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Quiescence is a fundamental state of adult hematopoietic stem cells (HSCs)

characterized by their residence in the G0 phase of the cell cycle. Despite being

quiescent, HSCs retain their capacities for self-renewal and multipotency,

enabling them to produce all blood lineages. Recent discoveries have shown

that HSCs can dive into an even deeper state of quiescence with a very low

division rate in steady-state conditions, known as dormancy. Dormant HSCs

(dHSCs) have the most superior stem cell properties among HSCs, placing them

at the top of the hematopoietic hierarchy. In this review, we argue that

quiescence and dormancy are not synonyms in the context of HSCs.

Specifically, dHSCs constitute a unique reserve pool of HSCs, mobilized only

under stress conditions to protect the HSC compartment throughout life. While

HSC quiescence is well-studied, themolecular features of HSC dormancy remain

less well-defined. We will discuss the available methods for dHSC isolation and

summarize the latest findings on the roles of niche factors, transcription factors,

chromatin regulators, and cell cycle-related proteins in maintaining HSC

dormancy. Additionally, we will explore whether insights from the quiescent

HSC research can be applied to dHSCs. Lastly, we will assess the therapeutic

potential of utilizing or targeting dHSCs to improve stem cell transplantation

outcomes and treat hematological diseases, opening new avenues for research

and clinical applications in regenerative medicine and oncology.
KEYWORDS

hematopoietic stem cells, dormancy, quiescence, bromodeoxyuridine, H2B-GFP, label
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1 Introduction

Hematopoietic stem cells (HSCs) are rare cells that continuously regenerate the entire

hematopoietic system, producing billions of blood cells. In vertebrates, the primary

definitive HSCs originate from the hemogenic endothelium on the ventral wall of the

dorsal aorta within the aorta-gonad-mesonephros region via a process termed endothelial-
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to-hematopoietic transition. Following their emergence, HSCs

migrate to the fetal liver before ultimately colonizing the bone

marrow (BM), which then becomes the predominant site of adult

hematopoiesis (1). Adult HSCs primarily reside within the distinct

environment of the BM, termed the ‘BM niche’. This niche is

populated by specialized cells that provide HSCs and progenitors

with vital factors necessary for their maintenance, survival, and

differentiation (2).

Two defining qualities of HSCs are self-renewal and

multipotency. Self-renewal refers to the ability of HSCs to

replicate themselves to maintain their population, while

multipotency denotes their capability to differentiate into all types

of mature blood cells (3). According to the hematopoietic tree

model, HSCs evolve into mature cells through intermediate stages

involving hematopoietic progenitors with varying differentiation

and self-renewal potentials (4). These include multipotent

progenitors (MPPs), which retain the capacity to produce all

blood lineages (5), lineage-committed progenitors, and unipotent

progenitors, the latter being capable of producing only a single type

of cells. While the classical model of HSC differentiation posits that

HSCs undergo distinct step-wise progenitor phases, recent evidence

challenges this view, suggesting that HSCs may independently

determine their lineage-specific fate (6, 7). For instance, it was

demonstrated that HSCs are able to directly differentiate into

myeloid progenitors without undergoing cell division upon

transplantation into non-irradiated mice (8). Moreover, HSCs

could bypass numerous downstream progenitor stages to produce

mature erythrocytes (9). Additionally, another study provided

evidence that megakaryocytes (Mks) might also originate directly

from HSCs (10). Specifically, a single-cell in vitro culture of murine

HSCs showed that they could produce Mks without undergoing cell

division. Therefore, despite significant advances in understanding

the differentiation process, the full scope and nature of it is yet to be

firmly established. Nevertheless, the immense differentiation

capacity of HSCs is crucial for maintaining hemostasis and

responding to injury and disease.

Intriguingly, even though blood is a constantly renewing tissue,

most of HSCs remain non-cycling or quiescent. In homeostasis,

most HSCs reside in the G0 phase of the cell cycle and only a small

fraction of HSCs enters the cell cycle to undergo lineage

commitment or self-renewal divisions (11). HSCs in the G0 phase

of the cell cycle, or quiescent HSCs, can be identified by their DNA

content (2N), lower RNA content than in cells in the G1 phase, the

absence of expression of proliferation markers, such as Ki67, or by

label incorporation assay (12). The simplicity and accessibility of

methods for detecting HSCs in the G0 phase of the cell cycle lead to

the thorough investigation of HSC quiescence, revealing the key

molecular players associated with this state (13–15). HSC

quiescence is critical for the long-term sustenance of HSCs,

protecting them from the accumulation of replication-associated

DNA damage (16). Studies reveal that disruption of HSC

quiescence results in excessive replication, leading to impaired

capacity for self-renewal and loss of repopulation capacity in

transplantation assays (17, 18). Overly proliferation leads to HSC

premature exhaustion (19), emphasizing the importance of

quiescence for maintaining the “stemness” of HSCs.
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For a long time, the terms quiescent and dormant HSCs have

been used interchangeably (12, 14, 15, 20). However, the seminal

studies by the Trumpp group defined dormant HSCs (dHSCs) as a

distinct subpopulation of quiescent HSCs, which are characterized

by a deeper state of quiescence and very low overall biosynthetic

activity. While quiescent HSCs represent about 70% of the total

HSC population (21, 22), the dHSC subset constitutes only 15-30%

of the HSC pool (23–25). By definition, dHSCs have extremely low

in vivo divisional history, reflected by their chromosome label

retention in long-term label retention assays (Figure 1A).

