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MLCommons is an e�ort to develop and improve the artificial intelligence (AI)

ecosystem through benchmarks, public data sets, and research. It consists of

members from start-ups, leading companies, academics, and non-profits from

around the world. The goal is to make machine learning better for everyone. In

order to increase participation by others, educational institutions provide valuable

opportunities for engagement. In this article, we identify numerous insights

obtained from di�erent viewpoints as part of e�orts to utilize high-performance

computing (HPC) big data systems in existing education while developing and

conducting science benchmarks for earthquake prediction. As this activity was

conducted across multiple educational e�orts, we project if and how it is possible

to make such e�orts available on a wider scale. This includes the integration

of sophisticated benchmarks into courses and research activities at universities,

exposing the students and researchers to topics that are otherwise typically

not su�ciently covered in current course curricula as we witnessed from our

practical experience across multiple organizations. As such, we have outlined the

many lessons we learned throughout these e�orts, culminating in the need for

benchmark carpentry for scientists using advanced computational resources. The

article also presents the analysis of an earthquake prediction code benchmark

while focusing on the accuracy of the results and not only on the runtime; notedly,

this benchmark was created as a result of our lessons learned. Energy traces

were produced throughout these benchmarks, which are vital to analyzing the

power expenditure within HPC environments. Additionally, one of the insights is

that in the short time of the project with limited student availability, the activity

was only possible by utilizing a benchmark runtime pipeline while developing

and using software to generate jobs from the permutation of hyperparameters

automatically. It integrates a templated job management framework for executing

tasks and experiments based on hyperparameters while leveraging hybrid

compute resources available at di�erent institutions. The software is part of a

collection called cloudmesh with its newly developed components, cloudmesh-

ee (experiment executor) and cloudmesh-cc (compute coordinator).
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1. Introduction

As today’s academic institutions provide machine learning

(ML), deep learning (DL), and high-performance computing

(HPC) educational efforts, we attempt to identify if it is possible

to leverage existing large-scale efforts from the MLCommons

community (Thiyagalingam et al., 2022; MLCommons, 2023).

We focus solely on challenges and opportunities cast by the

MLCommons efforts to achieve this goal.

To provide a manageable entry point into answering this
question, we summarize numerous insights that we obtained

while improving and conducting earthquake benchmarks within

the MLCommons
TM

Science Working Group, porting it to HPC

big data systems. This includes insights into the usability and
capability of HPC big data systems, the usage of the MLCommons
benchmarking science applications (Thiyagalingam et al., 2022)

and insights from improving the applicability in educational efforts.
Benchmarking is an important effort in exploring and

using HPC big data systems. While using benchmarks, we can

compare the performance of various systems. We can also
evaluate the system’s overall performance and identify potential

areas for improvements and optimizations either on the system
side or the algorithmic methods and their impact on the

performance. Furthermore, benchmarking is ideal for enhancing
the reproducibility of an experiment, where other researchers can

replicate the performance and find enhancements to accuracy,

modeling time, or other measurements.

While for traditional HPC systems, the pure computational

power is measured such as projected by the TOP500 (Dongarra

et al., 1997; Top500, 2023), it is also important to incorporate more

sophisticated benchmarks that integrate different applications, such

as the file system performance (which can considerably impact the

computation time). This is especially the case when fast GPUs are

used that need to be fed with data at an adequate rate to perform

well. If file systems are too slow, then the expensive specialized

GPUs cannot be adequately utilized.

Benchmarks also offer a common way to communicate the

results to its users so that expectations on what is possible are

disseminated within the computing and educational community.

This includes users from the educational community. Students

often have an easier time reproducing a benchmark and assessing

the impact of modified parameters as part of the exploration of the

behaviors of an algorithm. This is especially the case in DL, where

a variety of hyperparameters are typically modified to find the most

accurate solution.

Such parameters should include not only parameters related to

the algorithm itself but also explore different systems parameters

such as those impacting data access performance or even

energy consumption.

Within this article, we identify opportunities in four different

areas as depicted in Figure 1 to enhance the MLCommons efforts

we have been involved in as part of the MLCommons Science

Working Group. This includes areas in hardware, applications,

education, evaluation, and outreach. These areas intersect heavily

with each other to create an integrated holistic benchmark effort

for DL.

Hence, we not only try to identify pathways and exemplars

of how such efforts can enhance educational efforts by leveraging

expertise from MLCommons into educational efforts, but also

consider the unique opportunities and limitations that apply when

considering their use within educational efforts.

In general, we look at opportunities and challenges about

• insights from MLCommons toward education and

• insights from education toward MLCommons.

The article is structured as follows: First, we provide an

introduction to MLCommons (Section 1.1). Next, we provide

some insights about ML in educational settings and the

generalization of ML to other efforts (Section 2.1). We then

specifically analyze which insights we gained from practically

using MLCommons in educational efforts (Section 2.2). After

this, we focus on the earthquake forecasting application, describe

it (Section 3), and specifically identify our insights in the

data management for this application (Section 3). As the

application used is time-consuming and is impacted by policy

limitations of the educational HPC data system, a special

workflow framework has been designed to coordinate the many

tasks needed to conduct a comprehensive analysis (Section 3).

This includes the creation of an enhanced templated batch

queue mechanism that bypasses the policy limitations but makes

the management of the many jobs simple through convenient

parameter management (Section 3). In addition, we developed

a graphical compute coordinator that enables us to visualize

the execution of the jobs in a generalized simple workflow

system (Section 3). To showcase the performance (Section 4.2)

of the earthquake forecasting application, we present data for

the runtime (Section 4.2.2) and for the energy (Section 4.2.6).

We complete the article with a brief discussion of our results

(Section 5).

1.1. MLCommons

MLCommons is a non-profit organization with the goal

to accelerate ML innovation to benefit everyone with the

help of over 70 members from industry, academia, and

government (MLCommons, 2023). Its main focus is developing

standardized benchmarks for measuring performance systems

using ML while applying them to various applications.

This includes, but is not limited to, application areas from

healthcare, automotive, image analysis, and natural language

processing (NLP). MLCommons is concerned with benchmarking

training (Mattson et al., 2019) and validation algorithms tomeasure

progress over time. Through this goal, MLCommons investigates

ML efforts in the areas of benchmarking, data sets in support of

benchmarking, and best practices that leverage ML.

MLCommons is organized into several working groups

that address topics such as benchmarking related to training,

training on HPC resources, and inference conducted on data

centers, edge devices, mobile devices, and embedded systems.

Best practices are explored in the areas of infrastructure and

power. In addition, MLCommons also operates working groups

in the areas of Algorithms, DataPerf Dynabench, Medical, Science,

and Storage.
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FIGURE 1

Overview of aspects of opportunities for an integrated educational e�ort for MLCommons while using applications from the Science Working Group.

GPU, graphics processing unit; CPU, central processing unit; DL, deep learning.

The Science Working Group is concerned with improving

the science beyond just a static benchmark (Thiyagalingam et al.,

2022). The work reported here has been conducted as part of the

MLCommons Science Working Group goals.

A list of selected benchmarks for the working groups focusing

on inference, training, and science are shown in Table 1.

Due to the strong affiliation with industry as well

as the integration of national labs and academic HPC

centers, MLCommons provides a well-positioned starting

point for academic participation. Over the years, we have

participated significantly in MLCommons’s efforts and

integrated aspects of MLCommons into our educational

activities. Hence, since its inception, we leveraged

the MLCommons activities and obtained a number

of important educational insights that we discuss in

this article.

Summary section 1.1:

• Challenges: The rigor of applying benchmarks

requires special attention to reproducible experiments.

Educational resources may be limited and a

benchmark of a full HPC system may not be possible

within an educational computing center while not

interrupting other shared usage.

• Opportunities: MLCommons provides a rich set of

benchmarks in a variety of areas that comprehensively

encompass many aspects of DL applications that are of

interest for educational efforts.

2. Insights for educational activities

Next, we discuss our insights while focusing on educational

activities. This includes general observations about machine

learning methods, libraries, tools and software carpentry,

benchmark carpentry, and infrastructure. We then discuss in

specific terms how MLCommons-related topics shape our insights.

This includes insights ofMLCommons while using it in educational

settings leading to the potential to create a course curriculum. We

then focus on the earthquake application while presenting lessons

learned while improving such a large application as part of the

code development, data management, and workflow to conduct

extensive hyperparameter-based experiments. This leads us to

develop tools that simplify monitoring (time and energy), as well as

tools to manage jobs and computations while taking into account

policy limitations at the HPC center.

2.1. Insights of ML in education

Before starting with the insights from MLCommons on our

efforts, we will first consider some of our experience regarding

topics taught in educational activities for ML in general. We

distinguish ML methods, applications that use or can use ML, the

libraries used to apply these methods for applications, software

development tools, and finally the infrastructure that is needed

to execute them. Understanding these aspects will allow other

ML endeavors to benefit from the time-saving, latest technology

solutions we have identified that will devote more time to applying

ML to real-world problems.
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TABLE 1 MLCommons benchmarks.

