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Myeloproliferative Neoplasms comprise a heterogeneous group of diseases

characterized over the past two decades by the acquisition of somatic

mutations in hematopoietic stem cells, leading to a pre-leukemic state. The

natural history of the disease is marked by the sequential acquisition of genetic

events that play an essential role in the phenotype, evolution and response to

treatment of the disease. Indeed, disease progression is as heterogeneous as the

variety of genetic abnormalities found in individual patients, some of whom lead

to disease evolution with a pejorative prognosis, while others persist in a benign

manner. In order to better explore these questions, it is important to better

understand: (1) the genetic structure of the tumor through dynamic

reconstruction of clonal architecture (2) the factors favoring the development

of certain clones and their expansion, some of which are governed by Darwinian

laws. These parameters could help explain the heterogeneity between MPN

patients with similar genetic profiles, and prevent the emergence of clones

identified as aggressive by the use of innovative therapeutic strategies targeting

new pathways to prevent early transformations in poor prognosis MPN subtypes.
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Introduction

BCR-ABL1-negative myeloproliferative neoplasms (MPN) include essential

thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (MF) (1, 2).

They represent chronic hematological malignancies whose major risk is the occurrence of

thrombosis, but they can also evolve into secondary myelofibrosis or acute leukemia in 10

to 30% of patients (3). There is a considerable heterogeneity in the disease evolution among

patients, which is not clearly understood and cannot be accurately predicted. In the current

state of knowledge, molecular abnormalities appear to be one of the main parameters

associated with this heterogeneity. MPN are characterized by the acquisition in the

hematopoietic stem cells of mutations that activate not only the JAK2/STAT5 pathway
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but also STAT3 and, either in parallel or consecutively, PI3K-AKT

and MEK-ERK pathways. These mutations, considered as priming

the phenotype and called “driver mutations”, affect the JAK2, MPL

or CALR genes (4–9). Over the course of the disease, some patients

may acquire one or multiple additional mutations that can be part

of the MPN clone or not. Therefore early stages of MPN are usually

tumors with a simple molecular profile that may acquire a much

more complex clonal architecture over time. An important question

is to understand how these tumors evolve at the genetic level which

was reviewed elsewhere (10). The aim of this review is to better

describe how the tumor develops a complex molecular profile and

to highlight the main events and environmental factors that reshape

the genetic structure of the MPN tumor cells over time.
An oligoclonal disease

Even before the discovery of the JAK2V617F mutation (4), it has

been acknowledged that MPN are clonal (11, 12). An important

question has long been to determine the timing of the acquisition of

the mutations that trigger the disease. Indeed, several studies have

shown that it is possible to detect mutations associated with myeloid

hemopathies in the blood of healthy subjects, defining the notion of

clonal hematopoiesis of undetermined potential (CHIP), among

which the JAK2V617F mutation is quite frequently found (13, 14).

Moreover, several studies have reported the possible detection of

JAK2V617F mutation several years before the clinical development of

an MPN (15, 16), suggesting that this mutation does not give an

intense proliferative advantage as previously thought, and that it

may take decades for the disease to develop. While one study

reported that the JAK2V617F mutation could already be present in

cord blood (17), the probable acquisition of this mutation during

childhood or the prenatal period was suggested in several MPN

patients (18, 19). In these studies, the latency period between the

acquisition of JAK2V617F mutation and the diagnosis of MPN was

several decades. It therefore appears that clones harboring MPN

driver mutations can arise and likely take many years to expand to a

clinically detectable level, possibly depending on the influence of

intrinsic and extrinsic factors.