Importantly, dHSCs demonstrate the highest long-term

repopulation capacity in transplantation assay and are less

responsive to activating stimuli than quiescent HSCs. Yet, dHSCs

can reversibly enter the cell cycle in response to severe stress signals,

such as bacterial or viral infection or blood loss (24, 26, 27). Thus,

dHSCs are a unique subpopulation of HSCs, which resides at the

apex of the hematopoietic hierarchy and serves as a reserve pool of

HSCs during the entire life (23, 24, 28). The inability to maintain the

dormant state may expose dHSCs to replication stress and promote

the accumulation of somatic mutations, increasing the risk of their

exhaustion or malignant transformation (29). Conversely, dHSCs

failing to enter the cell cycle under stress conditions may limit blood

cell production, potentially resulting in bone marrow failure (30).

Therefore, tight control of HSC dormancy is vital for effective and

healthy hematopoiesis.

While quiescent HSCs are extensively studied (13, 15), the

nature of dormancy in HSCs remains less explored. The advent of

reporter mice based on retinoic acid-induced gene Gprc5c and the

discovery of the surface marker CD38 for the identification of

dHSCs shed light on the mechanisms supporting dHSCs’ function

(24, 25). In this review, we aim to provide the differentiation

between the states of quiescence and dormancy in HSCs. We will

discuss the latest discoveries that have established the unique

features of HSC dormancy and offer insights into the extent to

which our understanding of quiescent HSCs can be applied

to dHSCs.
2 Identification of dormant HSCs

In the previous paradigm, it was believed that all HSCs

periodically enter and exit the cell cycle, with the entire HSC pool

undergoing turnover within weeks (31). However, later studies have

firmly established the presence of the subpopulation of dHSCs

within the quiescent HSC compartment that shows almost no

divisional activity under steady-state conditions (23, 28, 32). To

identify these dHSCs, long-term label retention assays have been

employed. Typically, an initial “pulse” phase includes HSC labeling

followed by a “chase” phase, where this label is progressively diluted

over an extended period of time due to cell divisions (Figure 1A).

One prevalent approach utilizes a thymidine analogue,

bromodeoxyuridine (BrdU), which integrates into the DNA

during the S-phase of the cell cycle within the labeling period. As

cells divide post-labeling, the BrdU is diluted among progeny.

Rapidly dividing HSCs will dilute the BrdU quickly (named active

HSCs, aHSCs), while dHSCs will retain the BrdU label for more
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than 70 days. The presence of two subpopulations of HSCs, dHSCs

and aHSCs, has been predicted by mathematical modeling based on

BrdU dilution kinetics. While the one-population model failed to

explain the experimental data, the two-population model describes

it with great accuracy, strongly suggesting the presence of dHSCs

(23, 32). According to Wilson et al., dHSCs are predicted to divide

approximately every 145 days in mice, resulting in only about 5

divisions during a murine lifetime, whereas aHSCs likely divide

every 36 days. Importantly, Ki67-Hoechst 33342 staining revealed

not only that nearly all dHSCs reside in the G0 phase but also that

83% of aHSCs are in the G0 phase too (Figure 1B) (23). It is worth

noting that the percentage of total HSCs in the G0 phase in this

study is higher than in previously cited work (21) due to the use of

the HSC phenotype (Lineage- с-Kit+ Sca-1+ CD48- CD150+ CD34-),

enriching for quiescent HSCs. Therefore, those aHSCs are highly
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quiescent, although at least a part of them are transcriptionally cell-

cycle primed (24).

Nevertheless, the BrdU assay has limitations: antibody-

mediated BrdU recognition requires cell fixation, and therefore, it

cannot be used to study viable dHSCs. Additionally, BrdU has been

suggested to cause an injury response in the periphery, which

induces a positive feedback loop leading to dHSC activation (23).

This can explain why dHSCs are successfully labeled in only a two-

week period. Therefore, an advanced system involving transgenic

mouse strain R26rtTA/Col1A1H2B-GFP has been established (23, 28).

