
Frontiers in Hematology

OPEN ACCESS

EDITED BY

Zsuzsa Bagoly,
University of Debrecen, Hungary

REVIEWED BY

Valentina Giudice,
University of Salerno, Italy
Danilo De Novellis,
Ospedali Riuniti San Giovanni di Dio e Ruggi
d’Aragona, Italy

*CORRESPONDENCE

Jahan Abdi

jabdi@csudh.edu

RECEIVED 19 May 2024
ACCEPTED 10 February 2025

PUBLISHED 03 March 2025

CITATION

Abdi J and Nasr P (2025) Abnormalities of
primary and secondary hemostasis in
multiple myeloma: insights from studies on
thrombopoiesis, the coagulation system, and
the bone marrow microenvironment.
Front. Hematol. 4:1435193.
doi: 10.3389/frhem.2025.1435193

COPYRIGHT

© 2025 Abdi and Nasr. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 03 March 2025

DOI 10.3389/frhem.2025.1435193
Abnormalities of primary and
secondary hemostasis in
multiple myeloma: insights from
studies on thrombopoiesis, the
coagulation system, and the
bone marrow microenvironment
Jahan Abdi* and Payman Nasr

Department of Clinical Science, College of Health, Human Service and Nursing (CHHSN), California
State University Dominguez Hills, Carson, CA, United States
In multiple myeloma (MM), hemostatic disorders such as thrombocytopenia,

coagulopathies, and thrombophilia are well-documented. These abnormalities

can be partially attributed to therapy, including thrombocytopenia following

treatment with proteasome inhibitors such as bortezomib and carfilzomib or

thrombosis associated with immunomodulatory drugs such as thalidomide and

lenalidomide. However, acquired hemostatic disorders have also been observed

in untreated or newly diagnosed MM patients. This review explores these

abnormalities in both treated and untreated contexts, presenting recent studies

that provide new insights into themechanisms underlying these complications. It

highlights the role of the bone marrow microenvironment, particularly

mesenchymal stromal cells (MSCs) and extracellular vesicles (EVs). Additionally,

the review discusses future research directions on hemostatic disorders,

including bleeding and thrombosis, in MM patients. Overall, this review aims to

be a valuable resource for scientists and clinicians in the field.
KEYWORDS
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Introduction

Multiple myeloma (MM) is a hematologic neoplasm primarily confined to the bone

marrow, characterized by a dominant clone of malignant plasma cells and presenting with

hypercalcemia, renal failure, anemia, and bone lesions (1). Abnormalities in both primary

and secondary hemostatic systems are significant challenges in the clinical management of

MM patients. For instance, thrombocytopenia is a common and often unavoidable

complication associated with drug treatments (2, 3). Additionally, MM can negatively

impact normal thrombopoiesis, platelet function, and the coagulation process (4, 5).
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Understanding the molecular mechanisms underlying these

abnormalities is crucial for advancing knowledge of MM

pathophysiology. This understanding can aid in identifying new

therapeutic targets and developing improved clinical management

strategies to reduce the risk of serious complications. Early studies

and recent research have provided insights into the impact of

paraproteins on coagulation factors, the effects of MM tumor cells

on platelet production and function, and the role of the bone marrow

microenvironment in impaired thrombopoiesis in MM (5–7).

Despite these advances, gaps remain in our understanding of

how the MM oncogenic process disrupts normal hemostasis.

Further research is needed to elucidate these mechanisms and

improve patient outcomes.
Therapy-related
hemostatic abnormalities

Thrombocytopenia

Chemotherapy-related thrombocytopenia is common in

hematologic malignancies, including MM. Mellors et al.

conducted a retrospective study on MM patients treated with

chemotherapy over 11 years and found that 18% developed

thrombocytopenia, which was correlated with lower overall

survival (OS) and progression-free survival (PFS) (2). Shaw et al.

reported that thrombocytopenia incidence was higher in

hematologic malignancies than in solid tumors, with the highest

rate in MM patients (37.7%) (3). In relapsed or refractory MM

patients, the combination of daratumumab with bortezomib or

dexamethasone resulted in grade 3 or 4 thrombocytopenia in 45.3%

of cases, though it also prolonged PFS (8). Thrombocytopenia was

also observed in patients treated with teclistamab, a bispecific

antibody that targets both T cells and MM cells (9). The exact

mechanisms—whether due to drug toxicity on thrombopoiesis,

altered platelet release dynamics, or direct platelet toxicity—

remain unclear.