In addition to driver mutations, mutations considered

“additional” can also be detected, targeting other genes involved in

various cellular processes, all involved in the regulation of gene

expression: intracellular signalling pathways, epigenetics (DNA

methylation, post-transcriptional histone modifications),

transcription factors, RNA splicing. Thus, from the early 2010s it

appeared that MPN were less likely monoclonal diseases with

accumulation of mutations in a single clone, but more likely

oligoclonal with the coexistence of several molecularly distinct

clones (20, 21). However, it was rapidly shown that the clonal origin

of mutations is complex, as 2 different patterns can be distinguished:

on the one hand, patients who first acquire a mutation in a driver gene

and then additional mutations, and on the other hand, patients who

acquire driver mutations within cells that have already acquired a

mutation in genes such as TET2 or DNMT3A.

The presence of additional mutations has been shown to have

a significant impact on patients ’ prognosis. Indeed, the
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accumulation of several mutations in itself represents a poor

prognostic factor in MPN patients, the number of mutations at

diagnosis being associated with the risk of transformation (3, 22).

Moreover, certain mutations are particularly associated with a

poor prognosis. A group of high-molecular-risk mutations

affecting the ASXL1, EZH2, SRSF2 and IDH1/2 genes has been

defined (23), to which have been added mutations in the TP53

(24), NRAS/KRAS (25, 26) and NFE2 (27) genes. There are now

several prognostic scores for MPN that have incorporated

molecular data. Recently the presence of some mutations was

shown to have an impact on treatment sensitivity. Indeed, the risk

of developing resistance to hydroxyurea seems higher in patients

with mutations in TP53 (28) or genes regulating RNA splicing

(29), and mutations in the RAS pathway are more frequently

associated with resistance to ruxolitinib (25, 26). Confirmation of

the deleterious role of the co-occurrence of JAK2V617F mutations

with some of these mutations has been provided by mouse models.

For example, the transduction of JAK2V617F in the bone marrow

cells of TP53 knockout mice increased the occurrence of leukemia

in recipient mice (30).

Similarly, while deletion of the EZH2 gene does not induce a

marked phenotype in mice, crossing EZH2 knockout mice with

JAK2V617F transgenic mice showed an accelerated onset of

myelofibrosis and a very marked shortening of the lifespan of the

mice (31). Same observations were described with the inactivation

of ASXL1 and IDH2 mutations (32, 33). Conversely, combined with

SRSF2 mutants, JAK2 mutated MPN do not accelerate the evolution

of the disease whereas patients seem to evolve (23, 34) highlighting

the limits of those mouse models. The use of human

xenotranplantation models would probably help resolving those

discrepancies even though still technologically challenging. Overall,

these observations demonstrate that certain additional mutations

expressed in the JAK2V617F clone modify cell fate and can accelerate

the transformation of MPN, confirming that clonal evolution is an

important milestone linked to clinical evolution.
Clonal evolution in MPN: an example
of multistep process in
cancer evolution

Although it was quickly accepted that ET, PV and MF can

clinically evolve from one entity to another, the concept that MPN

could evolve at the genetic level took 50 years to establish. Indeed,

studies of X chromosome inactivation patterns on female samples

identified the clonal nature of the disease before the first molecular

markers and additional mutations were discovered (12, 35). After

the description of the first acquired mutations in MPN, one of the

questions that quickly arose was how these mutations are acquired

and distributed within the tumor. It is now well established that the

driver mutation occurs in HSCs, giving rise to the MPN phenotype,

while additional mutations acquired within the so-called driver

clone contribute to the evolution of the disease, as shown by mouse

models with JAK2V617F an additional mutations (31, 33, 34, 36). A

linear pattern of mutation acquisition in the same cells is quite rare

and a branching pattern of mutations is most often observed in
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MPN. Altogether, this leads to the frequent presence of various co-

existing clones within the same tumor (10, 18, 19, 37–39). A novel

and possibly more accurate vision of MPN could be envisaged to

evaluate the prognosis of patients no longer based on the numbers

and types of mutations but on the numbers and types of clones

present at one time point in the tumor (Figure 1). Furthermore, the

clonal architecture of MPN is a dynamic process, with clones

appearing or disappearing and clones that can increase or

decrease in length during disease evolution. Therefore, patients’