It allows ubiquitous expression of chromatin structural protein

histone 2B fused with a green fluorescent protein (H2B-GFP) under

the control of an inducible tetracycline-mediated system (using

either Tet-on or Tet-off systems), resulting in the labeling of

chromosomes. Mirroring the BrdU approach, labeled cells dilute
FIGURE 1

Label-retention assay as a classical approach for dHSC detection. (A) The principle of label retention assay. During the “pulse” or labeling phase, cells
either incorporate BrdU, or the expression of H2B-GFP is induced by the Tet-on system through the administration of doxycycline (dox). In the
subsequent ‘chase’ or label dilution phase, the previously introduced label is diluted out with each cell division after the withdrawal of BrdU/Dox or
by turning off H2B-GFP expression in the Tet-off system through dox administration. This dilution allows for the distinction between dormant (non-
dividing) and active (dividing) cells. BrdU – bromodeoxyuridine. (B) Scheme explaining the differences in terms quiescent HSCs, dHSCs, aHSCs, and
cycling HSCs. Quiescent HSCs are those HSCs, which are in the G0 phase of the cell cycle. dHSCs, dormant, HSCs, are the most quiescent, label-
retaining HSCs. aHSCs, active HSCs, are those HSCs that have undergone or are undergoing cell division. Cycling HSCs are those HSCs that are in
G1-S-G2-M phases of the cell cycle. The figure was created using Biorender.com.
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the H2B-GFP with each division, allowing the identification of

dHSCs as those HSCs that retain this label longer than 70

days (Figure 1A).

In contrast to a BrdU assay-based prediction (23), H2B-GFP

dilution data argued that dHSCs count their divisions and divide

only 4 times before entering permanent quiescence (33). This

conclusion, however, has been challenged by Morcos and

colleagues, who demonstrated that the H2B-GFP assay cannot be

used for accurately determining the number of HSC divisions due to

H2B-GFP short degradation time of 4-6 weeks, inhomogeneous

initial labeling, and background fluorescence due to leaky H2B-FP

expression. Furthermore, performing two consecutive rounds of

pulse and chase revealed that HSCs from older mice, following the

second pulse, diluted the label at a rate similar to that of younger

mice after their first pulse. Therefore, it has been inferred that

dHSCs undergo continuous cell cycle activity without losing their

potential after 4 divisions (34). However, the H2B-GFP assay allows

the labeling of the most quiescent dHSCs (25). The transplantation

of H2B-GFPhi HSCs revealed that dHSCs have significantly higher

repopulation potential and self-renewal capacity compared with

aHSCs with the same surface marker phenotype, which have

significantly diluted the H2B-GFP label. The H2B-GFPlo HSCs

also failed to reconstitute lethally irradiated mice in serial

transplantation assay (23, 35). This superiority in quiescence, self-

renewal, and reconstitution capability positions dHSCs at the top of

the hematopoietic hierarchy.
3 dHSCs act as a reserve pool of HSCs

Due to their very infrequent cycling, dHSCs do not significantly

contribute to daily blood cell production under steady-state

conditions. Instead, dHSCs come into action upon receiving the

signals of severe hematopoietic stress. Post in vivo treatment with

either chemotherapeutic agent 5-fluorouracil (5-FU) or the

granulocyte colony-stimulating factor (G-CSF), known for

mobilizing HSCs from BM, dHSCs begin cycling as evidenced by

the loss of BrdU or H2B-GFP label (23). Another significant factor

affecting dHSCs is interferon alpha (IFNa), a cytokine produced by

immune cells in response to challenges like viruses, bacteria, and

tumors. A single high-dose injection of IFNa or the viral RNA

mimetic polyinosinic:polycytidylic acid (polyI:C) - which similarly

triggers the IFNa response - can promote dHSC activation in vivo

(24, 26). A component of the outer wall of Gram-negative bacteria,

lipopolysaccharide (LPS), is also capable of inducing dHSC

proliferation (24, 27). Importantly, once the stressor is removed

and conditions return to normal, dHSCs rapidly revert to their

dormant state to preserve the HSC pool (23). Nevertheless, chronic

stress conditions, such as repetitive cycles of polyI:C injections can

lead to irreversible HSC exhaustion - loss of stem cell function due

to reaching the limit of their self-renewal capacity (36). Frequent

divisions can also favor the accumulation of somatic DNA

mutations, potentially resulting in oncogenic transformation (37).

Besides, dormancy protects HSCs from chemotherapeutic agents.

When HSC dormancy is disrupted before chemotherapeutic

interventions - as observed with repeated polyI:C injections
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followed by two rounds of 5-FU treatment - it can lead to fatal

anemia, likely due to the eradication of all dHSCs (26). Thus,

dormancy not only preserves the dHSCs from replication stress,

ensuring their functionality, but also positions them as a reserve

pool of HSCs throughout an individual’s lifetime.
4 Molecular features of dHSCs

Prior research using label retention assays and reporter mice to

identify dHSCs has elucidated some of their unique molecular

signatures. In this section, we will primarily rely on the studies

comparing dHSCs with aHSCs, as the latter represent the best

available approximation to quiescent HSCs thus far (Figure 1B).

Consistent with their biological function, dHSCs exhibit

transcriptional profiles demonstrating markedly reduced

biosynthetic activity, including diminished metabolism,

downregulated DNA replication machinery, decreased mRNA

processing and lower rates of ribosomal biogenesis (23, 24)

(Figure 2). Furthermore, dHSCs are characterized by very low

levels of CD34 mRNA (23) and enriched in MolO gene

expression signature, which indicates the most functional HSCs

(38). Concurrently, tumor suppressor with deubiquitinase activity

Cyld (cylindromatosis) exhibited high mRNA transcript levels in

dHSCs but not in MPPs. Tesio and colleagues demonstrated that

CYLD inhibits dHSC cycling by deactivating the pathway involving

tumor necrosis factor receptor-associated factor 2 (TRAF2) and

p38MAPK. Mechanistically, CYLD removes polyubiquitin chains

from TRAF2, thereby decreasing p38MAPK activity and preventing

cell proliferation (39).