Name Training Inference HPC Science Area

MiniGo yes Neural network-based Go AI, using TensorFlow

Mask R-CNN yes Instance segmentation, developed on top of faster R-CNN

DLRM yes yes Deep Learning Recommendation Model

BERT yes yes Natural language processing

ResNet-50 v1.5 yes yes Image classification

RetinaNet yes yes Object detection

RNN-T yes yes Speech recognition

3D U-Net yes yes Medical imaging

OpenCatalyst yes Chemical reactions analysis

DeepCam yes Deep learning climate segmentation benchmark

CosmoFlow (Mathuriya et al., 2018) yes Cosmology and nongalactic astrophysics

Earthquake yes Earthquake forecasting

Uno yes Predicting tumor response to drugs

Cloudmask yes Cloud masking

StemDL yes Space group classification of solid-state materials from STEM data using
deep learning

HPC, high-processing computing; AI, artificial intelligence; R-CNN, region based convolutional neural network; DLRM, deep learning recommendation model; BERT, bidirectional encoder

representations from transformers; ResNet, residential energy services network; RNN-T, recurrent neural network transducer; STEM, scanning transmission electron microscope.

The aim is not to inundate students with all possible facets

of machine learning but rather to guide students toward the

completion of an interesting, memorable, applicable, real-world

project that the student can take and apply to other projects.

This necessitates finding a balance between automating the

developer setup (providing a ready-to-go environment) and leaving

such setup to the student, which can impart knowledge through

self-learning. MLCommons provides an ideal starting point for a

learning experience as it introduces the student to benchmarking,

which is used within the earthquake application discussed later.

2.1.1. ML methods
We list some topics associated with traditional methods in

machine learning (ML) and artificial intelligence (AI) that are

frequently taught in classes. This includes clustering (exemplified

via k-means), image classification, sentiment analysis, time-series

prediction, surrogates (a new topic often not taught), and

neural networks (with various standard architectures such as

convolutional neural networks [CNNs], recurrent neural networks

[RNNs], and artificial neural networks [ANNs]). More traditional

methods also include modeling techniques such as random forests,

decision trees, K-nearest neighbor, support vector machines,

and genetic algorithms. These methods are frequently collected

into three distinct algorithmic groups: supervised learning,

unsupervised learning, and reinforcement learning.

From this small list, we can already see that a comprehensive

course curriculum needs to be carefully developed, as it is arduous

to cover the topics required in a one-semester course with sufficient

depth, but it needs to span the duration of a student’s curriculum

in AI.

2.1.2. Libraries
There are several diverse libraries and tools that exist to support

the development of AI and ML products. As an example, we list a

subset of frequently used software libraries and tools that enable the

ML engineer and student to write their applications.

First, we note that at the university level, the predominant

programming language used for machine learning and data science

is Python. This is evident from the success and popularity

of sophisticated libraries such as scikit-learn, PyTorch, and

TensorFlow. In recent years, we have seen a trend that PyTorch

has become more popular at the university level than TensorFlow.

Although the learning curve of these tools is significant, they

provide invaluable opportunities while applying them to several

different applications. As a result, we integrate these tools into our

benchmarks and multi-use toolkit, cloudmesh.

In contrast, other specialized classes that focus on the

development of faster, graphics processing unit (GPU)-based

methods typically use C++ code leveraging the vendor’s specialized

libraries to interface with the GPUs such as Nvidia CUDA.

2.1.3. Tools and software carpentry
Unfortunately, today’s students are not sufficiently exposed

to software carpentry at the beginning of their studies, as we

found while working with four different student groups from three

different universities, despite the university curriculum consisting

of Python and AI classes.

To efficiently use the libraries and methods, as well as the

infrastructure used to execute software on shared HPC computers,

students need a basic understanding of software engineering tools

such as a text editor and code management system. A subset of
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this is often referred to as software carpentry (Wilson et al., 2014).

Topics of immediate importance include the ability to (1) obtain a

moderate grasp of terminal use with Unix commands, (2) leverage

the features of a professional integrated development environment

(IDE), (3) be familiar with a code management system and version

control, (4) ensure the availability of the code using open sources,

(5) understand how to collaborate with others, and (6) utilize

queuing systems as used within shared resources managed in HPC

centers.

It is vital to instill these industry-standard practices within

apprentices new to AI utilization of HPC systems, beyond just

the simplest example, to efficiently use the resources and plan

benchmark experiments. These skills are key to evolving a

beginner’s research and class experience toward intermediate and

advanced knowledge usable in the industry so they can further

contribute to altruist AI applications and the dissemination of work

within academia. Moreover, these students will bring valuable and

lucrative skill sets with them to their future professional careers.

Although many centers offer Jupyter as an interactive use

of the HPC resources, such notebooks are often designed to be

simple one-off experiments, not allowing for encapsulation or

expansion into other code. Furthermore, the queuing system time

imitations within HPC environments hinder the reproducibility

of experiments as the time requirements may only allow one

experiment as we have experienced with our application.

Pertaining to educational insights, we observed that most

students own Microsoft Windows-based desktops and have never

come in contact with a terminal using commandline tools. This

is backed up by the fact that Microsoft’s Windows 10 possesses

68.75% of the operating system (OS) market as of 2023 (Norem,

2023). Hence, the students cannot often navigate a Unix HPC

environment, where ML is commonly conducted in a shared

resource. This also exacerbates students’ manual code expenditure,

as Unix commands such as grep, find, and make are typically

not known, and automation of the programs building the workflow

to execute a benchmark experiment efficiently is limited.

However, as part of our efforts, we found an easy way to not

only teach students these concepts but also access HPC machines

via a terminal straight from the laptop or desktop. While built-

in terminals and shells can be used on macOS and Linux, the

ones on Windows are not Unix-like. Nevertheless, the use of

the open-source, downloadable Git Bash on Windows systems

provides a Unix-like environment. We also leverage Chocolatey, a

packagemanager thatmimics the Unix package tools. Alternatively,

Windows Subsystem for Linux achieves the same result while

directly being able to run Linux in a virtual machine on the

computers. However, for students with older or resource-limited

machines, the latter may not be an option. To efficiently use

the terminal, the elementary use of commands needs to be

taught, including the use of a simple command line editor. While

leveraging bash on the command line, it becomes easy to develop

tutorials and scripts that allow the formulation of simple shell

scripts to access the HPC queuing system.

Furthermore, sophisticated programming tools that readily

exist in cross-OS portable fashion on the laptop/desktop can be

used to develop or improve the code quality of the software.

This includes the availability of IDEs (such as PyCharm and

VSCode) with advanced features such as syntax highlighting, code

inspection, and refactoring. As part of this, applying uniform

formatting such as promoted by PEP 8 (www, 2023) increases

code readability and uniformity, thereby effortlessly improving

collaboration on code by various team members.

Although such IDEs can become quite complex with the

evolution of their corresponding toolchains (Fincher and Robins,

2019), in our case, we can restrict their use toward code

development and management. As such, habits are immediately

introduced that improve the code quality. Furthermore, these tools

allow collaborative code development through group editing and

group version control management. Together, they help students

write correct code that meets industry standards and practices (Tan

et al., 2023).

From our experience, this knowledge saves significant effort

in time-intensive programs such as Research Experiences for

Undergraduates, which typically only last one semester and require

the completion of a student project. As part of this, we observed

that integrated software carpeting while also integrating IDEs

benefits novice students as they are more likely to contribute to

existing research activities related to scientific ML applications.

Such sophisticated IDEs are offered as free community editions

or are available in their professional version for free to students

and open-source projects. Such IDEs also provide the ability to

easily write markdown text and render the output while writing.

This is very useful for writing documentation. Documentation is

a necessity in ML research experiences as a lack thereof creates a

barrier to entry (Königstorfer and Thalmann, 2022).

As previously mentioned, most recently, these tools also allow

writing code remotely, as well as in online group sessions fostering

collaboration. Hence, peer programming has become a reality, even

if the students work remotely with each other. This is further

proven by free online IDEs such as Replit, where students can

edit the same file simultaneously (Kovtaniuk, 2022). However, such

features have now become an integral part of modern IDEs such as

PyCharm and vscode, so the use of external tools is unnecessary.

Due to this, we noticed an uptake among students in using

the remote editing capabilities of more advanced editors such as

PyCharm and vscode; alongside their superiority while developing

code, a command editor on the HPC terminal was often avoided.

However, this comes with an increased load on the login nodes,

which is outweighed by the developers’ convenience and code

quality while using such advanced editors. HPC centers are advised

to increase their capabilities significantly to support such tools

while increasing their resources for using them by their customers.

Finally, the common choice for collaborative codemanagement

is Git, with successful social coding platforms such as GitHub and

GitLab. These code management systems are key for teams to share

their developed code and enable collaborative code management.

However, they require a significant learning curve. An important

aspect is that the code management systems are typically hosted in

the open, and the code is available for improvement at any time.

We found that students who adopt the open-source philosophy

perform considerably better than those who may store their code

in a private repository. The openness fosters two aspects:

• First, the code quality improves as the students put more

effort into the work due to its openness to the community.

This allows students to share their code, improve other
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code, and gain networking opportunities. Also, perhaps

most importantly, this allows scientists to replicate their

experiments to ensure similar results and validity.

• Second, collaboration can include research experts from the

original authors and researchers that would otherwise not be

available at the university. Hence, the overall quality of the

research experience for the student increases as the overall

potential for success is implicitly accessible to the student.

An additional tool is JupyterLab, created by Project Jupyter.

