Should abatacept dosing be guided by trough levels after

the first dose, as suggested by the exposure response

observation from the ABA2 study? Alternatively, should a

higher dose be recommended for those deemed to be at a

higher risk of aGVHD, as higher trough levels were not

associated with serious side effects?

• Should belatacept be explored in HCT? If so, then how and

when? We feel the time is ripe for randomized studies

comparing belatacept and abatacept in both NMDs and

malignant diseases.

• Should COSBL for other pathways, such as CD40-CD154 or

OX40-OX40L, be explored in combination with abatacept

to address COSBL-resistant GVHD in NMD patients,

instead of PTCy?

• Should we refine donor selection criteria for abatacept-

based HFD-HCT, as suggested in a recent study (158)?
24 Conclusion

Five decades of allogeneic HCT have been based on certain

basic principles established in the canine experiments carried out by

Thomas and colleagues. However, GVHD remains a constant

nemesis thwarting the progress of allogeneic HCT. Although

CNI/MTX and variations thereof have been the cornerstone of

GVHD prevention, it has never been enough, particularly for

alternative-donor HCT. Attempts at breaking the glass ceiling

have ranged from T-cell-directed serotherapy and graft

manipulation, to the simple yet elegant concept of PTCy. COSBL

with abatacept has finally found its way to the bedside after decades
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of preclinical prevarications, setting a new paradigm for the

prevention of GVHD. The safety profile of abatacept in the

context of HCT, coupled with its unique effect on NK cells and

Tregs, open up new avenues for expanding the scope of allogeneic

HCT, particularly from HLA-MM donors. Despite COSBL with

abatacept providing a new direction for the simultaneous

prevention of GVHD and maintenance of a GVL effect, the final

destination remains distant. The challenge lies in our understanding

and flexibility in innovating strategies to optimize COSBL and

choosing the right partners for abatacept based on the disease

and donor. What is most important, however, is the willingness to

adapt to shifting paradigms.
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