Bortezomib-induced thrombocytopenia is unique in its cyclic

pattern and kinetics. Bortezomib-related thrombocytopenia

typically appears within the first 10 days of each treatment cycle,

with a short recovery time and no cumulative or persistent effects.

This is reported to be due to a functional alteration in platelet

budding (proplatelet formation) rather than marrow

megakaryocyte (MK) toxicity (10). Apparently, inhibition of

NFkB activity by proteasome inhibitors (PIs) (11–13) underlies

this effect, as NFkB activity is crucial for platelet budding and

function (14–17). The cyclic nature of bortezomib-related

thrombocytopenia was later demonstrated in Murai’s study in a

mouse model, which showed that platelet count declined on days 2-

4 post-administration and recovered to the normal range on day 6,

however, proplatelet formation was significantly decreased without

affecting bone marrow MKs or their ploidy distribution (18).

Further studies confirmed that proteasome inhibition disrupted

proplatelet formation in human and mouse MKs (19), and mice
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deficient in the proteasome subunit PSMC1 (26S protease

regulatory subunit 4) exhibited severe thrombocytopenia and

early mortality (19). Digital modeling also suggested that pan-

proteasome inhibitors (bortezomib, carfilzomib, and ixazomib)

promoted thrombocytopenia via myelosuppression or inhibition

of (pro-)platelet formation (20). Additionally, Baaten et al. found

that MM patients treated solely with alkylating agents who

developed severe thrombocytopenia (<50×10^3/mL) had impaired

mitochondrial function, highlighting a different mechanism of

drug-induced thrombocytopenia (21).

Thalidomide, an immunomodulatory drug (IMiD), is associated

with thrombocytopenia inMM, potentially through immune-mediated

mechanisms that trigger platelet destruction. Keshava-Prasad et al.

reported a case of thalidomide-induced thrombocytopenia with

increased mean platelet volume (MPV) and elevated MKs in the

bone marrow, suggesting an immune cause for the low platelet count

(<20×10^3/µL) as no other factors were identified (22). Ryuge et al.

documented a case of immune thrombocytopenic purpura (ITP) in an

MM patient on a thalidomide regimen and indicated that the drug

might have modulated normal lymphocytes to produce autoantibodies

against platelets (23). In addition, a more recent case report described a

59-year-old MM patient who developed ITP following lenalidomide

treatment but responded well to standard ITP therapy with intravenous

immunoglobulin (IVIG) (24). These findings support an immune

mechanism underlying IMiD-related thrombocytopenia in MM.

While thalidomide and lenalidomide are more commonly

known to predispose MM patients to thrombotic events,

thrombocytopenia remains an unavoidable, mostly transient,

complication of IMiD therapies in MM. A collective evaluation of

previous reports to date suggests that an autoimmune response

results in the destruction of platelets and the development of ITP in

someMM patients on IMiD therapy. Recognizing this potential side

effect, it is crucial for clinicians to monitor and manage patients

appropriately, adjust treatment regimens, and provide supportive

care as needed.
Thrombophilia (hypercoagulability)

Thrombosis risk factors include hereditary gene mutations,

acquired factors such as surgery, a sedentary lifestyle, and advanced

age. Both the oncogenesis process in cancer and cancer

chemotherapy predispose patients to thrombosis (25). New

treatments, including PIs, IMiDs, and monoclonal antibodies, have

significantly improved the clinical outcomes for MM patients (26)

but have also increased the frequency of thrombotic events, becoming

a major cause of morbidity and mortality (mostly IMiDs and some

PIs) (27–37). Thalidomide and lenalidomide are particularly

associated with a heightened risk of thrombosis, especially when

combined with high-dose dexamethasone and other chemotherapy

(38, 39). Thrombotic incidence can reach up to 26% in some studies

(40–42), with hemostatic changes often developing during the first

month of thalidomide and dexamethasone therapy (43).