It provides a web browser interface for interactive Python

notebooks (with file extension ipynb). The strength here is a rich

external ecosystem that allows us to interactively run programs

while integrating analysis components to utilize data frames and

visualization to conduct data exploration. For example, this is

possible by using web browser interfaces to either the HPC-

hosted Jupyter notebook editor or Google Colab. The unfortunate

disadvantage of using notebooks is that, while the segmentation

of code into cells can provide debugging convenience, this format

may break proper software engineering practices such as defining

and using functions, classes, and self-defined Python libraries that

lead to more sustainable and easier-to-manage code. An upside

to Jupyter notebooks is that they possess an integrated markdown

engine that can provide sophisticated documentation built in; we

have also identified that students without access to capable local

machines can leverage Google Colab, which is a free platform for

using Jupyter notebooks. Jupyter notebooks accessing HPC queues

are currently often made available through web-based access as

part of on-demand interfaces to the HPC computing resource (uva,

2023).

Regrettably, live collaborative editing of Jupyter notebooks is

not yet supported on some platforms such as Replit and PyCharm.

However, vscode does support this feature, even within the browser,

eliminating the need to download a client. We expect that such

features will eventually become available in other tools.

While topical-focused classes such as ML and DL is obviously

in the foreground, we see a lack of introducing students to software

carpeting and even the understanding of HPC queuing systems in

general. Tools such as Jupyter and Colab that are often used in

such classes deprive the students often from the needed underlying

understanding of efficiently using shared GPU resources for ML

and DL.

Hence, students are often ill prepared for software carpeting

needs that arise in more advanced applications of DL utilizing

parallel and concurrent DL methodologies. Furthermore,

programming language classes are often only applied to teaching

Python while only emphasizing the language aspects but not with a

sustainable, practical software engineering approach. Because ML

is a relatively new venture in the computing field, there is not yet a

definitive set of standards meant for beginning students. The lack

of emphasizing standards as part of teaching activities such as these

relates to a general problem at the university level.

We alleviate difficulties such as these encountered within

research experience by leveraging a cross-platform cloud-

computing toolkit named cloudmesh. This toolkit, alongside our

use of professional IDEs and version control, allows students to

focus less on manual code expenditures and operating system

debugging, and more on HPC use and ML development on data

sets such as from the Modified National Institute of Standards

and Technology (MNIST), among others. We acknowledge the

importance of saving time as it is a precious commodity in

research experiences. The use of cloudmesh reduces the entry

barrier surrounding the creation of machine learning benchmark

workflow applications, as well as our standardized benchmarking

system, MLCommons. This system is easily implemented as long

as programmers can utilize the capabilities of an industry-standard

IDE. Since we emphasize reproducibility and openness with other

contributors, then an open-source solution like MLCommons

is necessary.

2.1.4. Benchmark carpentry
Benchmark carpentry is not yet a well-known concept

while focusing on applying software carpentry, common

benchmark software, and experiment management aspects to

create reproducible results in research computing. To work toward

a consolidated effort of benchmark carpentry, the experiences and

insights documented in this article have recently been reported

to the MLCommons Science Working Group. Throughout the

discussion, we identified the need to develop an effort focusing on

benchmark carpentry that goes beyond the aspects typically taught

in software carpentry while focusing on aspects of benchmarks

that are not covered. This includes a review of other benchmark

efforts such as TOP500 and Green500, the technical discussion

around system benchmarks including SPEC benchmarks, as well

as tools and practices to better benchmark a system. Special

effort needs not only to be placed on benchmarking the central

processing unit (CPU) and GPU capabilities but also on what

effect the impact of the file system or the memory hierarchy has.

This benchmarking ensures reproducibility while leveraging the

findability, accessibility, interoperability, and reusability principle.

Furthermore, using software that establishes not only immutable

baseline environments such as Singularity and Docker but also

the creation of reproducible benchmark pipelines and workflows

using cloudmesh-ee and cloudmesh-cc, is beneficial. Such efforts

can also be included in university courses, and the results of

developing material for and by the participants can significantly

pervade the concept of a standardized benchmarking system such

as MLCommons’s MLPerf.

2.1.5. Infrastructure
An additional aspect ML students must have exposure to is

the need for access to computational resources due to distinct

hardware requirements resulting from using an advanced ML

framework. One common way of dealing with this is to use

preestablished ML environments like Google Colab, which is

easy to access and use with limited capability for free (with the

option of obtaining a larger computational capability with a paid

subscription). However, as Colab is based on Jupyter notebooks,

we experience the same disadvantages discussed in Section 2.1.3.

Furthermore, benchmarking can become quite expensive using

Google Colab depending on the benchmark infrastructure needs.
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Another path to obtain resources for machine learning can

be found in the cloud. This may include infrastructure-as-a-

service and platform-as-a-service cloud service offerings from

Amazon, Azure, Google Cloud, Salesforce, and others. In addition

to the computational needs for executing neural networks and

DL algorithms, we also find services that can be accessed

mainly through REpresentational State Transfer Application

Programming Interface (REST APIs) offering methods to integrate

the technology into the application research easily. Most popular

tools focus on NLP, such as translation and, more recently,

on text analysis and responses through OpenAI’s ChatGPT and

Google’s Bard.

However, many academic institutions have access to campus-

level and national-level computing resources in their HPC centers.

In the United States, this includes resources from the Department

of Energy and the National Science Foundation (NSF). Such

computing resources are accessed mostly through traditional batch

scheduling solutions (such as Slurm SLURM, 2003), which allows

for sharing limited resources with a large user community. For

this reason, centers often implement a scheduling policy that puts

significant restrictions on the computational resources that can be

used simultaneously and for a limited period. The number of files

and the access to a local disk on compute nodes constituting the

HPC resources may also be limited. This provides a potential very

high entry barrier as these policy restrictions may not be integrated

into the application design from the start. Moreover, in some cases,

these restrictions may provide a significant performance penalty

when data are placed in a slow network file system (NFS) instead

of directly in memory (often the data do not fit in memory) or

in NVMe storage if it exists and is not restricted on the compute

nodes. It is also important to understand that such nodes may

also be shared with other users and it is important to provide the

infrastructure requirements upfront regarding computation time,

memory footprint, and file storage requirements accurately so that

scheduling can be performed most expediently. Furthermore, the

computing staff maintains the software on these systems and is

typically tailored for the HPC environment. It is best to develop

with the version provided, which may target outdated software

versions. Container technologies reduce the impact of this issue

by enabling users of the HPC center to provide their own custom

software dependencies as an image.

One of the popular container frameworks for HPC centers is

Singularity, and some centers offer Docker as an alternative. As

imagesmust bring all the software needed to run a task, they quickly

become large in size, and it is not feasible to just copy the image

from your local computer but to work with the center to create the

image within the HPC infrastructure. This is especially true when

a university requires all resources to be accessed through a virtual

private network (VPN). Here, one can often see a factor of 10 or

more slowdown in transfer and access speeds (Tovar et al., 2021).

All these elements must be learned; establishing an

understanding of these subjects can take considerable time.

Hence, using HPC resources has to be introduced with specialized

educational efforts often provided by the HPC center. However,

sometimes these general courses are not targeted specifically to

running a particular version of PyTorch or TensorFlow with

cuDNN, but just the general aspect of accessing the queues.

Although these efforts often fall under the offerings of software

carpentry, the teaching objective may fall short as the focus is

placed on a limited number of software, supported by the center

instead of teaching how to install and use the latest version of

TensorFlow. Furthermore, the offered software may be limited

in case the underlying GPU card drivers are outdated. Software

benchmarks need not only the newest software libraries but also

the newest device drivers, which can only be installed by the HPC

support team.

Furthermore, specifically customized queues demanding

allocations, partitions, and resource requirements may not be

documented or communicated to its users, and a burden is

placed on the faculty member to integrate this accurately into the

course curriculum.

Access to national-scale infrastructure is often restricted to

research projects that require following a detailed application

process. The faculty supervisor conducts this process and not the

student. Background checks and review of the project may delay

the application. Additional security requirements, such as the use of

Duo Mobile, SSH keys, and other multifactor authentication tools

must be carefully taught.

In case the benchmark includes environmental monitoring

such as temperatures on the CPU/GPU and power consumption,

access may be enabled through default libraries and can be

generalized while monitoring the environmental controls over

time. However, HPC centers may not allow access to the overall

power consumption of entire compute racks as it is often very

tightly controlled and only accessible to the HPC operational

support staff.

2.2. Insights of MLCommons in education

The MLCommons benchmarks provide a valuable starting

point for educational material addressing various aspects of the

machine and deep learning ecosystem. This includes benchmarks

targeted to a variety of system resources from tiny devices to the

largest research HPC and data systems in the world while being able

to adapt and test them on platforms between these two extremes.

Thus, they can become ideal targets for adaptation in AI classes that

want to go beyond typical introductory applications such asMNIST

that run in a small amount of time.

We have gained practical experience while adapting

benchmarks from the MLCommons Science Working Group

while collaborating with various universities and student groups

from the University of Virginia (UVA), New York University,

and Indiana University. Furthermore, it was used at Florida

A&M University as a research experience for undergraduates

(REU) and is now executed at the UVA as research activity

by a past student from the REU (Fleischer et al., 2022). The

examples provide value for classes, capstones, REUs, team project-

oriented software engineering and computer science classes,

and internships.

We observed that traditional classes limit their resource needs

and the target application to a very short period so assignments

can be conducted instantly. Some MLCommons benchmarks go

well beyond this while confronting the students not only with the

theoretical background of the ML algorithm but also with big data

systemsmanagement, which is required to execute benchmarks due
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to their data and time requirements. This is especially the case when

hyperparameters are to be identified to derive scientifically accurate

examples. It is also beneficial in that it allows the students to explore

different algorithms applied to these problems.