Notably, Cabezas and colleagues established a critical role of

retinoic acid (RA)-induced signaling in the maintenance of HSC

dormancy. They found that dHSCs are enriched in retinoic acid-

induced gene Gprc5c mRNA (orphan G protein-coupled receptor,

class C, group 5) compared to aHSCs and MPPs. Subsequently, a

transgenic reporter mouse based on EGFP expression under Gprc5c

promoter (Gprc5c-EGFP mouse) was developed, enabling the

detection of dHSCs. By utilizing this mouse, authors showed that

lack of dietary vitamin A in mice results in the disruption of HSC

quiescence, whereas administering the active metabolite of vitamin

A, all-trans-RA, maintains dHSC quiescence under stress

conditions both in vitro and in vivo (24). In the follow-up study,

they discovered the non-classical RA signaling axis, which supports

HSC stemness (40). According to their data, all-trans RA is

converted by Cyp26b1 enzyme into 4-oxo-RA metabolite, which

in turn binds to RA receptor beta (RARb). The latter is responsible
for activating a transcriptional program enhancing HSC identity.

Although this study primarily concentrated on HSCs rather

than dHSCs, Cyp26b1 transcript was identified as being enriched

in dHSCs in the previous study from this group (24), suggesting

that Cyp26b1/4-oxo-RA/RARb axis might be relevant for

dHSC function too. Another research group unveiled the role of

another class of RA receptors - RXRs (retinoid X receptor), in the

maintenance of HSC quiescence and function. While the individual

deletions of either Rxra or Rxrb do not markedly impact HSC

fitness, the double deletion of both Rxra and Rxrb results in
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HSC activation, subsequently inducing myeloproliferative-like

disease (41). Importantly, a study by Zhang and colleagues

disclosed that Gprc5c protein is also expressed in human HSCs

(hHSCs) (42). Their work also suggests that the Gprc5c+ hHSCs can

be categorized as dHSCs, resolving a long-standing question

regarding the existence of dHSCs in humans.

BM niche has a complex three-dimensional structure involving

multiple components: osteoblasts, which form the endosteal niche;

endothelial cells that create a sinusoidal and arteriolar vascular

niche; mesenchymal stem cells - MSCs, known for their secretory

functions; other cells like Mks, immune cells (regulatory T-

lymphocytes, macrophages) and both sensory and sympathetic

neurons, each contributing uniquely to the niche’s complexity (2).

For many years, it was widely believed that quiescent HSCs resided

in the endosteal niche (20). However, recent insights have revealed

that they predominantly occupy perisinusoidal niches in the BM

(43, 44). In agreement with this, the interaction of neogenin-1 (Neo-

1) expressed on dHSCs with netrin-1, which is most likely produced

by arteriolar endothelial and periarteriolar stromal cells in the BM

niche, has been suggested (27). Although extracellular Ca2+ was

once thought to anchor quiescent HSCs near the endosteum (45),
Frontiers in Hematology 05
the proposed localization of dHSCs in the perivascular niche,

alongside the finding emphasizing the significance of intracellular

Ca2+ for dHSCs, has shifted this perspective. The role of

intracellular Ca2+ for dHSCs has been discovered using a reporter

mouse based on the cell cycle inhibitor p27Kip1, which enables the

detection of HSCs in the G0 cell cycle phase (mVenus-p27K–

mouse). High-throughput small-molecule screening using this

reporter mouse revealed that high levels of cytoplasmic Ca2+ are

associated with HSC dormancy (46). However, the precise function

of Ca2+ in dHSC maintenance remained unknown. Recently, we

revealed that cADPR, synthesized through the conversion of NAD+

by CD38, elevates cytoplasmic Ca2+ in dHSCs. This elevation

induces the expression of the transcription factor (TF) c-Fos,

which subsequently promotes dHSC quiescence in p57Kip2-

dependent manner. Thus, we identified CD38 as an important

missing mediator of higher levels of intracellular Ca2+ in dHSCs in

steady state (25).

Despite significant advancements in the field of dHSCs

(Figure 2), progress has been impeded by challenges in

identifying and isolating dHSCs. The H2B-GFP label retention

assay is time-consuming and necessitates a lengthy chase period,
FIGURE 2

Summary of key characteristics distinguishing dHSCs from aHSCs. BrdU, bromodeoxyuridine, Cyld, cylindromatosis; Cdk6, cyclin-dependent kinase
6; Gfi-1, growth factor independent 1; Gprc5c, orphan G protein-coupled receptor, class C group 5; H2B-GFP, histone 2B-green fluorescent
protein; Neo-1, neogenin 1. The figure was created using Biorender.com.
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making the study of dHSCs in young mice unfeasible. Furthermore,

Gprc5c-EGFP and mVenus-p27K– mouse models are not

commercially accessible, and to date, there are no known

monoclonal antibodies for FACS recognizing dHSC markers

Gprc5c or Neo-1, hindering the straightforward isolation of

dHSCs. We discovered CD38 as a surface marker for murine

dHSCs, which should facilitate the future investigation of HSC

dormancy using simple antibody staining for dHSC FACS isolation.