Furthermore, venous thromboembolism (VTE) and arterial
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thrombosis in MM patients correlate with higher mortality rates

compared to those without thrombosis (28). Thalidomide was FDA-

approved in 2006 for use with high-dose dexamethasone in newly

diagnosedMM, although the first reports of thalidomide-related deep

vein thrombosis (DVT) in MM patients treated with this

combination appeared in 2001 (44). Table 1 provides further

information related to drug-associated thrombotic events in MM.
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Thrombomodulin, a cofactor for thrombin in activating protein

C and inhibiting coagulation, undergoes transient reduction during

initial therapy, potentially increasing thrombotic risk (45, 46).

Certain drugs such as thalidomide derivatives enhance

myelopoiesis but downregulate PU.1 transcription factor,

promoting promyelocyte accumulation and increased cathepsin

G, a potential thrombotic risk (47).
TABLE 1 Drug-related thrombotic events reported by clinical studies that used IMiD and/or PI treatment modalities.

Drug category Treatment modality Clinical study Comments Reference

IMiDs Oral melphalan and
prednisone chemotherapy
plus thalidomide compared
with melphalan and
prednisone alone

Randomized
controlled trial

Risk of VTE 1-2% during frontline therapy

(27)

IMiDs Melphalan and prednisone
versus melphalan, prednisone
and thalidomide

Meta-Analysis Odds ratio for VTE was 2.4, in favor of melphalan-prednisone

IMiDs Pomalidomide alone or in
combination
with dexamethasone

Multicenter, open-
label, randomized
phase II study

This study showed a lower rate of VTE Fewer data available
regarding thrombogenic potential

PIs Carfilzomib
with lenalidomide and
dexamethasone (carfilzomib
group) or lenalidomide and
dexamethasone alone
(control group)

Randomized
controlled trial
(ASPIRE
investigators)

Incidence of VTE was 13% in the patients treated with carfilzomib,
lenalidomide and dexamethasone vs 6% in those who received only
lenalidomide and dexamethasone

IMiDs Lenalidomide in combination
with doxorubicin or with
other chemotherapies such as
adriamycin, doxorubicin,
or cyclophosphamide

Retrospective cohort
study on
US veterans

The study showed that VTE during the first 6-12 months of therapy
was
associated with increased mortality

(28)

IMiDs Cyclophosphamide,
vincristine, doxorubicin, and
dexamethasone (CVAD)
induction
group vs cyclophosphamide,
thalidomide, and
dexamethasone (CTD) group.

Myeloma IX and
Myeloma XI phase
3 randomized
controlled trials for
newly diagnosed
multiple
myeloma (NDMM)

In Myeloma IX, risk of VTE was higher in transplant-eligible
patients assigned to CVAD induction compared to those in the CTD
arm. For transplant-ineligible patients, VTE risk was higher in
attenuated CTD (CTDa) induction arm compared to the melphalan
and prednisolone (MP) arm. In Myeloma IX, risk of VTE was higher
in transplant-eligible patients randomly assigned to CVAD induction
compared to those in the CTD arm. For transplant-ineligible
patients, VTE risk was higher in attenuated CTD (CTDa) induction
arm compared to the melphalan and prednisolone (MP) arm. In
Myeloma XI, VTE risk was the same for patients under
cyclophosphamide, lenalidomide, and dexamethasone (CRD) or CTD
treatments (transplant-eligible), and for those under attenuated CRD
(CRDa) or CTDa treatments (transplant-ineligible). Thrombotic
events occurred almost entirely within 6 months of
treatment initiation.

(29)

IMiDs Lenalidomide
plus dexamethasone

Safety study The study was performed on 50 patients with recurrent MM, 10%
developed VTE

(30)

PIs Bortezomib vs high-dose
dexamethasone in patients
with relapsed
MM

Randomized (1:1),
open-label, phase 3
study
(APEX
investigators)

The study treated 669 patients with relapsed MM with bortezomib
followed by high-dose dexamethasone. No thrombotic event
was reported

(31)

PIs Bortezomib plus Melphalan
and Prednisone

Phase 3 trial
(VISTA
investigators)

The study treated 682 MM patients with melphalan and prednisone
either alone or combined with bortezomib. It reported a very low
VTE rate.

(32)

IMiDs Lenalidomide
plus dexamethasone

Open label
randomized
controlled trial

The study reported 26% deep vein thrombosis (DVT) in Len + high
dose dexamethasone.
They also concluded that lenalidomide plus low-dose dexamethasone

(34)

(Continued)
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Platelet activation significantly contributes to thrombophilia in

various conditions including myeloproliferative neoplasms (48) and

COVID-19 (49). IMiDs, particularly thalidomide, have been linked to

platelet activation and thrombotic events in MM patients.