From our experiences with these various efforts, we

found that the following lessons provided significant add-on

learning experiences:

• Teamwork. Students benefit from focusing on the success

and collaboration of the entire team rather than mere

individualism, as after graduation, students may work in

large teams. This includes not only the opportunity for pair

programming but also the fact that careful time planning in

the team is needed to succeed. This also includes how to

collaborate with peers using professional, industry-standard

coding software and management of code in a team through

a version control system such as Git. As others point

out (Raibulet and Fontana, 2018), we also see an increase in

enthusiasm and appreciation of teamwork-oriented platforms

when such aspects are employed in coding courses. While

courses may still focus on the individual’s progress, an

MLCommons Benchmark benefits from focusing on grading

the team and taking the entire project and team progress into

a holistic grade evaluation.

• Interdisciplinary research. Many of the applications in

MLCommons require interdisciplinary research between the

domain scientists, ML experts, and information technology

engineers. As part of the teamwork, students have the

opportunity to participate not only within their discipline

but learn about how to operate in an interdisciplinary team.

Such multidisciplinary experience not only broadens their

knowledge base but also strengthens their market viability,

making them attractive candidates for diverse job possibilities

and career opportunities in the ever-evolving technological

landscape (Zeidmane and Cernajeva, 2011).

• System benchmarking versus science benchmarking.

Students can learn about two different benchmarking

efforts. The first is system-level benchmarking in which a

system is compared based on a predefined algorithm and its

parameters measuring system performance. The second is the

benchmarking of a scientific algorithm in which the quality

of the algorithms is compared with each other, where system

performance parameters are a secondary aspect.

• Software ecosystem. Students are often using a course-

provided, limited, custom-defined environment prepared

explicitly for a course that makes course management for the

teacher easier but does not expose the students to various

ways of setting up and utilizing the large variety of software

related to big data systems. This includes setting up Python

beyond the use of Conda and Colab notebooks, the use of

queuing systems, containers, and cloud computing software

for AI, DL, and HPC experiments as well as other advanced

aspects of software engineering. Benchmarking introduces

these concepts to students in a variety of configurations and

environments, providing them with a more research- and

industry-like approach to managing software systems.

• Execution ecosystem. While in-class problems typically do

not require as many computing resources, some of the

examples in MLCommons require a significant organizational

aspect to select and run meaningful calculations that enhance

the accuracy of the results. Careful planning with workflows

and the potential use of hybrid heterogeneous systems

significantly improves the awareness to deal with not only

the laptop but also the large available resources students

may get access to while leveraging flagship-class computing

resources, or their own local HPC system when available.

Learning to navigate an HPC system is imperative to teach to

students and can be augmented by professor-created toolkits

and platforms (Zou et al., 2017). We found it necessary

to provide additional documentation to address the staff-

provided HPC manual while focusing on specific aspects that

are not general in nature but are related to group and queue

management specifically set up for us by staff. This includes

documentation about the accounting for system policies,

remote system access, and frugal planning of experiments

through the prediction of runtimes and the planning of

hyperparameter searches (Claesen and De Moor, 2015; von

Laszewski et al., 2022). This can also include dealing with

energy consumption and other environmental parameters.

• Parallelization. The examples provide a basis for learning

about various parallelization aspects. This includes the

parallelization on not only the job level and hyperparameters

searches but also on the use of parallelization methods

provided by large-scale GPU-based big data systems.

• Input/Output (IO) data management. One other important

lesson is the efficient and effective use of data stores to execute.

For example, DL algorithms require a large number of fast

IO interactions. Having access to sufficient space to store

potentially larger data sets is beneficial. Also, the time needed

to send data from the external storage to the GPU should

be small to ensure that the GPUs have sufficient data to

perform well without bottleneck. Such management is vital to

be taught within education as the entirety of ML depends on

the organization of data (Shapiro et al., 2018).

• Data analysis. The examples provide valuable input to

further enhance abilities to conduct non-trivial data analysis

through advanced Python scripts while integrating them in

coordinated runs to analyze log files that are created to validate

the numerical stability of the benchmarks. This includes the

utilization of popular data analysis libraries (such as Pandas)

as well as visualization frameworks (such as Seaborn). It also

allows students to focus on identifying a result that can be

communicated in a professional manner.

• Professional and academic communication. The results

achieved need to be communicated to a larger audience

and the students can engage in a report, paper, and

presentation writing opportunities addressing scientific and

professional communities.

• Benefits to society. The MLCommons benchmarks are

including opportunities to improve the quality of ML

algorithms that can be applied to societal tasks. Obviously,

improving benchmarks such as earthquake forecasting are
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beneficial to society and can motivate students to participate

in such educational opportunities.

2.2.1. MLCommons DL-based proposed course
curriculum

In this section, we explore the idea to potentially create a course

curriculum utilizing the MLCommons effort. For this to work and

focus for MLCommons, the course can focus on DL while using

examples from MLCommons benchmarks as well as additional

enhancements into other topics that may not be covered.

In contrast to other courses that may only focus on DL

techniques, this course will have the requirement to utilize

significant computational resources that are, for example, available

on many campuses as part of an HPC or a national scale facility

such as NSF’s Access. Alternatively, Google Colab can be used;

however, it will have the disadvantage of not using HPC resources

from local or national HPC centers as discussed earlier.

1. Course overview and introduction: Here the overview of the

course is provided. Goals and expectations are explained and

an introduction to deep learning is provided. This includes

the history and applications of DL, a basic introduction

to optimization technologies and neural networks, and the

connection between MLCommons Applications is presented.

2. Infrastructure and benchmarking: An overview of

MLCommons-based DL applications and benchmarks are

discussed and will include a wide variety reaching from tiny

devices to supercomputers and hyperscale clouds. Google Colab

will be introduced. Practical topics such as using ssh and batch

queues are discussed. An explicit effort is placed on using a

code editor such as PyCharm or VSCode. Elementary software

infrastructure is discussed while reviewing Python concepts

for functions, classes, and code packaging with pip. The use of

GitHub is introduced.

3. CNNs: A deeper understanding is taught by focusing on CNNs.

The example of Mask R-CNN is explained.

4. RNNs:RNNs are taught and applications of RNNs are discussed.

The RNN-T application focusing on speech recognition is

presented and analyzed.

5. NLP: As NLP has such a big impact on industry and academia,

additional lectures in that area are presented. This includes

large language models, analyzing text, applications of NLP,

language translation, and sentiment analysis. Practical examples

are introduced while looking at ChatGPT. From MLCommons,

the applications DLRM, BERT, and RNN-T are discussed.

6. Project presentations: The last part of the class is focused on

a project presentation that students can conduct in a team or

individually. It should showcase an application and performance

results on one or multiple HPC data systems, or include an

improvement to an existing MLCommons benchmark. It is

expected that the students write a high-quality project report.

Ideally, each team will submit its result to MLCommons. A good

start here is the Science Working Group as it provides rolling

submissions and its focus is accuracy and not speed, which is

often a topic of interest in academia.

7. Submitting expandingMLCommons benchmarks: The results

obtained can be also submitted to MLCommons. Here we

see two opportunities: first the submission of results from

standardized benchmarks provided by MLCommons and,

second, the inclusion of new scentific application results

submitted to the MLCommons Science Working group.

Adaptations of this material are possible and can be made

accordingly to stay up to date with community AI developments as

well as efforts newly covered in MLCommons. The semester-long

project is accompanied by biweekly practical mini-assignments

showcasing selected results and implementations of a particular

topic. The final outcome will be a project report. Grading

and integration can be done based on the instructors and the

university course requirements that university policies may govern.

Practically, we believe that grading the project will be sufficient;

however, we observed that weekly graded assignments may be

needed to compete with other weekly homework-oriented graded

classes that require immediate attention by the students. The

curriculum can be divided into several sections that can be taught

over a semester in either a graduate or undergraduate class or a

combination thereof. The curriculum could be used in its entirety,

or selected aspects could be taught.

Summary section 2:

• Challenges: Students lack knowledge of software

carpentry despite taking programming and AI classes

at universities. Software carpeting tools such as

terminals, command line tools, and IDEs are not

sufficiently utilized although they provide significant

benefits for professional code development and

management of shared resources. Today’s DL students

often have only knowledge about Jupyter notebooks or

Google Collab resulting in one-cell-at-a-time-oriented

programming rather than a proper more sophisticated

software engineering approach. Using computing

resources at HPC centers may pose a considerable

on-ramp hurdle, especially when combined with

queuing systems and container technologies that vary

in their implementation between centers; specialized

documentation must be available.

• Opportunities: Software carpeting could be offered

as an additional class and made a prerequisite for

taking AI classes, or become an integral part of the

DL experience. This should include learning about

terminal commands, accessing queuing systems, IDEs,

codemanagement, and collaborative code development

going beyond the usage of Jupyter notebooks.

Benchmark carpentry should be offered in addition to

software carpentry while focusing on unique aspects of

reviewing common benchmark practices and applying

them to DL applications. Tools such as cloudmesh used

in several MLCommons applications allow leveraging

creating simple standardized interfaces to time-based

benchmarks and the display of the results in a
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human-readable form. Exposing students to knowledge

about shared HPC resources used for DL rather

than just reusing cloud resources offers a deeper

understanding of resource-efficient resource utilization

in a resource-starved environment as well as the

costs associated with them having an impact on

affordable benchmarks. MLCommons covers a wide

variety of topics and it is conceivable to develop

a comprehensive course curriculum around it that

could be either used in its entirety or adapted

based on interests as well as selectively taught. To

address variations in the HPC technologies used, center

documentation can be developed by an organization

but may have to be adapted to simplify it while focusing

on storage, compute, and container technologies and

specifics offered. This course curriculum provides the

opportunity to emphasize teamwork while focusing on

a larger project.