Currently, the upstream regulators responsible for very low

metabolic and synthetic activities observed in dHSCs, including

additional niche factors, signaling proteins, epigenetic regulators,

and transcription factors, are not well characterized. Therefore, the

next part of the review will focus on determining whether the

molecular pathways known to induce quiescence in HSCs also play

a role in regulating the dormancy of dHSCs.
5 Known quiescence regulators in the
context of dHSCs

Quiescence is a well-studied cellular state in HSCs, with

numerous genes shown to play a role in maintaining this state

(13–15). As dHSCs represent a subfraction of quiescent HSCs, the

molecular features of these two populations most likely overlap

significantly. We propose that each known regulator of HSC

quiescence should be individually validated in the context of

dHSCs. To identify the top candidates of interest, we analyzed the

gene lists comparing transcriptional profiles of active HSCs and

dHSCs (24), including our own (25). We listed the most promising

candidates below, however, in the future, they need to be validated

at the protein level using label-retention assay, reporter mice or

updated dHSC phenotype (25).
5.1 Niche factors

BM niche produces factors including various cytokines,

chemokines, and extracellular matrix components interacting

with their specific receptors or adhesion molecules on HSCs to

maintain their quiescence in homeostasis or activate them in

response to stress ( (8), reviewed extensively in (12)). Binding of

the quiescence factors to their respective receptors on HSCs (e.g.

stem cell factor (SCF) and c-Kit; angiopoietin-1 (Ang-1) and Tie2;

thrombopoietin (TPO) and myeloproliferative leukemia protein

(MPL)) triggers signaling cascades inducing cell cycle arrest. Such

cascades involve signaling tyrosine kinases, transcription factors,

epigenetic regulators, and cell cycle-related proteins inhibiting the

cell cycle progression, which will be discussed below. Genes related

to cell-to-cell and matrix interactions were found to be increased in

H2B-GFPhi dHSCs (25, 47), which might indicate ongoing

communication between dHSCs and their surrounding

microenvironment, keeping them ready to quickly determine

their fate. Remarkably, leaving the dormant state was

accompanied by an immediate decrease in the expression of genes

associated with niche communication, possibly indicating a

migration to different niches. Furthermore, dHSCs are enriched
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in TGF-b signaling signature genes (25, 47). TGF-b is a well-

established regulator secreted by Mks and non-myelinating

Schwann cells (48–50), which inhibits the cell cycle progression of

HSCs via p57Kip2 (48). Thus, niche-secreted factors most likely play

an important role in the support of HSC dormancy.

The localization of dHSCs in the BM is poorly studied. Confocal

microscopy imaging revealed that label-retaining dHSCs were

found as individual cells homogenously distributed in the BM,

indicating the exceptionally small size of their niches (23, 51). It has

been identified earlier that H2B-GFPhi dHSCs were enriched in

trabecular bone region and were retained there via non-canonical

Wnt signaling (52), in contrast to the later study suggesting that

dHSCs reside in perivascular niches guided by Netrin-Neo-1

signaling (27). Additionally, recent studies have demonstrated an

important role of extracellular matrix component hyaluronic acid in

the maintenance of HSC dormancy in mice and humans (42).

Moreover, we have found that CD38 ecto-enzymatic activity on the

neighboring cells can promote hHSC quiescence (18). Therefore,

BM niche is an essential component of HSC dormancy regulation

and requires further investigation.
5.2 Cell cycle regulators

HSCs transit into the G1 cell cycle phase upon receiving the

mitogenic stimuli from the niche cells. This transition is tightly

controlled by the so-called restriction point, which is mediated

through the protein complexes consisting of cyclin-dependent

kinases (CDKs) and corresponding cyclins. In the early G1 phase,

before the restriction point, cyclin D is produced in response to

mitogen stimulation and then forms complexes with either CDK4 or

CDK6. Cyclin D-CDK4/6 complex inactivates the tumor suppressor

Retinoblastoma protein (Rb) by phosphorylation, which mediates the

release of E2F transcription factors from Rb-E2F complex,

subsequently leading to the activation of S-phase-related

transcriptional program. Rb phosphorylation marks the cell’s

transition through the restriction point into the late G1 phase.

Here, E2F transcription factor activity leads to the expression of

cyclin A and cyclin E, which form complexes with CDK2. The

resulting cyclin A/E-CDK2 complex hyperphosphorylates Rb,

leading to its full inactivation and further transition into S-phase

(15, 53). In the absence of mitogenic stimuli, cells enter the reversible

state of cell cycle arrest or quiescence. It is further enhanced by cyclin-

dependent kinase inhibitors (CKIs) represented by two families,

which suppress the activity of CDKs halting the transition through

the cell cycle. The members of Cip/Kip CKIs family: p21Cip, p27Kip1,

and p57Kip2, suppress the activity of CDK4, CDK6, and CDK2. The

members of INK4 family of CKIs: p16INK4A, p15INK4B, p18INK4C, and

p19INK4D, have a narrower function inhibiting only CDK4/6 (54).