prognosis may rely on the clonal evolution of the disease and

longitudinal study of clonal architecture could be of high

clinical relevance.
Environmental factors modifying
clonal evolution

From a Darwinian point of view, one of the major questions

posed today, and because we know that multiple clones co-exist

within the tumor, is to identify and better understand how

environmental factors promote or, on the contrary, inhibit the

expansion of a clone. The fitness of clones is the result of their own

proliferation rate, their characteristics in terms of metabolism

requirements and their ability to resist under a given selection

pressure (40, 41).
Inflammation

Inflammation and driver mutations in MPN
Chronic inflammation is a hallmark of MPN which has been

well described (42) andMF development is associated with the most

severe level of inflammation (43). Among various mechanisms of
Frontiers in Hematology 03
inflammation, the most widely described in MPN is due to cytokine

dysregulation. Indeed, a large amount of literature has been written

on this topic, and many cytokines have been implicated. TGF-b was

one of the first cytokine identified as hypersecreted in HSPCs from

MF patients (44, 45). Its role in the development of myelofibrosis is

well established in several models, including murine models

overexpressing the thrombopoietin which rapidly develop

myelofibrosis (46). The mechanism through which the TGF-b
secreted by megakaryocytes in the bone marrow niche

participates in myelofibrosis development was recently shown

(47). More recently, the number of inflammatory cytokines

identified as upregulated in MPN has been steadily increasing.

For instance, IL-8 is overexpressed in MPN, via the transcription

factor NFE2 which is frequently mutated in these diseases (48) and

lipocalin-2 plays a pro-inflammatory but also a direct pro-fibrotic

role in MPN (49). Interestingly, the JAK2V617F mutated cells were

shown to be hypersensitive to TNFa (50), one of the most important

inflammatory cytokines. Also, the IL-6 pathway is hyperactivated in

CALR-mutated MPN, which is an important inflammatory

pathway associated to myelofibrosis development (51–53). In

addition, several inflammatory pathways are interdependent and

may contribute to deregulation of key pathogenic processes

involved in MPN. For example the IL-4/IL-13 axis that activates

the TGF-b pathway has been shown to be deregulated in MPN,

explaining in part the deregulation of this pathway (54). Very

recently, overproduction of IL-1b by the JAK2V617F clone was

implicated in bone marrow fibrosis in mouse models but was also

shown to be a major factor favoring the clonal expansion of

JAK2V617F-mutated cells (55, 56) providing a link between

inflammation, fibrosis and clonal selection.

All these data given, it is still rather unclear whether

inflammation is a cause or a consequence of MPN development

(57). From a genetic point of view, although various models have
FIGURE 1

Model of leukemogenesis and clonal evolution in Myeloproliferative Neoplasms. Myeloproliferative Neoplasms are characterized by the acquisition
of driver mutations in a hematopoietic stem cell. During disease progression, additional genetic events are acquired sequentially in cells carrying the
driver mutation, leading to an oligoclonal disease. This intratumoral heterogeneity contributes to very different outcomes according to the patients.
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been proposed, the question remains as to whether the presence of

the mutation induces an inflammatory phenotype, or whether pre-

existing inflammation is responsible at least in part for the clonal

evolution (58). In the era of molecular characterization of tumors, a

number of new data allow us to better answer the question. Several

studies in various in vivo models of MPN showed strong evidence

that constitutive activation of the JAK2/STAT5 pathway due to the

acquisition of a driver mutation induces a major inflammatory

phenotype, which is highly implicated in the disease (59–61).

Recently, studies combining at the single cell level the genotyping

of specific genes with the analysis of transcriptome (60, 62) as well as

chromatin accessibility showed that JAK2V617F mutated HSPCs

exhibited specific proinflammatory signatures with accessibility to

DNA motifs binding NF-kB or JUN/FOS factors. These approaches

also allowed to highlight epigenetic modifications specific to mutated

erythroid or megakaryocytic progenitors, demonstrating that the

consequences of the mutations are different according to the

differentiation stage and cellular context (63).