3. Earthquake forecasting

While we so far have focused on the general applicability

of MLCommons benchmarks as potential options to develop an

educational curriculum, we focus next on an exemplar for a

potential semester-long project and their insights toward the goal

of using it as an educational tool.

Although MLCommons has many applications, we decided to

use an application from the MLCommons Science Working Group

as we most closely work as part of this group. It has four major

benchmarks as documented in Thiyagalingam et al. (2022) in von

Laszewski et al. (2023).

However, here we focus on the earthquake benchmark code

that creates a Time Series Evolution Operator (TEvolOp) to be

applied to several scientific applications such as hydrology and

COVID-19 predictions. We focus on this application because,

in contrast to other MLCommons applications it is written as a

Jupyter notebook and therefore intercepts with many educational

efforts using Jupyter notebooks.We restrict our report to the efforts

related to earthquake forecasting as it is one of the first applications

from the MLCommons Science Working Group that have been

used in educational class projects.

The scientific objective of the earthquake benchmark is to

extract the evolution using earthquake forecasting while utilizing

time series forecasting.

The earthquake benchmark uses a subset of the overall

earthquake data set for the region of Southern California. While

conventional forecasting methods rely on statistical techniques, we

use ML for extracting the evolution and testing the effectiveness

of the forecast. As a metric, we use the Nash-Sutcliffe Efficiency

(NSE) (Nash and Sutcliffe, 1970). Other qualitative predictions are

discussed in Fox et al. (2022).

One of the common tasks when dealing with time series is

the ability to predict or forecast them in advance. Time series

capture the variation of values against time and can have multiple

dimensions. For example, with earthquake forecasting, we use

geospatial data sets that have two dimensions based both on time

and spatial position. The prediction is considerably easier when we

can identify an evolution structure across dimensions. For example,

by analyzing earthquake data, we find a strong correlation between

nearby spatial points. Thus, nearby spacial points influence each

other and simplify the time-series prediction for an area. However,

as earthquake faults and other geometric features are not uniformly

distributed, such correlations are often not clearly defined in spatial

regions. Thus it is important to look not only at the region but

also at the evolution in time series. This benchmark extracts the

evolution of time series applied to earthquake forecasting.

3.1. Earthquake data

The data for this earthquake are described in Thiyagalingam

et al. (2022). It uses a subset of the earthquake data from the United

States Geological Survey (USGS) focused on Southern California

between latitude 32◦N to 36◦N and longitude:−120◦S to−114◦S).

The data for this region cover all earthquakes since 1950. The data

include four measurements per record: magnitude, spatial location,

depth from the crust, and time. We curated the data set and

reorganized it in different temporal and spatial bins. “Although the

actual time lapse between measurements is one day, we accumulate

this into fortnightly data. The region is then divided into a grid of

40 × 60 with each pixel covering an actual zone of 0.1 deg×0.1

or 11km × 11km grid. The dataset also includes an assignment

of pixels to known faults and a list of the largest earthquakes in

that region from 1950. We have chosen various samplings of the

dataset to provide both input and predicted values. These include

time ranges from a fortnight up to four years. Furthermore, we

calculate summed magnitudes and depths and counts of significant

quakes (magnitude < 3.29)” (Fox et al., 2022). Table 2 depicts the

key features of the benchmark (Thiyagalingam et al., 2022).

3.1.1. Implementation
The reference implementation of the benchmark includes three

distinct deep learning-based reference implementations. These

are a long short-term memory (LSTM)–based model, a Google

Temporal Fusion Transformer (TFT) (Lim et al., 2021)–based

model, and a custom hybrid transformer model. The TFT-based

model uses two distinct LSTMs, covering an encoder and a decoder

with a temporal attention-based transformer. The custom model

includes a space-time transformer for the decoder and a two-

layer LSTM for the encoder. Figure 2 shows the TFT model

architecture. Each model predicts NSE and generates visualizations

illustrating the TFT for interpretable multi-horizon time-series

forecasting (Lim et al., 2021).

For this article, we adopted the same calculations as defined

in Fox et al. (2022): “We have chosen various samplings of the

dataset to provide both input and predicted values. These include

time ranges from a fortnight up to 4 years. Further, we calculate

summed [according to Equation (1)] magnitudes and averaged

depths (according to Equation (2)) and counts of significant

earthquakes [magnitude > 3.29, Equation (3)]. We use the concept

of energy averaging when there are multiple events in a single
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TABLE 2 Summary of the earthquake TEvolOp benchmark.

Attributes Description

Area Earthquake forecasting (Lim et al., 2021; Fox et al.,
2022, 2023; von Laszewski, 2023b).

Objectives Improve the quality of earthquake forecasting in a
region of Southern California.

Metrics Normalized Nash-Sutcliffe model efficiency
coefficient (NNSE) with 0.8 ≤ NNSE ≤ 0.99

Data Type: Richter measurements
with spatial and
temporal information
(Events).

Input: Earthquakes since 1950.

Size: 11.3GB
(Uncompressed),
21.3MB (Compressed)

Training samples: 2,400 spatial bins

Validation samples: 100 spatial bins

Source: USGS servers (von
Laszewski, 2023b)

Reference Implementation (Fox et al., 2023)

USGS, United States Geological Survey.

space-time bin. Therefore, the magnitude assigned to each bin is

defined in Equation (1) as ’log(Energy)’ where we sum over events

of individual magnitudes mevent . We also use energy averaging

defined in Equation (2) for quantities Qbin such as the depth of

an earthquake that needs to be weighted by their importance when

averaging over a bin.”

mbin = log(Energy) =
1

1.5
log10

Events∑

in bin

101.5mevent (1)

Energy weighted Quantity Qbin =

Events∑

in bin

101.5meventQevent

Events∑

in bin

101.5mevent

(2)

Multiplicitybin =

Events∑

in bin

Multiplicityevent subject to a constraint (3)

In this article, we only focus on the TFT implementation. The

TFT inputs and outputs are described next (Fox et al., 2022).

• Static Known Inputs (five inputs): four space-filling curve

labels of fault grouping, linear label of pixel.

• Targets (four targets): mbin(F :1t, t) for 1t = 2, 14, 26, 52

weeks. Calculated for t − 52 to t for encoder and t to t +

52 weeks for decoder in 2 week intervals. 104 predictions

per sequence.

• Dynamic known inputs (13 inputs): Pl(cosFull) for l = 0 to

4 cosperiod(t), sinperiod(t) for period = 8, 16, 32, 64.

FIGURE 2

Temporal fusion transformer model architecture (Fox et al., 2022).

LSTM, long short-term memory.

• Dynamic unknown inputs (nine inputs): Energy-

averaged depth, multiplicity, multiplicity m > 3.29 events

mbin(B :1t, t) for 1t = 2, 4, 8, 14, 26, 52 weeks.

These data can be input based on the time series. Backward

data can be taken up to 1 year before the current date, and

forward data can be taken up to 4 years into the future. The

data are then enriched with the LSTM models on time and other

factors like spacial location, fault grouping and energy produced at

location. Feature selection is done. The data are then fed into an

attention learning module, which learns trends and more complex

relationships based on the data across all time steps and can

apply this knowledge to any number of time steps. More feature

selection is done. Then finally the data are run through quantile

regression. The loss is calculated by mean aboslute error (MAE).

This repeats until all epoch runs are done and the iteration that

had the lowest loss is used to create predictions. Normalized Nash

Sutcliffe efficiency (NNSE) and mean squared error (MSE) are used

as a goodness of fit metric.

More details of the TFT model applied to the earthquake

application are presented in Fox et al. (2022). More general details

about TFT models can be found in Lim et al. (2021).

3.1.2. Insights into development of the code
The original code was developed with the goal of creating a

DL method called TEvolOp to apply special time-series evolution

for multiple applications including earthquake, hydrology, and

COVID-19 prediction. The code was presented in a large Python

Jupyter notebook on Google Colab. Due to the integration of

multiple applications (hydrology and COVID-19), the code is

complex and challenging to understand and maintain. For this
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reason, the total number of lines of 13,500 was reduced by more

than 2,400 lines when the hydrology and the COVID code were

removed. However, at the same time, we restructured the code

and reached a final length of about 11,100 lines of code. The code

was kept as a Jupyter notebook in order to test the applicability

of benchmarking applications presented at notebooks rather than

converting it into a pure Python script. The code included all

definitions of variables and hyperparameters in the code itself. This

means that the original code needed to be changed before running

it in case a hyperparameter needed to be modified.

This code has some challenges that future versions ought to

address. First, the code includes every aspect that is not covered by

TensorFlow and contains a customized version of TFT. Second, due

to this the code is very large, and manipulating and editing the code

are time-consuming and error-prone. Third, as many code-related

parameters are managed still in the code, running the same code

with various parameters becomes cumbersome. In fact, multiple

copies of the code need to be maintained when new parameters are

chosen, instead of making such parameters part of a configuration

file. Hence, we started moving toward the simplification of the code

by introducing the concept of libraries that can be pip installed, as

well as adding gradually more parameters to configuration files that

are used by the program.