The roles of cell cycle-related proteins in HSC cell cycle

regulation discovered using knock-out mice are extensively

discussed in (15, 53, 55). Briefly, cyclins D1/D2/D3 and Cdk2/4/6

likely play redundant roles in HSCs since single deletions of Cyclin

D members or a Cdk do not result in significant hematopoietic

phenotypes, in contrast to the severe abnormalities observed during

embryogenesis with combined deficiencies of either Cyclins D1-3,
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Cdk2&4 or Cdk4&6. While full knock-out Cdk6-/- mice do not

exhibit any changes in the frequencies of HSCs in the G0 cell cycle

phase in a steady state, they fail to start proliferating efficiently upon

polyI:C administration (56). In humans, long-term HSCs display

lower levels of Cdk6 protein than short-term HSCs, which are

primed for activation (57). As for CKIs, p57Kip2 is recognized as a

primary mediator of HSC quiescence in homeostasis (17, 18).

p27Kip1 deficiency does not affect HSC and MPP compartments

but rather progenitors, causing their increased proliferation (58).

p21Cip is not required for HSC quiescence in homeostasis (59) but

becomes critical during the stress response, as it is a target gene of

p53 (60). INK4 family CKI p16INK4A is dispensable in young mice

(61); however, in old mice, it is associated with age-related HSC

decline (62). Surprisingly, p18INK4C deficiency leads to increased

cycling of HSCs due to enhanced self-renewal capacity, which in

turn results in improved functionality (63). The relevance of other

INK4 family members for HSC quiescence, p15INK4B and p19INK4D,

has to be defined in further research.

Within the context of dHSCs, it has been shown that they are

characterized by low protein levels of CDK6 (24) along with high

levels of p57Kip2 CKI (25). Monitoring p27Kip1 activity has been

suggested for defining dHSCs using mVenus-p27K– reporter mouse

(46). It should be noted, however, that this reporter allows only 50%

enrichment for label-retaining dHSCs (46). The deletion p21Cip did

not alter the frequency of H2B-GFPhi HSCs (28), indicating its

nonessential role for dHSCs. The potential contributions of other

CKIs to the deeply quiescent state typical for dHSCs remain to be

fully investigated.
5.3 Transcription factors

The expression levels of Myc oncogene, which promotes cell cycle

activity via repression of p21Cip and is also necessary for HSC

differentiation (64, 65), are low in dHSCs (24). While other TFs

have been shown to support HSC quiescence, their role remains

unexplored for dHSCs. Gfi-1 (growth factor independent 1) is a zinc-

finger transcriptional repressor recruiting histone-modifying enzymes

to suppress the transcription of target genes. Gfi-1 is also essential for

lymphopoiesis and myelopoiesis (66). Studies using transgenic mice

revealed that deletion of Gfi-1 leads to increased proliferation of either

LSK (Lin- Sca-1+ c-Kit+ (67)) compartment andHSCs (LSK Flt3- (68),

LSK CD48- CD150+ (69)) via decreased p21Cip mRNA expression

(68), with subsequent loss of their functional capacity in competitive

repopulation assay. Additionally, low levels of Gfi-1 transcripts are

associated with an inferior prognosis for acute myeloid leukemia

(AML) patients (70) and can lead to early transformation into blast

crisis in chronic myeloid leukemia (CML) (71). Gfi1b is a paralogue of

Gfi-1 and a transcriptional repressor. The absence of Gfi1b leads to

increased HSC proliferation without compromising their

repopulation capacity (72). In the bulk RNAseq dataset comparing

the transcriptome of dHSCs, aHSCs, andMPPs (24),Gfi1b expression

is similar in all three populations, whereas Gfi-1 expression is elevated

in dHSCs compared to other populations, suggesting that Gfi-1 can

indeed regulate the quiescent state of dHSCs. Indeed, loss of Gfi-1
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leads to decreased frequency of H2B-GFP-retaining HSCs, indicating

that it is indispensable for dHSCs (28).

Egr1 (Early growth response 1) is an immediate-early response

(IER) gene highly expressed in HSCs (LSK Flt3-) in homeostasis,

whereas its expression is downregulated upon stimulation with

chemotherapy and G-CSF. The lack of Egr1 causes enhanced HSC

proliferation along with their egress from BM to PB. Despite this,

Egr1-/- HSCs demonstrate comparable regenerative capacity to that

of wild-type HSCs in the first two rounds of transplantation into

recipient mice, although Egr1-/- HSCs exhibit a more rapid loss of

function in subsequent serial transplantation. Mechanistically, it

has been suggested that Egr1 supports HSC quiescence via

decreased levels of Bmi1, an important epigenetic regulator,

whose role will be discussed later, and Cdk4 along with increased

levels of p21Cip (73). Upon HSC activation, Egr1 is suppressed by

Cdk6 (56). As for dHSCs, it has been proposed that signaling

mediated by niche-derived netrin-1 via its receptor Neo-1 leads to

an increase in Egr1 levels and a decrease in Cdk6 levels, thereby

supporting HSC dormancy (27).