Thalidomide increases CD62P expression and PLA (platelet-

leukocyte aggregate) formation in MM patients (50), markers

associated with thrombosis and cardiovascular disease in humans

(51, 52). Further studies demonstrate that IMiDs induce procoagulant

activity (PCA) in MM by enhancing tissue factor exposure and

phosphatidylserine (PS) on monocytes and endothelial cells (53).

Using flow cytometry and confocal microscopy, Guo et al. found a

significantly higher percentage of PS+ blood cells in MM patients vs

healthy donors. In their in vitro studies, incubation of endothelial cells

or blood cells with MM patient’s serum or with IMiDs and

dexamethasone increased PS exposure on these cells (54). Finally,

IMiDs also elevate plasma levels of hemostatic markers in MM

patients, suggesting a hypercoagulable state (55).

Proteasome inhibitor-related thrombosis has also been reported

in MM. While bortezomib has been associated with a low risk of

thrombosis, it has been able to confer some level of protection

against thrombosis if combined with IMiDs the mechanism of

which is unclear (56). On the contrary, carfilzomib, especially in

combination with dexamethasone, has been associated with

increased incidence of thrombotic events in some clinical trials

including ENDURANCE (57). The study by Alanazi et al. suggested

enhanced platelet activation and increased platelet adhesion to type

I collagen as the mechanisms underlying this carfilzomib effect (58).

Additionally, a very recent study identified a germline mutation in

the factor H gene as the cause of complement system dysregulation,

hence an explanation for thrombotic microangiopathy (TMA) in

MM patients following carfilzomib treatment (59).

Incidence of DVT associated with old doxorubicin-based

regimens in MM was also reported (60, 61), which could be (at

least partly) due to increased exposure of PS on platelets or

increased generation of PS-exposing platelet microparticles by

doxorubicin (62).

Findings from all the above studies indicate that IMiDs and

chemotherapy might promote or pave the way for the development

of thrombosis in MM mainly through interaction with components

of the hemostatic system including endothelial cells, platelets and

coagulation pathways.
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Hemostatic abnormalities unrelated to
therapy in MM

Impaired thrombopoiesis: role of the bone
marrow microenvironment

The bone marrow microenvironment in MM is a complex

network of hematopoietic and non-hematopoietic cells, including

stromal cells, macrophages, adipocytes, and endothelial cells, along

with extracellular matrix proteins. This milieu serves as a protective

niche for MM cells, promoting their proliferation, protecting

against treatment, and contributing to bone lesions (63).

Thrombocytopenia is relatively uncommon in MM at diagnosis

despite significant marrow infiltration. This phenomenon may

be partly attributed to the thrombopoietic activity of interleukin-6

(IL-6) and elevated levels of thrombopoietin (TPO), two cytokines

secreted by bone marrow mesenchymal stromal cells (MSCs)

(64, 65). Studies indicate that while IL-6 supports normal platelet

counts in newly diagnosed MM, elevated TPO levels are more

indicative of disease progression rather than active thrombopoiesis,

potentially reflecting a disrupted regulatory role in the bone marrow

microenvironment (66–68).

TPO exerts its effects through binding to its receptor c-MPL on

MK progenitors, regulating platelet production (69). In MM, there

is no reported genetic mutation affecting c-MPL function,

suggesting normal receptor activity despite thrombocytopenia.

Clinical trials with Eltrombopag, a non-peptide TPO agonist,

have shown promise in increasing platelet counts in MM patients

(70, 71), further indicating multifactorial mechanisms in MM-

associated thrombocytopenia.

Bone marrow MSCs, pivotal in supporting hematopoiesis,

including thrombopoiesis (72–74), demonstrate altered functions

in MM (75–78). These MSCs may contribute to impaired

thrombopoiesis through dysregulated cytokine production, such

as transforming growth factor-beta (TGFb) (79), which inhibits

hematopoiesis and promotes MM progression (80–82). In MM,

TGFb also enhances osteoclast activity, contributing to bone lesions

(83). Furthermore, MSCs in MM display distinct transcriptomes

and cytokine profiles compared to their normal counterparts (77,

78). This altered phenotype may disrupt interactions with

hematopoietic stem cells (HSCs), progenitors, and MKs,
TABLE 1 Continued

Drug category Treatment modality Clinical study Comments Reference

was associated with better short-term overall survival and with
lower toxicity.