The advantage of using a notebook is that it can be augmented

with lots of graphs that give updates on the progress and its

measurement accuracy. It is infeasible for students to use and

replicate the run of this notebook on their own computers as

the runtime can be up to two days. Naturally, students use their

computers for other purposes and need to be able to use them on

the go, not having the luxury to dedicate such a prolonged time to

running a single application. Hence, it is desirable to use academic

HPC centers that provide interactive jobs in the batch queues in

which Jupyter notebooks could be run. However, running such a

time-consuming interactive job is also not possible in most cases.

Instead, we opted to use Jupyter notebooks with a special batch

script that internally uses Papermill (Papermill, 2020) and leverages

anHPC queuing system to execute the notebook in the background.

Papermill will execute the notebook and include all cells that have

to be updated during runtime, including graphics in a separate

runtime copy. The script we developed needed to be run multiple

times with different hyperparameters such as the number of epochs.

As the HPC system is a heterogeneous GPU system having access to

A100, V100, P100, and RTX2080 graphics cards, the choice of the

GPU systemmust be able to be configurable. Hence, the batch script

includes the ability to also read in the configuration file and adapt

itself to the needed parameters so such parameters can be separated

from the actual notebook. This is controlled by a sophisticated but

simple batch job generator, which we discuss in Section 3.

Summary choosing the earthquake benchmark

application:

• Opportunities: Using a scientific application as a

project within the educational efforts allows students

to identify pathways on how to apply DL knowledge to

such applications.

Furthermore, we have chosen an application written

as a Jupyter notebook to identify if students have an

easier time with it and to see if benchmarks can be

easily generated if notebooks are used instead of just

Python programs. We identify that existing tools such

as Papermill can provide the ability to run Jupyter

notebooks in queuing systems while running them as

tasks in the background and capturing cell output.

• Challenges: Understanding a scientific application

can be quite complex. Having a full implementation

using DL for it, still provides challenges as data

and algorithm dependencies need to be analyzed

and domain knowledge needs to be communicated

to gain deeper understanding. It is important to

separate the runtime environment variables as much

as possible from the actual notebook. The coordination

of such variables can be challenging and tools such as

cloudmesh-ee make such integration simple.

3.2. Insights into data management from
the earthquake forecasting application

In data management, we are concerned with various aspects of

the data set, the data compression and storage, and the data access

speed.We discuss insights into each of them that we obtained while

looking at the earthquake forecast application.

3.2.1. Data sets
When dealing with data sets, we typically encounter several

issues. These issues are addressed by theMLCommons benchmarks

and data management activities so that they provide ideal

candidates for education without spending an exorbitant amount

of time on data. Such issues typically include access to data without

privacy restrictions, data preprocessing that makes the data suitable

for DL, and data labeling in case they are part of a well-defined

MLCommons benchmark. Other issues include data bias, noisy

or missing data, as well as overfitting while using training data.

Typically the MLCommons benchmarks will be designed to limit

such issues. However, some benchmarks such as the science group

benchmarks, which are concerned with improving the science, have

the option to potentially address these issues in order to improve

the accuracy. This could even include injecting new data and

different preprocessing methods.

3.2.2. Data compression
An issue of utmost importance, especially for large data sets,

is how the data are represented. For example, we found that

the original data set was 11 GB for the earthquake benchmark.

However, we found the underlying data were a sparse matrix, and

was easily lossless compressed by a factor of 100. This is significant,

as in this case the entire data set can be stored in GitHub or moved

quickly into memory. The compressed xz archive file is only 21MB,

and downloading only the archive file using wget takes 0.253 s on

the HPC. In case the data set and its repository are downloaded
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with Git, we note that the entire Git repository is 108MB (von

Laszewski, 2023b). On the Rivanna Supercomputer, downloading

this compressed data set only takes 7.723 s. Thus, it is preferred

to just download the data using wget. In both cases, the data are

compressed. To uncompress, the data will take an additional 1min

2.522 s. However, if we were to download the data in uncompressed

form, it would take ≈ 3 h 51 s. The reduction in time is due

to the fact that the data are sparse, and the compression allows a

significant reduction needed to store and thus transfer the data.

From this simple example, it is clear that MLCommons

benchmarks can provide students insights into how data are

managed and delivered to, for example, large-scale computing

clusters with many nodes while utilizing compression algorithms.

We next discuss insights into infrastructure management while

using file systems in HPC resources. While often object stores are

discussed to host such large data sets, it is imperative to identify

the units of storage in such object stores. In our case, an object

store that would host individual data records is not useful due

to the vast number of data points. Therefore, the best way to

store these data, even in an object store, is as a single entry of

compressed overall data. Other MLCommons Science Working

Group benchmarks have data sets in the order of 500 GB–12 TB.

Other tools, such as Globus transfer, can be used to download

larger data sets. Obviously, these sets need special considerations

when placed on a computing system where the students’ storage

capacities may be limited by policy.

3.2.3. Data access
Besides having proper data and being able to download

them efficiently from the location of storage, it is imperative

to be able to access it in such a way that the GPUs used

for DL are being fed with enough data without being idle.

Our performance results were somewhat surprising and had a

devastating effect on the overall execution time. We found that

the performance was more than twice as fast on the personal

computer while using an RTX3090 in contrast to using the

HPC center recommended file systems when using an A100.

For this reason, we have made a simple test and measured

the performance to read access the various file systems. The

results are shown in Table 3, which include not only various file

systems at the UVA’s Rivanna HPC but also a comparison with a

personal computer.

Based on this observation, it was of great disadvantage to

consider running the earthquake benchmark on the regularly

configured HPC nodes as they ran on some resources for almost

24h due to the policy limit the Rivanna system allows for one

job. Hence, we were allowed to use a special compute node

that has additional non-volatile memory express (NVMe) storage

available and accessible to us. On those nodes (in the Table listed

as /localscratch), we were able to obtain a very suitable

performance for this application while having a 10-fold increase

in access in contrast to the scratch file system and almost double

the performance given to us on the project file system. The

/tmp system—although fast—was not sufficiently large for our

application and performs slower than the /localscratch setup

for us. In addition, we also made an experiment using a shared

memory-based-hosted file system in the nodes random-access

memory (RAM).

What we learn from this experience is that an HPC systemmust

provide a fast file system locally available on the nodes to serve the

GPUs adequately. The computer should be designed from the start

to not only have the fastest possible GPUs for large data processing

but also have a very fast file system that can keep up with the data

input requirements presented by the GPU. Furthermore, in case

updated GPUs are purchased, it is not sufficient to just take the

previous-generation motherboard, CPU processor, and memory

but to update the hardware components and include a state-of-the-

art compute node. This often prevents the repurposing of the node

while adding just GPUs due to inefficient hardware components

that cannot keep up with the GPU’s capabilities.

Summary of data management aspects:

• Challenges: Scientific applications require at times

large-scale storage spaces that can be provided while

using HPC compute centers. The speed of accessing

the data depends on where the data is and can

be stored in the HPC system. Performance between

systems can vary drastically showcasing differences

between shared, non-shared, NVMe-based storage, and

in-memory storage volumes.

• Opportunities: Input data needs to be placed on

appropriate storage options to satisfy the fastest possible

access guided by benchmarks. As scientific data are

often sparse, they could be significantly compressed,

and the time to access the data to move them and

uncompress them is often much shorter than the time

one needs to load the uncompressed data. Access to a

server to its local storage system is essential andmust be

provided by the HPC center. Instead of old-fashioned

HDDs or even SSDs, the fastest NVMe storage should

be provided.

3.3. Insights into DL benchmark workflows

As we are trying to benchmark various aspects of the

applications and the systems utilizing DL, we need to be able to

easily formulate runtime variables that take into account different

control parameters either of the algorithm or the underlying system

and hardware.

Furthermore, it is beneficial to be able to coordinate

benchmarks on remote machines either on a single system or

while using multiple systems in conjunction with hybrid and

heterogeneous multi-HPC systems. Thus, if we change parameters

for one infrastructure, it should be possible to easily and

automatically be applied to another infrastructure to identify the

impact on both. These concepts are similar to those found in cloud

and grid computing for job services (von Laszewski et al., 2002) and

for workflows (von Laszewski, 2005; von Laszewski et al., 2007).

However, the focus here is on ensuring the services managing the

execution are provided and controlled by the application user and
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TABLE 3 File transfer performance of various file systems on Rivanna and personal computers.

Machine File systems Bandwidth Speedup Description

Rivanna /scratch/$USER (sbatch) 32.1 MB/s 1.0 shared scratch space, batch mode

Rivanna /scratch/$USER (interactive) 34.8 MB/s 1.1 shared scratch space, interactive

Rivanna /home/$USER 42.9 MB/s 1.3 user’s home directory

MacM1 / 97.7MB/s 3.0 user’s home directly

Rivanna /project/$PROJECTID 105 MB/s 3.3 project-specific file system

Rivanna /tmp 285 MB/s 8.9 temporary file system on a node

Special Node Rivanna /localscratch 403 MB/s 12.6 NVMe storage of the node

RAM disk Rivanna /dev/shm/* 483 MB/s 15.1 simulated file system in a RAM disk

Personal Computer /home/$USER 607 MB/s 18.9 Sabrent 2TB NVMe

not necessarily by the cloud or HPC provider. Thus, we distinguish

the need for a workflow service that can utilize heterogeneous

HPC systems while leveraging the same parameter set to conduct

a benchmark for comparison by either varying parameters on the

same or other systems. Such a framework is presented by von

Laszewski et al. (2022, 2023) and is based on our earlier work on

workflows in clouds and grids.

