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Constructing a novel clinical
indicator model to predict the
occurrence of thalassemia in
pregnancy through machine
learning algorithm
Yaoshui Long † and Wenxue Bai*†

Department of Clinical Laboratory, The Second People’s Hospital of Jiangjin District,
Chongqing, China
Thalassemia is one of the inherited hemoglobin disorders worldwide, resulting in

ineffective erythropoiesis, chronic hemolytic anemia, compensatory

hemopoietic expansion, hypercoagulability, etc., and when a mother carries

the thalassemia gene, the child is more likely to have severe thalassemia.

Furthermore, the economic and time costs of genetic testing for thalassemia

prevent many thalassemia patients from being diagnosed in time. To solve this

problem, we performed least absolute shrinkage and selection operator (LASSO)

regression to analyze the correlation between thalassemia and blood routine

indicators containing mean corpuscular volume (MCV), mean corpuscular

hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), and

red blood cell (RBC). We then built a nomogram to predict the occurrence of

thalassemia, and receiver operating characteristic (ROC) curve was used to verify

the prediction efficiency of this model. In total, we obtained 7,621 cases,

including 847 thalassemia patients and 6,774 non-thalassemia. Among the 847

thalassemia patients, with a positivity rate of 67.2%, 569 cases were positive for a-
thalassemia, and with a rate of 31.5%, 267 cases were positive for b-thalassemia.

The remaining 11 cases were positive for both a- and b-thalassemia. Based on

machine learning algorithm, we screened four optimal indicators, namely, MCV,

MCH, RBC, and MCHC. The AUC value of MCV, MCH, RBC, and MCHC were

0.907, 0.906, 0.796, and 0.795, respectively. Moreover, the AUC value of the

prediction model was 0.911. In summary, a novel and effective machine learning

model was built to predict thalassemia, which functioned accurately, and may

provide new insights for the early screening of thalassemia in the future.
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1 Introduction

Thalassemia, a prevalent monogenic disease worldwide, leads to

hemolytic anemia due to impaired globin synthesis (1, 2). It is

particularly prevalent in regions such as South Africa, the Middle

East, and Southeast Asia, as well as in low- and middle-income areas

like coastal cities in southern China and rural areas in western China.

China bears the highest burden of thalassemia globally, with

approximately 30 million individuals affected by thalassemia-related

mutations and 3 million suffering from moderate to severe forms,

posing significant challenges to families and society (3–5). Due to the

autosomal recessive inheritance pattern of thalassemia, parents who are

asymptomatic can still have children affected by thalassemia. When

both parents carry the thalassemia gene, there is a substantial likelihood

of their child developing severe thalassemia, which typically necessitates

lifelong blood transfusions and is accompanied by various

complications. This imposes a significant burden on affected children,

their families, and society. Consequently, early detection of thalassemia

during pregnancy assumes paramount importance. Existing approaches

for thalassemia screening and diagnosis encompass osmotic fragility

tests, assessment of red blood cell (RBC) smears, identification of

inclusion bodies, evaluation of red blood cell indices, hemoglobin

electrophoresis, high-performance liquid chromatography (HPLC),

and genetic testing (6, 7). However, the cost and time associated with

genetic testing often hinder timely diagnosis for many thalassemia

patients. Conversely, blood routine indicators play a crucial role in the

early identification of thalassemia due to the widespread availability of

blood routine tests and the ability to distinguish different types of

anemia based on red blood cell morphology (8, 9).

In this study, we analyzed the genetic test and blood routine results

of 7,621 pregnant women being tested for thalassemia in the Jiangjin

area of Chongqing from 2018 to 2022. Additionally, we employed a

machine learning model to investigate the predictive value of blood

routine indicators for thalassemia. The goal was to offer novel strategies

for the early diagnosis, genetic counseling, and treatment of

thalassemia in pregnant women within the Chongqing region.
2 Materials and methods

2.1 Patients

We conducted a retrospective study on thalassemia patients

who were pregnant in the Jiangjin District, focusing on prenatal

screening. From January 2018 to December 2022, blood routine and

genetic tests for thalassemia were performed for the first time. After

removing duplicates and cases with missing key information, a total

of 7,621 cases were included in our analysis. This study received

approval from the Medical Ethics Committee of The Second

People’s Hospital of Jiangjin District, Chongqing.
2.2 Blood routine index test

The Sysmex XN-1000 automated blood cell analysis system

along with its accompanying reagents were utilized to measure
Frontiers in Hematology 02
various hematological parameters, including red blood cell count