Finally, inhibitors of the JAK-STAT pathway such as ruxolitinib

are widely used to treat MPN with important efficacy on symptom

burden (64, 65). The main explanation for such efficacy seems to be

linked to their potent anti-inflammatory effect (57, 64, 66). Some

other anti-inflammatory therapies have also demonstrated activity

against the mutated cells such as anti-IL1b therapies (52) and

Interferon alpha has been reported to be effective at least in part

through its anti-inflammatory property (56, 67).

Inflammation and additional (non-driver)
mutations in MPN

The identification of circulating somatic mutations in the

absence of clinical or biological evidence for any hematological

disorder defines CHIP (ref 2014), which has been associated with an

inflammatory phenotype. TET2 is one of the most frequently

mutated genes in both MPN and CHIP. The TET2 protein

represses IL-6 induction indirectly through the recruitment of

histone deacetylases on its promoter (68). This is in line with the

inflammatory phenotype observed during TET2 KO (69). The

presence of TET2 mutations in persons with CHIP has been

associated with an excess of various cardiovascular events (70)

and a mechanism involving the inflammasome has been proposed

(71). Similarly in pathological situations, TET2 mutations are

strongly associated with inflammation in MPN and MDS (72, 73).

DNMT3A-mutated HSPCs, on the other hand, have been shown to

be selected in an inflammatory context (74). Single-cell studies

capturingDNMT3A R882Hmutations and coupling it to chromatin

accessibility showed an inflammatory phenotype of mutated HSPCs

compared to their wild-type counterpart (75), a finding in

agreement with the anti-inflammatory properties of this gene (76)

and explaining the described association between inflammatory

diseases and DNMT3A clonal hematopoiesis (77). Finally, in MPN,

JAK2/DNMT3A double mutants have been shown to cooperate to

induce myelofibrosis via aberrant inflammation and self-renewal of

HSPCs (78). Similarly, increased expression of IL-8 found in MPN

(43) has been shown to be caused by overexpression of NFE2 (48),

itself regulated by the histone demethylase JMJD1C (79). It would

thus be interesting to study whether in an NFE2 mutated context,
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which has been shown to give a poor prognosis in MPN (27), IL-8

expression is increased and involved in clonal specific progression.

Finally, after the acquisition of TP53mutations clonal dominance of

mutated cells is dependent on an inflammatory environment which

participates to the transformation toward acute leukemia (60). This

field of research is important since specific causes of mutation-

independent inflammation could become useful new targets in

MPN therapy for a subset of patients.

Altogether, because the genetic evolution of MPN appears to be

partly shaped by inflammation, one can consider that MPN is a

human inflammation model for cancer development (58) (Figure 2).
Treatments

MPN are chronic diseases that, in a large proportion of patients,

require cytoreductive therapies on the long term. However, the

correlation of a given treatment with the risk of transformation in

MPN patients is difficult to establish and still controversial. It has been

strongly suggested that 32Phosphorus or alkylating agents such as

pipobroman are associated to a higher rate of MDS/AML

transformation and can promote the expansion of a subpopulation

of more aggressive clones. Still, few studies have investigated the clonal

composition of tumors developed after treatment with these agents

(80, 81). The most frequently used cytoreductive treatment in MPN is

hydroxyurea (HU), which has long been suspected to promote blastic

transformation and also the selection of TP53-mutated cells in MPN

(28, 29, 81). However, no definitive demonstration of a major role for

HU in TP53-mutant clonal selection has emerged until now. To the

contrary, the increase of TP53-mutations allelic frequencies under

treatment with MDM2 inhibitors was recently reported in a phase II

clinical trial inMF patients (82). An important element reinforcing the

idea of environmental selection pressure by drugs was the regression

of these clones at treatment discontinuation. We were able to confirm

in vitro the potential for MDM2 inhibitors to promote the expansion

of TP53-mutated clones. Furthermore, using single cell DNAseq

analysis we observed that the selection pressure occurred in TP53

and JAK2V617F doubly mutant cells (37).