In addition, we need a mechanism to create various runs with

different parameters. One of the issues we run into is that often our

runtime needs exceed that of a single job submission. Although

job arrays and custom configurations exist, they often lead to

longer runtimes that may not be met by default policies used in

educational settings. Thus, it is often more convenient to create

jobs that fall within the limits of the HPC center’s policies and

split the benchmarking tasks across a number of jobs based on the

parameter permutations. This also allows easier parallelization.

For this reason, von Laszewski et al. have implemented the

cloudmesh Experiment Executor (cloudmesh-ee) that provides

an easy-to-use batch job generator, creating parallel jobs based

on a permutation of experiment parameters that are defined

in a configuration file. The tool creates for each job its own

subdirectory, copies the code and configuration files into it, and

creates a shell script that lists all jobs to be submitted to the queuing

system. This also has the advantage that Jupyter notebooks can

easily be integrated into this workflow component, as a local copy

is generated in each directory and the output for each cell is created

during the program execution.

Furthermore, we need a simple system to measure the

performance and energy, while communicating the data in an easy

fashion to the users. This system was developed by von Laszewski

and contains two components: (a) a general stopwatch and (b) a

mechanism to monitor the GPU as discussed in Section 3.

We describe these systems briefly while focusing on their

applicability for benchmarks.

3.3.1. Cloudmesh monitoring
For years, we have provided a convenient StopWatch package

in Python to conduct time monitoring (von Laszewski, 2022a).

It is very easy to use and is focused on runtime execution

monitoring of time-consuming portions in a single-threaded

Python application. AlthoughMLCommons provides its own time-

measuring component, called mllog, it is clear from the name that

the focus is to create entries in a log file that is not easily readable

by a human and may require postprocessing to make it usable. In

contrast, our library contains not only simple labeled start and

stop methods, but it also provides a convenient mechanism to

print human-readable customizable performance tables. However,

it is possible to also generate a result table in other formats such as

comma-separated values (CSV), JavaScript object notation (JSON),

YAML ain’t markup language (YAML), shorthand for text (TXT),

and others. Human readability is especially important during a

debugging phase when benchmarks are developed. Moreover, we

also have developed a plugin interface to mllog that allows us to

automatically create mllog entries into an additional log file, so

the data may be used within MLCommons through specialized

analytics programs. A use case is depicted next (we have omitted

other advanced features such as function decorators for the

StopWatch to keep the example simple).

from cloudmesh.common.StopWatch
import StopWatch
# ...
StopWatch.event("start")

# this where the timer starts
StopWatch.start("earthquake")

# this is when the main benchmark
# starts

# ... run the earthquake code
# ... additional timers could be
# used here

with StopWatchBlock("calc"):
# this is how to use a block timer
run_long_calculation()

StopWatch.stop("earthquake")
# this is where the main benchmark
# ends
StopWatch.benchmark()
# prints the current results

To also have direct access to MLCommons events, we have

recently added the ability to call a StopWatch.event.

In addition to the StopWatch, we have developed a simple

command line tool that can be used, for example, in batch scripts

to monitor the GPU performance characteristics such as energy,

temperature, and other parameters (von Laszewski, 2022b). The

tool can be started in a batch script as follows and is currently

supporting NVIDIA GPUs:
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cms gpu watch --gpu=0 --delay=0.5 --
dense > gpu0.log &

Monitoring time and system GPU information can

provide significant insights into the application’s performance

characteristics. It is significant for planning a time-

effective schedule for parameters while running a subset of

planned experiments.

3.3.2. Analytics service pipelines
In many cases, a big data analysis is split up into multiple

subtasks. These subtasks may be reusable in other analytics

pipelines. Hence, it is desirable to be able to specify and use them

in a coordinated fashion, allowing the reuse of the logic represented

by the analysis. Users must have a clear understanding of what the

analysis is doing and how it can be invoked and integrated.

The analysis must include an easy-to-understand specification

that encourages reuse and provides sufficient details about

its functionality, data dependency, and performance. Analytics

services may have authentication, authorization, and access

controls built-in that enable access by users controlled by the

service providers.

The overall architecture is depicted in Figure 3A. It showcases

a layered architecture with components dealing with batch job

generation, storage management, compute coordination, and

monitoring. These components sit on top of other specialized

systems that can easily be ported to other systems while using

common system abstractions.

Instead of focusing on the details of this architecture, we found

that the high-level use of it is very important as part of the

educational activities which also have an implication in general on

the use within any research activity.

We identified three beneficial concepts as part of the analytics

service pipelines (see Figure 4):

• Selection—Instead of performing all possible benchmarks, a

specific parameter set is selected and only that is run.

• Competition—From a number of runs, a result is identified

that is better than others. This may be, for example, the best of

n benchmark runs.

• Cooperation—A number of analytics components are run

(possibly in parallel) and the final result is a combination

of the benchmark experiments run in cooperation. This, for

example, could be that the job is split across multiple jobs due

to resource limitations.

In the earthquake code, we have observed all three patterns are

used in the benchmark process.

3.3.3. Workflow compute coordinator
Within HPC environments, scientific tasks can leverage the

processing power of a supercomputer so they can run at previously

unobtainable high speeds or utilize specialized hardware for

acceleration that otherwise is not available to the user. HPC can be

used for analytic programs that leverage machine learning applied

to large data sets to, for example, predict future values or to

model current states. For such high-complexity projects, there are

often multiple complex programs that may be running repeatedly

in either competition or cooperation, as also in the earthquake

forecast application. Thismay even include resources in the same or

different data centers on which the benchmarks are run. To simplify

the execution on such infrastructures, we developed a hybrid multi-

cloud analytics service framework that was created to manage

heterogeneous and remote workflows, queues, and jobs. It can be

used through a Python API, the command line, and a REST service.

It is supported on multiple operating systems like macOS, Linux,

and Windows 10 and 11. The workflow is specified via an easy-to-

define YAML file. Specifically, we have developed a library called

Cloudmesh Compute Coordinator (cloudmesh-cc) (von Laszewski

et al., 2022) that adds workflow features to control the execution

of jobs on remote compute resources while at the same time

leveraging capabilities provided by the local compute environments

to directly interface with graphical visualizations better suited for

the desktop. The goal is to provide numerous workflows that in

cooperation enhance the experience of the analytics tasks. This

includes a REST service (see Figure 5A) and command line tools

to interact with it.

We have tested the framework while running various MNIST

application examples, including multilayer perceptron, LSTM,

auto-encoder, CNNs and RNNs, and distributed training. A much

larger application using earthquake prediction has also been used.

Recently, the framework was applied by students to all applications

in theMLCommons ApplicationsWorking Group. Results of using

it outside of the earthquake code are available in von Laszewski et al.

(2023).

Figure 5A shows the REST specification and Figure 5B shows

the graphical user interface.

3.3.4. Parameterized experiment workflow job
generator

In traditional ML workflows, hyperparameter tuning and

configuration are key elements in assessing and optimizing the

performance of models. However, scaling hyperparameters for

highly parallel execution with heterogeneous hardware is complex.

Cloudmesh-ee (von Laszewski, 2023a; von Laszewski et al.,

2023) is a hyperparameter and configuration management toolkit

designed to address the generation of batch jobs with a consistent

and configurable interface based on hyperparameter values across

multiple development toolchains. One of its functions is to

create batch jobs based on parameterized job specifications and

configuration files. Cloudmesh-ee is part of the Cloudmesh

toolkit, a set of tools and libraries for managing cloud and

HPC resources from the command line, REST interfaces, or

graphical user interface (GUIs). Cloudmesh-ee can use a variety

of queuing systems and submission commands. Currently, we

provide interfaces to simple linux utility for resource management

(SLURM), load sharing facility (LSF), and secure shell (ssh).

The architecture of the cloudmesh-ee framework is depicted in

Figure 3B.

Cloudmesh-ee differentiates itself from other approaches

through its ability to generate a Cartesian product (permutation)

of hyperparameters to form independent experiment execution

profiles, making it trivial to scale an experiment from one execution

to thousands of configurations based on the ranges and their unique

combinations. The resulting output provides a generated Slurm or
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FIGURE 3

Architecture of the cloudmesh workflow service framework. (A) Architecture of the overall workflow framework. (B) Architecture of Workflow Script

Batch Generator cloudmesh-ee. REST, REpresentational State Transfer; API, application programming interface; DB, database; WSL, windows

subsystem for linux; SLURM, simple linux utility for resource management; LSF, load sharing facility; SSH, secure shell.

LSF script and a YAML configuration file representing the specific

hyperparameters. By managing many highly configurable jobs with

cloudmesh-ee, the focus is placed on what hyperparameters to use

for experiments and reduce the possibility of human error when

running experiments over a range of hyperparameters.

Cloudmesh-ee takes two configuration files. The first is a YAML

file that includes all parameters used by the benchmark, including

an experiment section that defines the Cartesian product. The

second is a Slurm template. From these files, it will create Slurm

scripts via the cloudmesh-ee commandline tool while

1. using a unique directory for the experiment,

2. taking a parameter set from the Cartesian product of the

experiment parameters,
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FIGURE 4

Service interaction.

3. creating from a batch job template an instantiation of the

template while replacing all variables from the configuration file

and replacing the specific experiment parameters, and

4. creating an instantiation of the configuration file while

replacing all experiment parameters with the one for the

current experiment.

This is executed for all permutations of the

experiment parameters.