(RBC), hemoglobin level (Hb), hematocrit level (HCT), mean

corpuscular volume (MCV), mean corpuscular hemoglobin

(MCH), mean corpuscular hemoglobin concentration (MCHC),

and the standard deviation of red cell volume distribution width

(RDW-SD).
2.3 Genetic testing for thalassemia

In our study, we employed polymerase chain reaction (PCR) in

combination with diversion hybridization to detect various types of

mutations and deletions associated with a-thalassemia and b-
thalassemia. Specifically, we targeted three deletion types of

a-thalassemia (i.e., –SEA, -a3.7 and -a4.2), three mutation types

of a-thalassemia (CS, QS, and WS), as well as 17 mutation types of

b-thalassemia [-28(A-G), -29(A-G), -30(T-C), -32(C-A), CD14/15

(+G), CD17(A-T), CD27/28(+C), CD31(-C), CD41/42(-TCTT),

CD43(G-T), CD71/72(+A), IVS-I-1(G-T,G-A), IVS-I-5(G-C),

IVS-II-654(C-T), bE(G-A), CAP(A-C, A-AAAC), and Int(T-G)].
2.4 Model establishment

Data collation was conducted using Microsoft Excel (RRID :

SCR_016137). The R Project for Statistical Computing (RRID :

SCR_001905) was utilized for model establishment, training,

verification of factors associated with hematological indicators,

and thalassemia prediction. The samples were randomly divided

into two parts: a training set and a validation set. The training set

consisted of Type 1 [IVS-II-654 (C-T), 55 cases], Type 2 (–SEA/aa,
186 cases), Type 3 (-a3.7/aa, 287 cases), Type 4 [CD17 (A-T), 95

cases], and Type 5 [CD41-42 (-TCTT), 62 cases]. To identify the

optimal indicators for the prediction model, least absolute

shrinkage and selection operator (LASSO) regression was

performed via the R package “glmnet”. The veen plot was

visualized by the R package “ggVennDiagram”. The predictive

accuracy of the model was verified using the receiver operating

characteristic (ROC) curve by the R package “pROC”. Furthermore,

a nomogram was constructed to establish the scoring criteria for the

corresponding variables based on the coefficients of the LASSO

regression model using the R package “rms”. The selected variables

were plotted on the variable axis, and a straight line was drawn to

determine the score for each variable value. Using the training set,

the blood routine data were imported, and the scores corresponding

to each variable were assigned. The total score was calculated by

summing the scores of all variables. These data were then inputted

into the linear predictor to predict the risk of thalassemia.
3 Results

3.1 Positive genetic types of thalassemia

Among the 7,621 cases analyzed, a total of 847 were identified

as positive for thalassemia, resulting in a positivity rate of 11.11%.
frontiersin.org
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Specifically, 569 cases were positive for a-thalassemia, with a rate

of 7.47%, while 267 cases were positive for b-thalassemia, with a

rate of 3.50%. Furthermore, there were 11 cases that tested positive

for both a- and b-thalassemia, as well as other combined

genotypes, accounting for 0.14% of the cases. Compared to

normal pregnant women, individuals with thalassemia exhibited

decreased levels of hemoglobin (HGB), mean corpuscular volume

(MCV), mean corpuscular hemoglobin (MCH), mean corpuscular

hemoglobin concentration (MCHC), and increased red blood cell

distribution width-standard deviation (RDW-SD) and red blood

cell distribution width-coefficient of variation (RDW-CV). These

findings are consistent with the clinical manifestations of small

cell hypochromic anemia. Notably, the changes observed in

individuals with b-thalassemia and a- combined b-thalassemia

genotypes were more pronounced than those seen in individuals

with a-thalassemia (as shown in Table 1).
3.2 Analysis of the relevant coefficient
of thalassemia

To identify the variables with the highest correlation to

thalassemia, a LASSO prediction model was established using

the data from the training set, which consisted of five thalassemia

genotypes, namely, Type 1 [IVS-II-654 (C-T), 55 cases]

(Figure 1A), Type 2 (–SEA/aa, 186 cases) (Figure 1B), Type 3

(-a3.7/aa, 287 cases) (Figure 1C), Type 4 [CD17 (A-T), 95 cases]
(Figure 1D), and Type 5 [CD41-42 (-TCTT), 62 cases] (Figure 1E).