PIs+IMiDs Bortezomib, Lenalidomide,
Dexamethasone (RVD) or
Carfilzomib, Lenalidomide,
Dexamethasone (KRD) with
Aspirin
or
Rivaroxaban
Thromboprophylaxis

Single-center
retrospective study

A retrospective study of 305 newly diagnosed MM patients who
received RVD or KRD with thromboprophylaxis.
VTE rates in KRD + aspirin, RVD + aspirin, and KRD +
rivaroxaban were statistically significant, 16.1%, 4.8%, and 4.8%,
respectively. This study also shows the advantage of rivaroxaban
prophylaxis vs aspirin.

(35)
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potentially influencing MK function and platelet production

in MM.

Interleukin-8 (IL-8), elevated in MM patients, inhibits normal

megakaryopoiesis and is associated with bone lesions and altered

responses to immune treatments (84–86). The inhibitory effects of

IL-8 on normal megakaryopoiesis were shown in early studies in

which IL-8 inhibited MK colony formation or maturation (87, 88).

Thus, MSCs in MM may contribute to thrombopoiesis

dysregulation through IL-8 and other cytokines, influencing

disease pathogenesis and therapeutic responses. A postulated

mechanism for MSC-mediated impairment of thrombopoiesis in

MM is presented in Figure 1.
Impaired thrombopoiesis: role of
extracellular vesicles (exosomes)

Exosomes, small (30-150nm) extracellular vesicles (EVs) of

endosomal origin, play crucial roles in normal and malignant

hematopoiesis by transferring mRNAs, miRNAs, and proteins

between cells. They are secreted by various cell types, including
Frontiers in Hematology 05
immune cells, MSCs, and tumor cells, influencing diverse cellular

processes such as signaling pathways, proliferation, andmigration (89).

Numerous studies have demonstrated the role of exosomes in

drug resistance, angiogenesis, immune suppression, and bone

lesions of MM (89). Roccaro et al. showed that exosomes released

from bone marrow MSCs and transferred to MM cells play a role in

disease progression. Specifically, they found a lower concentration

of the tumor suppressor miR-15a and a higher concentration of

CCL2, IL-6, g-catenin, and fibronectin in exosomes derived from

BM-MSCs of MM patients compared to exosomes derived from

normal BM-MSCs (90).

Exosomes not only affect tumor cells directly but also modulate

interactions between malignant cells and healthy hematopoietic

stem and progenitor cells (HSPCs) within the bone marrow niche.

They may impair normal hematopoiesis by reducing the viability

and colony formation of HSPCs, particularly affecting late

progenitors such as common myeloid progenitors (CMPs),

megakaryocyte-erythroid progenitors (MEPs), and B and natural

killer (NK) progenitors (91). Notably, elevated levels of miRNAs

such as miR-34a, miR-150, miR-155, and miR-21 in HSPCs treated

with MM-derived exosomes suggest a regulatory role in MK
FIGURE 1

Proposed cellular interaction model for MSC-mediated impaired thrombopoiesis in MM. Within the BM microenvironment, MSCs enhance
proliferation and survival of MM cells through direct adhesion (adhesion molecule signaling) or indirectly through secretion of cytokines such as IL-6
or TGFb. Such interaction also indues secretion of cytokines such as IL-6 and extracellular vehicles (EVs) by MM cells which could, respectively,
induce thrombopoiesis or suppress thrombopoiesis (through inhibition of MK colony formation and maturation) and platelet function. EVs are known
to affect target cells by releasing their miRNA cargo. MM cells may interact with HSCs or HPCs (hematopoietic progenitor cells) and inhibit their
proliferation or differentiation through cytokines such as TGFb. MSCs can also secrete VEGF (vascular endothelial growth factor) which induces
proliferation of ECs (endothelial cells) and angiogenesis. Another cytokine which may mediate MSC-mediated suppression of MK colony formation
and maturation is IL-8. Note: It is important to mention that a plethora of cytokines is involved in the interaction between MSCs and MM cells, only
cytokines related to the context are shown here.
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development. For instance, overexpression of miR-155 in K562 cells

blocked differentiation of these cells to MK (92), and significantly

reduced the number of MKs in vivo (93). miR-155 levels decreased

during megakaryopoiesis in cultured human cord blood and

overexpression of miR-155 impaired MK proliferation and

development (94). However, increased levels of miR-34a and

miR-150 favored MK proliferation and differentiation in other

studies (95, 96), and miR-21 deletion significantly reduced the

frequencies of CMPs, MEPs, and common lymphoid progenitors

in the BM in vivo (97). These findings underscore the complex

regulatory mechanisms mediated by exosomal miRNAs in MM-

associated thrombopoiesis.