Intriguingly, we found that Fos, another member of IER genes, is

enriched in dHSCs (25). c-Fos is recognized as a crucial positive

regulator of myeloid differentiation (74) and demonstrates transient

expression in stimulated cells, leading to cell cycle progression (75,

76). A previous study has reported that the IFNa/b inducible c-Fos

overexpression suppresses the in vitro proliferation and colony

formation of Lin- Sca-1+ cells (77). However, this population

mainly contains progenitor cells and a very small amount of

dHSCs. Therefore, the role of c-Fos in the regulation of dHSC cell

cycle remained unexplored. In our work, we have shown for the first

time that c-Fos is regulated by the enzymatic activity of CD38 and

supports the dormancy of adult HSC under physiological conditions

via p57Kip2 cell cycle inhibitor (25). In line with our finding, another

study reported that in contrast to adult dHSCs, the expression of Fos

is downregulated in highly proliferative fetal HSCs (78). While adult

HSCs attain quiescence approximately four weeks post-birth (79), the

specific timing and factors facilitating the emergence of the dHSC

population are yet to be identified and represent an area for

future investigation.

Other TFs supporting HSC quiescent state were identified (12).

Among these are tumor suppressor p53, which acts via Gfi1 and

Necdin (80); FoxO family TF Foxo3a, which suppresses the

production of ROS and increases levels of p27Kip1 and p57Kip2

(81); homeobox family TF Pbx1, whose loss leads to reduction in

p57Kip2 (82); another homeobox family TF Meis1, which decreases

the levels of Ccnd1 (83, 84); nuclear receptor superfamily TF Nurr1,

which likely upregulates p18INK4C (85); interferon regulatory factor,

IRF2, acting via upregulation of p27Kip1 and p57Kip2 (86); and basic

leucine zipper family TF HLF (hepatic leukemia factor) exerting its

function via upregulation of IRF2 (87). Among these TFs, only HLF

was suggested as a potential TF that regulates dHSCs, as its

expression was exclusively elevated in CD150hi dHSCs (47).

Analysis of RNAseq datasets for dHSCs has not revealed any

enrichment of other aforementioned TF genes in dHSCs,

indicating that their specific roles in the context of dHSCs need

to be individually validated.
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5.4 Metabolism

The role of metabolism in the maintenance of dHSCs is

fundamental to their functionality. By their nature, dHSCs reside in

a state of deep quiescence accompanied by markedly low levels of

metabolic and synthetic processes. Additionally, most HSCs reside in a

hypoxic BM microenvironment with O2 levels ranging between 1 to

4% (88), subjecting dHSCs to chronic hypoxia. Signaling pathway

enrichment analysis has indicated a downregulation of TCA

(tricarboxylic acid) cycle-related genes and mitochondrial

respiratory chain complex genes in dHSCs (24, 25). Approximately

60% of label-retaining dHSCs exhibited low mitochondrial membrane

potential (MMP), as evidenced by TMRE (tetramethylrhodamine

ethyl ester) staining, compared to more actively dividing HSCs. The

transcriptional profiles of MMPlo HSCs closely resemble those of

dHSCs, highlighting low mitochondrial activity as a key determinant

of HSC dormancy. This lowMMP is responsible for diminished levels

of reactive oxygen species (ROS), thereby protecting them from

apoptosis and accumulation of DNA damage. Interestingly, dHSCs

also demonstrate lower glycolytic rates compared to their cell cycle-

primed counterparts, maintaining a minimal level of metabolism

essential for their sustenance. Lysosomes have been suggested as

principal mediators of this reduced metabolic activity, with

quiescent HSCs enriched in large lysosomes, which have a lower

degradation capability and engulf mitochondria, thus limiting their

metabolic function. Inhibition of lysosomal activity, followed by

transplantation assay, revealed that reduced lysosomal function

enhances HSC repopulation capacity (89). Therefore, the metabolic

profile of dHSCs is not just a passive outcome of their dormancy but

actively contributes to the maintenance of their stem cell identity.

The further characterization of dHSC metabolism is challenged

by their rarity, with approximately 700-1000 cells present in the

entire murine BM (23, 24), making techniques like the Seahorse

assay not feasible. However, the development of low-input

metabolomics tools should facilitate future research in identifying

other metabolic contributors in dHSC biology [reviewed in (90)].
5.5 Epigenetic regulators