Binomial deviation and Venn diagram analyses were employed to

select the optimal variables (Figure 1F). As a result, four variables,

namely, mean corpuscular volume (MCV), mean corpuscular

hemog lob in (MCH) , mean corpuscu la r hemog lob in

concentration (MCHC), and red blood cell count (RBC), were

found to have the strongest correlation with thalassemia. To

validate the predictive performance of these variables, receiver

operating characteristic (ROC) curve analysis was conducted. The

area under the curve (AUC) (Figure 1G) was used to interpret the

results, with values greater than 0.5 and closer to 1 indicating

higher effectiveness. It was observed that MCV and MCH

exhibited a higher correlation with thalassemia compared to

RBC and MCHC.
3.3 Establishment of a prediction model
for thalassemia

Utilizing the correlation factors of MCV, MCH, RBC, and

MCHC, a nomogram model (Figure 2A) was constructed,

incorporating the scoring criteria for each variable derived from

the coefficients of the LASSO regression model. The training set

was selected to establish the scoring criteria for different variables.

The receiver operating characteristic (ROC) curve analysis was

performed to evaluate the predictive performance of MCV, MCH,

RBC, and MCHC. The respective area under the curve (AUC)

values were found to be 0.910, 0.909, 0.807, and 0.801
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TABLE 1 Continued

Gestation_period

early_pregnancy mid_pregnancy late_pregnancy

18 (72.0%) 6 (24.0%) 1 (4.0%)

18 (94.7%) 1 (5.3%) 0 (0%)

10 (62.5%) 4 (25.0%) 2 (12.5%)

5 (45.5%) 3 (27.3%) 3 (27.3%)

7 (77.8%) 2 (22.2%) 0 (0%)

7 (87.5%) 0 (0%) 1 (12.5%)

6 (85.7%) 1 (14.3%) 0 (0%)

1 (20.0%) 3 (60.0%) 1 (20.0%)

3 (100%) 0 (0%) 0 (0%)

2 (66.7%) 1 (33.3%) 0 (0%)

3 (100%) 0 (0%) 0 (0%)

2 (100%) 0 (0%) 0 (0%)

1 (100%) 0 (0%) 0 (0%)

1 (100%) 0 (0%) 0 (0%)

0 (0%) 0 (0%) 1 (100%)

(Continued)
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AGE RBC Hb HCT MCV MCH MCHC
RDW-
SD RDW-CV

Mean
(SD)

Mean
(SD)

Mean
(SD)

Mean
(SD)

Mean
(SD)

Mean
(SD)

Mean
(SD)

Mean
(SD)

Mean
(SD)

aCSa/aa
(N=25)

26.3 (5.19)
4.34

(0.494)
116 (14.8) 35.5 (3.82) 82.0 (4.41) 26.7 (1.80) 325 (11.0) 40.0 (4.19) 13.7 (2.14)

aWSa/aa
(N=19)

26.3 (6.04)
4.35

(0.443)
123 (13.0) 37.1 (3.39) 85.5 (4.28) 28.3 (2.07) 332 (11.7) 41.0 (4.22) 13.2 (1.55)

b-28(A-G)/bN

(N=16)
26.1 (3.45)

4.88
(0.447)

113 (8.22) 35.1 (2.84) 72.1 (2.37) 23.2 (1.08) 321 (11.4) 39.4 (3.38) 15.6 (1.35)

bCD43(G-T)/bN

(N=11)
27.2 (4.62)

4.61
(0.514)

95.6 (8.92) 30.6 (2.53) 66.7 (5.85) 20.8 (1.97) 312 (6.59) 36.2 (3.88) 16.0 (2.13)

bE(G-A)/bN

(N=9)
27.0 (5.61)

4.36
(0.323)

114 (7.83) 34.6 (2.14) 79.4 (2.88) 26.1 (1.05) 328 (5.03) 38.9 (2.31) 13.6 (0.743

aQSa/aa
(N=8)

28.5 (3.16)
4.88

(0.602)
119 (13.2) 36.9 (4.75) 75.5 (1.71) 24.4 (1.33) 323 (13.3) 39.7 (3.33) 14.8 (1.50)

bCap/bN

(N=7)
27.6 (5.80)

4.31
(0.419)

127 (13.7) 38.1 (3.41) 88.5 (3.64) 29.6 (1.91) 335 (13.0) 40.5 (2.40) 12.6 (0.660

bCD71-72(+A)/bN

(N=5)
23.8 (5.36)

4.46
(0.560)

95.0 (12.1) 30.2 (3.56) 67.8 (1.74)
21.4

(0.924)
315 (7.66) 41.9 (2.68) 18.6 (1.49)

b-29(A-G)/bN

(N=3)
23.7 (5.86)