Another demonstration that treatments used in MPN could

change the clonal composition of the tumor came with the

discovery that Interferon alpha (IFNa) was able to specifically

target JAK2V617F or CALR mutated clones (83–86). However,

identification of resistance to IFNa in some patients with several

mutations suggested that the presence of additional mutations could

interfere with this process (87). Indeed, the role of DNMT3A

mutations in the clonal resistance to IFNa has been recently shown

(88, 89), although the mechanism remains only partially explained

(90). In an MPN setting, Usart and al elegantly demonstrated very

recently that loss of Dnmt3a increased self-renewal of of Jak2v617f

mutant HSCs and mitigates their attrition by IFNa (91).
Intraclonal cooperation and competition

Since the discovery that MPN are oligoclonal diseases, the

question has arisen of the distribution of mutations within the
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tumor, thus defining subclones. Depending on the study, between

one and more than ten different clones can now be identified, giving

an idea of the complexity of clonal hierarchy in MPN (37–39, 92).

These clones probably interact with each other and may influence

tumor evolution over time. Therefore it may be envisioned that the

interactions between these clones may be synergistic defining

positive clonal cooperation, or on the contrary these interactions

may prove to be deleterious between clones, demonstrating a rather

competitive character (93). Even though most interactions among

subclones are neutral, an ecological interaction between clones has

been reported in solid tumor models with detectable interactions

that should be positive or negative, resulting in a phenotypic switch

(94). Such cooperative or antagonistic interactions, due for instance

to metabolite exchanges, could apply to MPN where multiple clones

of various sizes coexist. In particular, the presence of a CHIP clone

aside from the MPN clone could, directly or indirectly, regulate

tumor development. The impact of such process on clinical

evolution has been suggested (39) but the mechanisms explaining

these effects remain to be studied.

Understanding the extent of cooperation and communication

among MPN clones will be an important step in the future. Imaging

technologies such as mass cytometry applied to bone marrow or

spleen of patients with MPN could provide an accurate phenotypic

characterization of diverse genotypic cell types. This has given greater

granularity to early observations of clonal cooperation, and

relationships between cells can now be described in detail (95–97).

Multi-omic studies associated to the genotype of each clone within

the same sample that can be mapped spatially to the tumor will help

to further define functional examples of tumor heterogeneity.
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Clonal cell-microenvironment interactions
and communication

The differential interaction of clonal cells harboring different

mutations with other cells in the microenvironment has been clearly

demonstrated, but few studies showed a direct effect of these

exchanges on clonal selection. In glioma models for example, it was

shown that wild-type IDH tumors cause greater neuronal cell

interaction and signaling than mutated IDH tumors (98). In

lymphoid malignancies, it has been shown recently that TET2 and

IDH2 double mutant cells in T follicular helper cells were able to alter

cross-talk with germinal center B cells that promotes B cell clonal

expansion while decreasing Fas-FasL interaction and reducing B cell

apoptosis (99). Likewise, in myeloid malignancies, Asxl1-/- and

nrasG12D/+ leukemic cells induced Host-derived wild-type T cells

overexpressed programmed cell death protein 1 (PD-1) and T-cell

immunoreceptor with immunoglobulin and ITIM domains (TIGIT)

receptors, leading to a predominant exhausted T-cell phenotype

(100). In hematopoietic models of CHIP, Partial transplantation

with Dnmt3aR878H/+ bone marrow altered function of neutrophils

and Tregs exacerbates CHIP-driven inflammation (101). Samemodel

caused MSCs to upregulate the senescence markers SA-b-gal, BCL-2,
BCL-xL, Cdkn1a (p21) and Cdkn2a (p16), ex vivo and in vivo. This