Of note, exosomes have heterogeneous effects on hematopoiesis

in other malignancies as well. In acute myeloid leukemia (AML),

EVs impair HSPC clonogenicity and induce quiescence (98), while

in myelodysplastic syndromes (MDS), they exhibit contrasting

effects, enhancing HSPC viability and clonogenicity (99) or

inducing apoptosis and DNA damage (100). These discrepancies

highlight the context-dependent nature of EV-mediated effects on

hematopoiesis, influenced by different malignancies, EV isolation

techniques, and the heterogeneity of EV populations.
Impaired thrombopoiesis: the role of
other factors

In MM, thrombocytopenia is not solely attributed to marrow

infiltration by malignant plasma cells but could also emerge from

various other factors affecting thrombopoiesis. These include issues

at the progenitor level, reduced megakaryopoiesis, or increased

platelet consumption or destruction in circulation.

Studies indicate that as MM progresses, there is a notable

decrease in MK and platelet numbers even in the absence of

treatment. Elevated levels of soluble P-selectin, IL-6, and TPO in

MM patients correlate with disease severity, suggesting impaired

thrombopoiesis at advanced stages (101).

Research by Kuang et al. demonstrated that newly diagnosedMM

patients exhibited impaired megakaryopoiesis and thrombopoiesis,

which worsened with disease progression. They identified metabolic

factors, particularly increased serine secretion by MM cells into the

bone marrow microenvironment, as a significant contributor to MK

impairment via epigenetic modifications (5).

Thrombocytopenia-related bleeding in MM patients, though

uncommon at presentation, can occur more commonly with IgA

paraproteins, in the presence of high concentrations of serum

immunoglobulins and high serum viscosity, conditions which all

affect platelet function (6, 7, 102, 103). Studies have shown a reverse

correlation between platelet counts and IgG2b levels in MM patients,

indicating a potential role of paraproteins in thrombopoiesis

impairment (5).

Qualitative changes in platelet function, such as reduced

adhesion and aggregation responses, are also observed in MM.

These changes have been attributed to direct interactions between

paraproteins and platelet receptors such as GPIb (von Willebrand

Factor receptor) or GPVI (collagen receptor) (104), an increased
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concentration of malondialdehyde (a marker of oxidative stress)

(105), or the effect of a highly negatively charged l dimer (106).

These results indicate that impaired platelet function mostly due to

the impact of paraproteins may underlie bleeding episodes reported

in some MM patients.

Moreover, studies suggest a shortened lifespan of MM platelets

compared to healthy controls, potentially due to abnormal platelet

function or heightened intravascular activation (107, 108), which

could contribute to impaired primary hemostasis in MM.

Overall, the above findings underscore the multifactorial nature

of thrombopoiesis impairment in MM, involving both external

factors from MM cells and bone marrow stroma (cytokines and

EVs) affecting MKs and progenitors, and intrinsic abnormalities

that may contribute to isolated thrombocytopenia.
Impaired secondary hemostasis:
hypercoagulability and bleeding diatheses

While drug therapy-related thrombosis has been discussed

earlier, hypercoagulability remains a significant complication of

MM itself. Studies have indicated a heightened risk of VTE in MM

and monoclonal gammopathy of undetermined significance

(MGUS) patients, with a hazard ratio of 3.7 and 3.4 within the

first year of diagnosis, respectively (109).