4.59
(0.194)

103 (1.53)
32.8

(0.404)
71.6 (2.46) 22.5 (1.34) 315 (8.08) 36.0 (1.30) 14.2 (0.346

b27-28(A-G)/bN

(N=3)
27.3 (6.43)

4.64
(0.977)

99.7 (7.57) 31.4 (2.98) 69.0 (9.43) 22.0 (3.44) 318 (7.21) 42.1 (12.8) 17.5 (2.24)

–SEA/aa/bCD41-42/bN

(N=3)
28.3 (8.02)

4.58
(0.448)

103 (3.51)
32.6

(0.462)
71.5 (7.02) 22.7 (2.60) 317 (6.66) 45.3 (9.83) 18.5 (4.90)

–SEA/-a3.7

(N=2)
21.5 (3.54)

4.63
(0.523)

82.5 (9.19)
26.7

(0.891)
57.8 (4.54)

17.8
(0.0141)

309 (24.0) 43.3 (1.20) 25.3 (1.86)

–SEA/-a3.7/bCD17/bN

(N=1)
34.0 (NA) 6.07 (NA) 100 (NA) 32.2 (NA) 53.0 (NA) 16.5 (NA) 311 (NA) 31.7 (NA) 20.2 (NA)

–SEA/aa/bCD17/bN

(N=1)
28.0 (NA) 4.94 (NA) 114 (NA) 35.1 (NA) 71.1 (NA) 23.1 (NA) 325 (NA) 33.1 (NA) 13.1 (NA)

-a3.7/-a4.2

(N=1)
18.0 (NA) 4.61 (NA) 97.0 (NA) 32.1 (NA) 69.6 (NA) 21.0 (NA) 302 (NA) 35.1 (NA) 14.6 (NA)
)

)

)
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TABLE 1 Continued

RDW-
SD RDW-CV Gestation_period

Mean
(SD)

Mean
(SD)

early_pregnancy mid_pregnancy late_pregnancy

41.5 (NA) 14.6 (NA) 0 (0%) 1 (100%) 0 (0%)

34.6 (NA) 15.0 (NA) 1 (100%) 0 (0%) 0 (0%)

42.1 (NA) 16.3 (NA) 0 (0%) 1 (100%) 0 (0%)

34.8 (NA) 15.7 (NA) 1 (100%) 0 (0%) 0 (0%)

35.7 (NA) 16.1 (NA) 1 (100%) 0 (0%) 0 (0%)

40.4 (NA) 14.1 (NA) 1 (100%) 0 (0%) 0 (0%)

37.9 (NA) 14.1 (NA) 1 (100%) 0 (0%) 0 (0%)

31.1 (NA) 14.7 (NA) 1 (100%) 0 (0%) 0 (0%)

43.1 (NA) 14.4 (NA) 0 (0%) 0 (0%) 1 (100%)

45.3 (NA) 14.0 (NA) 0 (0%) 1 (100%) 0 (0%)

42.3 (3.84) 13.0 (1.47) 7,367 (83.7%) 1,275 (14.5%) 163 (1.9%)

42.0 (4.06) 13.2 (1.65) 8,029 (83.2%) 1,417 (14.7%) 206 (2.1%)
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AGE RBC Hb HCT MCV MCH MCHC

Mean
(SD)

Mean
(SD)

Mean
(SD)

Mean
(SD)

Mean
(SD)

Mean
(SD)

Mean
(SD)

-a3.7/aa/b-28(A-G)/
bN (N=1)

19.0 (NA) 4.07 (NA) 104 (NA) 31.9 (NA) 78.4 (NA) 25.6 (NA) 326 (NA)

-a3.7/aa/bCD41-42/bN

(N=1)
21.0 (NA) 4.91 (NA) 105 (NA) 32.1 (NA) 65.4 (NA) 21.4 (NA) 327 (NA)

-a3.7/aCSa
(N=1)

33.0 (NA) 5.54 (NA) 125 (NA) 40.8 (NA) 73.6 (NA) 22.6 (NA) 306 (NA)

-a3.7//aa/bCD17/bN

(N=1)
22.0 (NA) 5.00 (NA) 101 (NA) 32.1 (NA) 64.2 (NA) 20.2 (NA) 315 (NA)

-a4.2/aa/bCD17/bN

(N=1)
26.0 (NA) 5.07 (NA) 107 (NA) 32.6 (NA) 64.3 (NA) 21.1 (NA) 328 (NA)

-a4.2/aCSa
(N=1)