effect was cell contact-independent and can be replicated by IL-6 or

TNFa, which are produced byDnmt3aR878H/+HSPCs (102). In the

medullary microenvironment of MPN, interaction between neuronal

cells and death of mesenchymal stromal cells has been demonstrated,

promoting the expansion of JAK2V617F clones (103, 104). Although

soluble factors are involved in this process (IL-1b, CXCL12 and
FIGURE 2

Main clonal selection factors in Myeloproliferative Neoplasms. The selection pressures exerted by the tumor are multiple and still poorly described
and characterized. A distinction is made between extrinsic selection factors (toxins, treatments) and intrinsic selection factors (clonal cooperation,
cell-cell interactions, microenvironment), the latter being poorly studied. The genetic evolution of tumors over time combines multiple factors, the
real modeling of which remains a challenge.
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adrenergic agonists), direct interaction also seems to play a role. It

would be interesting to study the impact of direct cellular interactions

between different clones of the same tumor and stromal cells, even if

demonstration of indirect interactions via cytokines have already

been described (105). Another evidence of cell interaction

mechanism leading to evolution of myeloid disease and involving

interaction of clonal cells with the microenvironment was provided

by transplantation of human MF HSPCs into immunocompromised

mice experiments, leading to murine AML. This study showed that

the secretome-driven myeloproliferation of murine cells can occur

independently of both the type of mutation and the mutational

burden of transplanted HSPC patient cells (106).
Clonal evolution: a path
towards transformation?

Monitoring clonal evolution is obviously of clinical interest, as the

risk of transformation has been correlated with genetic changes in the

tumor. The genetic basis of transformation has been well described

previously (107–110). As discussed above, it has been shown that the

accumulation of mutations is a clear unfavorable prognostic factor in

MPN, and that the number of HMRmutations at diagnosis correlates

with the risk of transformation whatever the MPN subtype, as well as

high-risk mutations such as TP53 (111, 112). However, to date, it is

not exactly known why some patients with the same molecular

lesions will experience leukemic progression while others will not.

If we take the example of TP53 mutations, we can find contradictory

evidence in the literature. Firstly, the risk of transformation in

JAK2V617F-TP53 double mutation models is still debated as some

mouse models do not progress to secondary AML while in patients

this risk of progression is clearly present (30, 60, 113, 114). The

second observation is that many patients with TP53mutations can be

followed for a long time without progressing to transformation, even

without specific treatment. Finally, we know that a non-negligible

proportion of transformations arise from a driver mutation-negative

clone, pointing to the importance of the molecular composition of the

tumor and the clones present throughout the tumor process (107)

(Figure 1). Although it is well established that a second event is

required to accelerate the transformation in a TP53-mutated context,

we still do not know precisely how this event occurs in a TP53

heterozygous MPN clone. New single cell technologies combining

genotype and transcriptomics or mutliomics on longitundinal

samples of MPN throughout clinical evolution will help us get

through these questions.
Conclusion

The complexity of myeloproliferative neoplasms (MPNs)

reflects the intricate interplay between genetic mutations, clonal

evolution, and microenvironmental factors. This review has

highlighted how MPNs are driven by a sequential accumulation

of mutations that not only initiate but also fuel disease progression
Frontiers in Hematology 06
and transformation. The dynamic nature of clonal evolution, where

subclones with distinct genetic profiles compete and cooperate,

adds further complexity to MPN pathogenesis. In addition, the

microenvironment plays a crucial role in shaping clonal behavior,

influencing both the expansion of malignant clones and their

interaction with supporting cells. Lastly, acute or chronic

environmental context including inflammation and selection

pressure by the therapies used during the chronic course of the

illness may further contribute to disease progression.

As we continue to unravel the molecular mechanisms

underlying MPNs, it becomes evident that understanding clonal

evolution in its full context is essential for improving therapeutic

strategies. Future research, leveraging advanced technologies like

single-cell sequencing and integrated multi-omics, will be key to

uncovering new insights into MPN initiation, progression, and

therapeutic resistance. By integrating these discoveries into

clinical practice, we can better predict disease trajectories and

optimize treatment approaches, ultimately aiming for more

personalized and effective care for MPN patients.
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