Hyperactivation of platelets emerges as a critical factor

contributing to this risk. Increased levels of soluble P-selectin (101)

or exposure of cell surface PS (54), two indicators of platelet

activation, have been reported in newly diagnosed MM. O’Sullivan

et al. demonstrated that platelet hyperactivation was prevalent not

only in MM but also in the precursor stages of smoldering myeloma

(SM) and MGUS, suggesting a continuum of platelet dysregulation

from early stages of plasma cell neoplasia (110). In another study,

they also reported that platelet hyperactivation identified at diagnosis

would persist during treatments (111, 112). These studies imply that

platelet hyperactivation as a prothrombotic factor exists in the

precursor stages of MM, however, what drives this hyperactivation

with the initiation phase of plasma cell neoplasia is unclear.

Abnormalities in secondary hemostasis in untreated MM are

also documented. The ROADMAP-MM-CAT study identified

procoagulant phospholipid clotting time (Procoag-PPL) and

endogenous thrombin potential (ETP) as independent risk factors

for VTE in MM. MM patients exhibited shortened Procoag-PPL

clotting times but attenuated thrombin generation in platelet-poor

plasma, accompanied by elevated levels of activated tissue factor,

activated factor VII, and tissue factor pathway inhibitor, all posing

the risk of thrombosis (113). In another study, MM patients

presented a disbalanced thrombin generation profile characterized

by an increased ETP but, at the same time, prolonged lag time and

time-to-peak (TTP) in whole blood thrombin generation. RBCs and

platelets in whole blood were suggested as the source of this

disbalanced hemostasis posing the risks of both thrombophilia

and bleeding in MM patients (114).

Elevated levels of coagulation proteins including FVIII and von

Willebrand factor (vWF) are reported in MM, associated with an
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increased risk of thrombotic complications, particularly in

advanced disease stages (115). Indeed, a strong association of

high FVIII and vWF levels with thrombosis risk in general has

been documented (116). The mechanism behind this elevation is

likely multifactorial, potentially involving endothelial cell activation

induced by MM cells or bone marrow MSCs, which secrete

angiogenic cytokines such as vascular endothelial growth factor

(VEGF) (117).

Rare cases of bleeding diatheses due to coagulopathy, such as

acquired von Willebrand syndrome (AvWS) (118, 119), acquired

factor IX deficiency (120), and acquired factor X deficiency (121, 122),

have also been documented in MM. In all these cases, it has been

suggested that paraproteins can interact with the coagulation protein

impairing its function and resulting in bleeding symptoms. Of note,

amyloid proteins may also underlie acquired factor X deficiency as

some patients with amyloid light-chain (AL) amyloidosis develop

concomitant factor X deficiency (123).

In summary, MM-related hypercoagulability and bleeding

diatheses are complex phenomena involving dysregulation of

platelets, abnormalities in coagulation factors, and interactions

between paraproteins and hemostatic proteins. These factors

collectively contribute to the thrombotic and bleeding risks

observed in MM patients.
Clinical recommendations

Thrombocytopenia may develop in MM following treatment

with novel agents including VRD (lenalidomide-bortezomib-

dexamethasone), carfilzomib, or a combination of the four drugs

(124). Autologous stem cell transplantation (ASCT) preceded by a

myeloablative high-dose therapy (HDT) such as melphalan and

followed by a maintenance protocol including IMiDs or PIs

remains the standard of care for newly diagnosed MM patients per

evidence-based recommendations (level of evidence I, mSMART

2019) (125), but thrombocytopenia continues to be one of the

major adverse events in this approach. According to NCI Common

Terminology Criteria for Adverse Events (CTCAE) version 5.0,

thrombocytopenia of 25-50 × 10^3/µL is defined as grade 3, and

<25 × 10^3/µL as grade 4. Meta-analysis of the effectiveness of PIs

(126) and IMiDs (127) in the analyzed randomized controlled trials

(RTCs) identified grades 3-4 thrombocytopenia in MM patients.

Kroger’s study using BU (busulfan) and CY (cyclophosphamide) as

the conditioning regimen for allogeneic stem cell transplantation

(allo-SCT) and lenalidomide for maintenance in refractory/relapsed

MM, reported grade 3-4 thrombocytopenia in 16% of patients.

Furthermore, a phase IIb, multicenter, open-label study of high-

dose melphalan (in a propylene glycol-free formulation) for

myeloablative conditioning in MM patients undergoing ASCT

reported only grade 4 thrombocytopenia in 98% of the patients

(60/61) (128).