23.0 (NA) 4.15 (NA) 104 (NA) 33.0 (NA) 79.5 (NA) 25.1 (NA) 315 (NA)

-a4.2/aWSa
(N=1)

23.0 (NA) 5.23 (NA) 128 (NA) 39.6 (NA) 75.7 (NA) 24.5 (NA) 323 (NA)

aWSa/aa/bCD41-42/
bN(N=1)

19.0 (NA) 5.07 (NA) 97.0 (NA) 31.4 (NA) 61.9 (NA) 19.1 (NA) 309 (NA)

bCD14-15(+G)/bN

(N=1)
20.0 (NA) 3.64 (NA) 93.0 (NA) 30.5 (NA) 83.8 (NA) 25.5 (NA) 305 (NA)

Fusion gene/aa
(N=1)

30.0 (NA) 3.76 (NA) 108 (NA) 33.6 (NA) 89.4 (NA) 28.7 (NA) 321 (NA)

Normal
(N=6,774)

27.0 (4.82)
4.07

(0.457)
121 (13.1) 36.2 (3.55) 89.6 (5.50) 30.0 (2.36) 335 (11.3)

Overall
(N=7,621)

27.0 (4.85)
4.12

(0.498)
120 (13.5) 36.1 (3.62) 88.3 (7.31) 29.5 (3.00) 334 (12.1)

"NA" indicates that SD cannot be counted because there is only one data.
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(Figures 2B–E). Furthermore, the AUC value of the overall model

was determined to be 0.913 (Figure 2F). These results demonstrate

that the prediction model effectively enhances the predictive

power of these variables and reduces errors associated with

using a single index alone.
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3.4 Optimization of thalassemia
prediction model

After observing the satisfactory performance of the model in the

training set, we proceeded to fine-tune the variables to accommodate
B

C D

E F

G

A

FIGURE 1

Least absolute shrinkage and selection operator (LASSO) prediction model was established using the data from the training set, which consisted of
five thalassemia genotypes: (A) Type 1 [IVS-II-654(C-T), 55 cases], (B) Type 2 (–SEA/aa, 186 cases), (C) Type 3 (-a3.7/aa, 287 cases), (D) Type 4 [CD17
(A-T), 95 cases], and (E) Type 5 [CD41-42(-TCTT), 62 cases]. (F) The veen plot of the LASSO result intersections among the five types. (G) The
receiver operating characteristic (ROC) curve for the predictive value of each factor.
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more complex data in the testing set (Figure 3A). As a result, the

AUC values for MCV, MCH, RBC, and MCHC were found to be

0.907, 0.906, 0.796, and 0.795, respectively (Figures 3B–E). Notably,

the overall model exhibited an AUC value of 0.911, indicating a

strong predictive effect (Figure 3F). In the validation group, the

addition of normal data for thalassemia and other genotypes led to a

reduction in AUC. This adjustment was made to bring the model

closer to real-world scenarios and enhance its reliability.
4 Discussion

The rapid advancement of artificial intelligence (AI) technology

has garnered significant attention worldwide, particularly in the

realm of disease diagnosis. Machine learning and other related

technologies have been widely explored to aid in this process. In

comparison to manual diagnosis, computer-based diagnostic

methods offer increased accuracy and efficiency, effectively

reducing the misdiagnosis rate. Consequently, these methods

enable more effective disease diagnoses at a lower cost (10–12).

By harnessing the power of big data and clinical information,

machine learning techniques have greatly improved the accuracy

and efficiency of clinical diagnoses. This progress has propelled
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laboratory medicine toward precision medicine and intelligent

testing (13, 14). Applying machine learning to the early diagnosis

of thalassemia, for instance, allows for the prediction of thalassemia

types with higher severity using a blood sample with high

prevalence. This approach can effectively reduce the cost and time

required for genetic identification of thalassemia, enabling

healthcare providers to initiate early treatment measures and offer

prompt genetic counseling to pregnant women with thalassemia.

Such efforts are important in reducing the birth rate of children with

moderate and severe thalassemia and conducting population health

surveys in middle and low-income areas.

In this study, a total of 7,621 pregnant women underwent blood

routine and thalassemia detection. Among them, 569 cases of

a-thalassemia were identified, yielding a positive rate of 7.47%.

Additionally, 267 cases of b-thalassemia were detected, with a

positive rate of 3.5%. Furthermore, 11 cases of a- combined with

b-thalassemia were observed, resulting in a positive rate of 0.14%.