Epigenetic regulation modulates gene expression via various

mechanisms, including DNA methylation, histone modifications,

and non-coding RNAs, such as microRNAs and long non-coding

RNAs. The minimal levels of metabolic activity and biosynthesis

observed in dHSCs, along with blocked differentiation programs,

imply a predominance of closed chromatin states and an abundance

of repressive epigenetic marks. The epigenetic state of dHSCs remains

largely unexplored primarily due to their scarcity. Nevertheless, few

candidates have been suggested as potentially key players in dHSC

biology. Bmi1, a component of the Polycomb repressive complex 1

(PRC1) that induces a repressive chromatin state, is critical for the

self-renewal capacity of HSCs (91). Despite its consistent expression

levels in both dHSCs and active HSCs (24), Bmi1 likely plays an

important role in dHSC self-renewal. A study by Qiu and colleagues

suggested the potential roles of SmarcA4, a component of SWI-SNF

chromatin remodeling complex, and Mllt3/AF9 (myeloid/lymphoid
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or mixed-lineage leukemia; translocated to, 3), a chromatin reader

component of the super elongation complex (SEC), in CD150hi label-

retaining dHSCs (47). Later studies have demonstrated that SmarcA4

might be responsible for HSC quiescence upon stress (92), whereas

Mllt3 has been shown to be a crucial regulator of hHSC stemness

(93). Furthermore, a marked increase in the expression of Satb1, a

chromatin organizer, was found in dHSCs (24). Previous studies have

shown that a lack of Satb1 leads to a loss of HSC quiescence and

enhanced differentiation (94), underscoring its potentially important

role in dHSC regulation. Finally, advancements in low-input and

single-cell epigenomics hold promise for uncovering other players in

maintaining the epigenetic landscape of dHSCs (95, 96).
6 Discussion

In this review, we argue that separating dormant and quiescent

HSCs is not a question of mere semantics; in fact, distinguishing

between them is crucial, highlighting dHSCs as a unique subset.

Cabezas-Wallscheid et al. have demonstrated that HSC transition

through gradual intermediate states of quiescence before reentering

the cell cycle rather than through a binary on/off switch, with dHSCs

being the most quiescent subpopulation (24). Another intermediate

state, the Galert state, has been first identified for muscle stem cells

(MuSCs), implying that such MuSCs are activation-primed but still

quiescent. This state, marked by activation of mTORC1 expression,

manifests after the distant muscle injury and endows MuSCs with

enhanced regeneration potential. Similarly, HSCs exhibit a Galert state

in response to muscle injury, indicating at least two distinct quiescent

states. Galert stem cells revert to the G0 state after stressor removal and

regeneration (97). It is unknown whether some of the HSCs in a

steady state are predisposed to switching into Galert upon stress.

Nevertheless, this demonstrates a dynamic quiescence landscape.

dHSCs add another level of complexity to this model. While their

ability to switch into the Galert state remains unexplored, they are

characterized by a deeper quiescence than other HSCs in the G0 cell

cycle phase, withmarkedly reduced biosynthesis andmetabolism. These

properties are tightly linked with the enhanced functionality of dHSCs,

serving as a reservoir for HSCs that are activated upon severe stress. The

underlying reason for the difference between the extremely low division

rate of dHSCs andmore prone to entering the cell cycle quiescent HSCs

in homeostasis remains unclear (98). Future studies will reveal whether

this difference is mediated by distinct mechanisms keeping quiescent

HSCs and dHSCs in the G0 phase or by differing mechanisms

controlling the exit from the G0 phase for both populations.

dHSCs hold promise for the development of therapeutic strategies.

Identifying specific surface markers for human dHSCs could enable

the enrichment of highly potent donor HSCs, enhancing the success of

transplantation outcomes. Future studies are essential to explore

strategies for mobilizing dHSCs without depleting their reserve.

Hematological cancers often lead to healthy HSC dysfunction and

resultant pancytopenias (99), as these HSCs become trapped in

dormancy by cancer cell byproducts. Developing therapies to

activate dHSCs in the context of cancer could unlock further clinical

potential. Notably, many hematologic malignancies, such as chronic

lymphocytic leukemia, AML, and multiple myeloma, exhibit high
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levels of CD38 expression (100). The coculture of hHSCs with CD38+

tumor cells, in the presence of inhibitor targeting CD38 or cADPR

antagonist, revealed that inhibition of CD38 enzymatic activity led to

the cell cycle entrance of hHSCs. Moreover, human bone marrow

imaging showed that quiescent hHSCs colocalized with CD38+ cells in

healthy patients (25). We propose that, through a paracrine

mechanism, a tumor microenvironment enriched with the products

of CD38 ecto-enzymatic activity may suppress the cell cycle of healthy

hHSCs, leading to cancer-related pancytopenia. Therefore, inhibiting

CD38-mediated cADPR production might support healthy

hematopoiesis in patients with hematologic malignancies.

Exploring the regulatory mechanisms behind dHSC quiescence

can provide crucial insights into the survival tactics of dormant

cancer stem cells, particularly within AML. AML is characterized by

a cellular hierarchy dominated by leukemia stem cells (LSCs) that

share several stem-like features with dHSCs, such as self-renewal

capabilities, the potential to differentiate into blast cells, and

notably, a resistance to chemotherapy attributed to their dormant

state. This dormancy is a key factor in the persistence of LSCs and a

significant cause of AML relapse (101). By comparing the dormancy

mechanisms of dHSCs and LSCs, it would be possible to identify

novel therapeutic targets to disrupt the persistence of LSCs.

Consequently, this could lead to more effective leukemia

treatments and a decrease in the rates of relapse in AML.
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