Thrombocytopenia of grades 3 or 4 may culminate in life-

threatening hemorrhage if not managed properly and in a timely

manner. If platelet transfusion is decided, it should follow
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established guidelines, such as those provided by the American

Society of Clinical Oncologists (level of evidence II) (129). Although

it is recommended that invasive procedures be minimized in MM

patients with thrombocytopenia, a platelet count of 40 × 10^3/µL to

50 × 10^3/µL is considered safe for proceeding with invasive

procedures provided that the patient does not present any other

coagulation abnormalities (129). The consensus statement of the

International Myeloma Foundation (IMF) Nurse Leadership Board

also recommends that MM patients with thrombocytopenia avoid

taking drugs that impair PLT function such as aspirin, ibuprofen, or

naproxen unless otherwise instructed (e.g., for prophylaxis of

thromboembolic events); avoid activities that can result in

bleeding or bruising such as contact sports or tattooing; and use

soft sponges and non-abrasive toothpaste for their oral care (130).

Thrombotic events related to drugs such as IMiDs also

require robust clinical management. A recent publication of the

Intergroupe Francophone du Mye’lome (IFM) group recommends

thromboprophylaxis using low molecular weight heparin (LMWH)

or direct oral anticoagulants (DOACs) in MM patients who receive

IMiDs combined with dexamethasone (131). However, the dose of

LMWH or DOACs needs to be adjusted depending on renal function

using the creatine clearance (CrCl) test. If CrCl is >30mL/min, no

adjustment is required but if it is below 15mL/min, none of these anti-

coagulants should be used and the patient must receive unfractionated

heparin (UFH) instead (131). Following the International Myeloma

Working Group (IMWG) guidelines, the choice of prophylactic

treatment should be made on the basis of risk factors including

those related to therapy, individual (patient), and active myeloma

per se among others (132). They recommend prophylactic dose

LMWH or full-dose warfarin (target INR 2-3) for MM patients who

have at least one therapy-related or at least two patient- or myeloma-

specific risk factors, and aspirin for other patients who may be at lower

risk. DOACs such as apixaban and rivaroxaban, the new generation of

oral anticoagulants, were not included in the IMWG guidelines.

Although most phase III RCTs employing DOACs did not include

MM patients, small studies have shown their promising effectiveness

as substitutes to LMWH and warfarin which are inconvenient due to

parenteral route and need for INRmonitoring, respectively (133, 134).

Other than thrombotic events related to IMiDs, targeted

therapy-associated cardiovascular adverse events have also been

reported in MM following treatments with monoclonal antibodies

and PIs. Two separate disproportionality analyses on reports from

the FDA Adverse Event Reporting System (FAERS) database

identified daratumumab, elotuzumab, isatuximab, and

panobinostat to be mostly associated with cardiotoxicity (135,

136). Another study using the same database reported a

significant disproportional association between carfilzomib and

cardiovascular events in MM patients (137). Although further

prospective studies are required, the above reports highlight the

importance of closely monitoring MM patients under these

treatments, particularly if they present with a cardiac history.

Finally, impaired function of PLTs or coagulation factors

unrelated to therapy could also contribute to bleeding risk in MM

patients. Thus, comprehensive hemostatic assessments for newly
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diagnosed or untreated MM patients are crucial to identify

underlying primary or secondary hemostasis abnormalities. These

assessments should include coagulation factor assays, intrinsic

coagulation inhibitor assays, or platelet function studies,

particularly aggregometry. Early identification and management

of these disorders can improve clinical outcomes and reduce the risk

of further complications during treatment.
Future directions

In the realm of research, several gaps remain in our

understanding of how MM impacts coagulation factors during its

oncogenic process, how it impairs platelet function, and crucially,

the molecular mechanisms driving MSC-mediated impaired

thrombopoiesis. Investigating thrombopoiesis in in vitro settings

using co-culture models of MM cells with HSCs, especially in the

presence of MSCs from MM patients’ bone marrow, could help

elucidate the cellular and molecular mechanisms underlying

acquired hemostatic abnormalities in MM. Addressing these gaps

will not only advance our understanding of MM-associated

hemostatic disorders but also pave the way for developing more

effective therapies tailored to these specific pathophysiological

mechanisms. Future research should focus on targeted therapies

that modulate the bone marrow microenvironment and improve

platelet production and function in MM patients. This could

include exploring the therapeutic potential of MSCs and

exosomes and the development of novel drugs that target specific

pathways involved in thrombopoiesis and coagulation.
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