These prevalence rates were found to be lower compared to coastal

cities such as Guangdong, particularly in relation to a thalassemia,

indicating a significant difference as compared to previous studies

(4, 15). To mitigate the cost and time associated with genetic

diagnosis of thalassemia, a machine learning model was

constructed in this study. The model employed routine blood test
B

C

D E F

A

FIGURE 2

The nomogram and predictive efficiency of this model in the training set. (A) Construction of a predictive nomogram. The receiver operating
characteristic (ROC) curve standing for the predictive efficiency of the correlation factors: (B) red blood cell (RBC), (C) mean corpuscular volume
(MCV), (D) mean corpuscular hemoglobin (MCH), (E) mean corpuscular hemoglobin concentration (MCHC), and (F) the model.
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results for thalassemia prediction. Among the five genotypes with

the highest incidence of thalassemia [a3.7/aa, –SEA/aa, CD17
(A-T), CD41-42 (-TCTT), and IVS-II-654 (C-T)], the four

coefficients that exhibited the highest correlation with thalassemia

were selected: MCV, MCH, RBC, and MCHC. Notably, the

prediction performance of MCV and MCH demonstrated

superior results. These findings align with previous studies, which

have consistently reported reduced MCV and MCH levels across

almost all types of thalassemia (15–17).

The prediction model was developed using four variables:

MCV, MCH, RBC, and MCHC. The model’s predictive

performance was assessed using ROC analysis, yielding AUC

values of 0.910, 0.909, 0.807, and 0.801, respectively. These results

indicate significant diagnostic value for thalassemia detection. The

overall AUC value of the model was found to be 0.913, surpassing

the individual variables in terms of prediction accuracy. This result

demonstrates the successful construction of the model. To further

optimize the model for complex clinical data, adjustments were

made to each variable. Subsequently, the entire dataset was utilized

for verification purposes. The obtained AUC values for MCV,

MCH, RBC, and MCHC were 0.907, 0.906, 0.796, and 0.795,

respectively. These values were slightly lower than those obtained

during the training phase. However, the model still exhibited a good

prediction effect, with an overall AUC value of 0.911. This minor
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decrease in AUC can be attributed to the inclusion of data from

normal pregnant women. Their physiological anemia can interfere

with the model, but incorporating such data ensures that the

predictive performance of the model aligns more closely with

clinical reality, thereby holding significant clinical significance.

It is worth mentioning that the main positive data in the model

primarily consist of common thalassemia genotypes, such as -a3.7/
aa, –SEA/aa, and CD17 (A-T). Consequently, the model’s

predictions may be more accurate for these genotypes.

Furthermore, it is crucial to note that unlike the findings of Khan

et al. and El-Beshlawy et al. (18, 19), the current model’s predictive

capability is limited when it comes to b-thalassemia in regions such

as Africa, the Middle East, and other areas, as it primarily focuses on

Asia, where a-thalassemia is prevalent. Additionally, since the study

subjects predominantly consist of pregnant women, the model may

face challenges in accurately predicting thalassemia in men and

children. Another limitation of the model is its current inability to

differentiate between varying degrees of thalassemia severity, such

as severe, moderate, or characteristic types. Furthermore, research

by Ferih et al. (20) provides us with a good idea that our model may

face challenges in distinguishing between thalassemia and iron-

deficiency anemia, as the diagnosis of iron-deficiency anemia often

requires additional hematological indicators that may not be fully

incorporated into the current model, which need further study.
B

C

D E F

A

FIGURE 3

The nomogram and predictive efficiency of this model in the testing set. (A) Construction of a predictive nomogram. The ROC curve standing for
the predictive efficiency of the correlation factors: (B) red blood cell (RBC), (C) mean corpuscular volume (MCV), (D) mean corpuscular hemoglobin
(MCH), (E) mean corpuscular hemoglobin concentration (MCHC), and (F) the model.
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5 Summary

This study aimed to predict thalassemia in pregnancy by means

of economical and rapid blood routine detection by establishing a

data prediction model. Through the analysis of 7,621 cases, MCV,

MCH, RBC, and MCHC were selected as high correlation indicators.

Subsequently, a machine learning prediction model was constructed,

incorporating these four indicators as variables, and the results were

verified using ROC analysis. The AUC values for MCV, MCH, RBC,

and MCHC were 0.907, 0.906, 0.796, and 0.795, respectively. In

particular, the prediction model achieved an AUC value of 0.911,

demonstrating its effectiveness in thalassemia prediction and

provided a novel strategy for the early screening of thalassemia.
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