An example of a configuration file config.yaml where we

iterate over epochs, gpus, and repeat it five times is shown next:

application:
name: earthquake

data: /scratch/{os.USER}/{application.
name}

experiment:
epoch: "1,30,60"
gpu: "a100,v100"
repeat: "1,2,3,4,5"

An example of a batch script in the cloudmesh template

markup follows:

#!/bin/bash

#SBATCH --job-name={experiment.repeat}-{
application.earthquake}

#SBATCH --nodes=1
#SBATCH --gres=gpu:{experiment.gpu}:1
#SBATCH --time=02:00:00
#SBATCH --mem=64G
#SBATCH -o {experiment.gpu}-{application

.earthquake}/{experiment.repeat}-%j.
out

#SBATCH -o {experiment.gpu}-{application
.earthquake}/{experiment.repeat}-%j.
err

#SBATCH --partition=bii-gpu
#SBATCH --account=bii_dsc_community

export USER_SCRATCH=/scratch/$USER
cd USER_SCRATCH
mkdir -p $USER_SCRATCH/{experiment.gpu

}-{application.earthquake}/%j.out
nvidia-smi

cms gpu watch --gpu=0 --delay=0.5 --
dense > outputs/gpu0.log &

python earthquake.py --config config.
yaml

seff $SLURM_JOB_D

The variables can easily be referred to with a dot notation in the

templates. Variables in the YAML file can also be replaced so it is

possible to use abbreviations easily and in a consistent fashion in

the YAML file as well as in the batch script.

The configuration files and cloudmesh-ee can be configured

with parameters so that the files and directories are placed in

the right location, and repeatable experiments are created not

only on the original machine, but the template can also be easily

adapted onto othermachines. An example of a variable replacement

specification in the YAML file is given for the data value where

not only the operating system variable os.USER is replaced,

but also the variable {application.name}. Obviously, this

is a significant functionality enhancement to a typical YAML

file. Multiple values are only possible under the experiment tag,

where a variable with multiple values is assigned a string of

comma-separated values.

One can choose a number of important parameters as part of

the permutation strategy to create different experiments. Common

variables are names of graphics cards (if available), memory,

file systems used, versions of Python, versions of TensorFlow,

epochs, learning rate, and many other important parameters that

can influence the benchmark. The reason why we only allow

the parameters with variation under experiment is to ensure

that there is no confusion with other parameters that may not

be modified and instead only represent a single value. However,

variables under experiment are also allowed to have just a single

value. Another interesting case is the introduction of a repeat

parameter, allowing the program to be executed multiple times

in order to, for example, support patterns of competition or

collaboration while selecting the best values or creating averages.
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FIGURE 5

Workflow interfaces. (A) Fast API workflow service. (B) Workflow user interface.

The final output of cloudmesh-ee is a shell script that contains

all jobs that are to be executed with the defined permutations

over the parameters. One nice side effect of this is that the

jobs in the file can be run in parallel and the queuing system

can take over the scheduling of the job following the system-

defined queuing policies. However, it may also be possible

to create a collaborative group submission, using our earlier

introduced collaborative pattern, where multiple users submit a

portion of the jobs so that policies restricting the number of

jobs per user can be avoided. Furthermore, if access to multiple

HPC machines is available, the jobs could be split among the

different machines. However, in that case, time measurements

may not be a useful parameter to benchmark. However, as in the

science group, we are concerned about accuracy, but in addition

the combination of a system composed of multiple resources

is meaningful.
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Our progress with the earthquake benchmark would not have

been possible if we did not have cloudmesh-ee to coordinate the

many experiments in a consistent fashion. One important aspect

is that the management of thousands of jobs that we ran was

simplified and the jobs could be created easily while fostering

reproducibility. The resulting jobs were run over a month, while

each job took many hours to complete.

We have practical experience from multiple teams where

coders spent multiple months developing programs and strategies

to coordinate their experiment executions; to circumvent this

expenditure, the cloudmesh experiment executor generated such

permutations within one day on a variety of systems.

Summary of workflow management aspects:

• Challenges:

In benchmarking, we often compare multiple

infrastructures and explore many different parameters.

This poses the problem of needing to tune and therefore

repeat the experiments. Furthermore, we observe that

with longer time and larger resource-intensive

benchmarks, policies at HPC centers may limit not

only the time to execute a benchmark but also the

number of jobs that can be executed in parallel.

• Opportunities: We have observed that competitive

and collaborative workflow patterns are frequent for

benchmarking. We have developed two frameworks

that assist in executing benchmarks on multiple HPC

systems helping to navigate challenges put in place by

center policies, but also allowing the management of

large-scale experiment executions through a compute

coordinator and an experiment executor that is part of

cloudmesh. Together the systems allow workflows to be

easily managed addressing job and experiment-related

workflows. The systems allow further enhancements

and even integration into analytics pipelines using

REST interfaces.

4. Benchmark results

In this section, we present some of our concrete benchmark

results for the earthquake application while mostly focusing

on accuracy while modifying hyperparameters to control the

benchmark. In addition to accuracy, we also have provided insights

into how the runtime can be predicted to allow scheduling hints for

the various batch jobs that we ran. We also have included a brief

observation about our experiences with energy monitoring and

why it is beneficial. It serves a an example for what students may be

able to accomplish. As we will see, the experiment has a significant

impact on the hardware configuration that is often overlooked by

efforts that do not conduct a holistic benchmark. We start the

section by describing the hardware used for the benchmarks.

4.1. Hardware used for this Research

The benchmarks we present in the next sections have been run

on a number of compute resources. This includes not only an HPC

at UVA but also a desktop, a laptop, and Google Colab to represent

different classes of computing resources that students have access

to. We used the following resources:

• Rivanna (Univerity of Virginia Research Computing, 2023)—

The Rivanna HPC cluster is a system hosted at UVA with

15 different hardware configurations spanning 575 nodes.

There exist five different classes of GPUs on these nodes. The

Rivanna HPC follows the condominium model and continues

to receive additions of nodes and upgrades at various times.

• Google Colab Google Colaboratory (2023)—This a free-to-

use interactive computing service offered by Google that

provides on-demand access to GPUs and TPUs. Google Colab

is designed to be used with ML and data analysis Google

Colaboratory (2023). When running with Google Colab,

multiple hardware configurations may be provided depending

on the instance type. The Pro+ plan allocates an NVIDIA

V100 with 53GB of RAM for a GPU configuration. The free

plan only offers 32 GB and a P100 GPU.

• Desktop—This is a custom-built desktop with an AMD 5950X

processor, 128GB memory, and fast NVMe storage.

• Laptop—This is a store-bought laptop with an AMD 5900HX

processor, 16GB memory, and NVMe storage.

The details of the machines are showcased in Table 4.

4.2. Earthquake forecast performance
measurements

The original code targets three applications: earthquake

forecasting, COVID-19 prediction, and hydrology prediction.

We determined that the code could be significantly modified

by removing other code unrelated to the earthquake prediction

application. This includes removing code for the two additional

applications targeting hydrology and COVID-19. Although

they use similar DL prediction algorithms, different data and

optimization parameters are used. Cloudmesh StopWatch methods

were added to obtain code runtime, start, stop, status, and event

actions of the different phases of the program. In addition, we

augmented the execution of the batch scripts with code that reports

energy and temperature using cloudmesh-gpu.

4.2.1. Reproducible experiments
One of the important lessons learned from working within

an educational environment is to ensure that experiments can be

reproduced early on in the coding process. This not only includes

saving the original data in an immutable storage facility but also

ensures that the code and parameters of the code are preserved for

each experiment. Specifically, we ensure this preservation by using

configuration files and Singularity containers.
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TABLE 4 Overview of the computing resources.

Machine Cores Memory GPU Memory # GPUs # Nodes Commissioned

/ Node / Node / GPU / Node / Node

Rivanna (UVA) 128 2000 GB A100 80 GB 8 10 Feb 2022

128 1000 GB A100 40 GB 8 2 Jun 2022

28 255 GB K80 11 GB 8 8 Jun 2018

28 255 GB P100 12 GB 4 4 Jan 2018

28 188 GB V100 16 GB 4 1 Feb 2019

40 384 GB V100 32 GB 4 12 Feb 2021

36 384 GB V100 32 GB 4 2 Apr 2022

64 128 RTX3090 24 GB 4 5 Feb 2023

40 384 GB RTX2080TI 11 GB 10 2 May 2021

Google Colab - 32 GB P100 16 GB 1 - March 2022

Google Colab Pro+ - 53 GB V100 32 GB 1 - March 2022

Desktop 5950X 32 128 GB RTX3090 24 GB 1 1 Feb 2022

Laptop 5900HX 8 16 GB RTX3080 10 GB 1 1 Nov. 2021

Code used during a development phase should not be used

especially if they are developed with Jupyter Python notebooks

that could contain an implicit hidden state that causes side effects.

Hence, the benchmark must be saved in a clean fashion so that no

other result-impacting effects occur.

4.2.2. Measuring runtime
As the code requires a significant amount of time to execute,

we first had to estimate the projected runtime for a number of

epochs. Hence, after the code augmentations, we obtained for a

small number of epochs (2, 10) the runtime and projected the

runtime for various systems from these values. As our ML code

performs similarly to linear growth when increasing epochs, it was

possible to fairly accurately predict the performance while larger

numbers of epochs improved the prediction accuracy. As we need

to reserve resources on any shared compute resource if it is an

HPC system, such runtime predictions are extremely important to

accurately estimate to preserve allocation usage. For completeness

and to verify the linear behavior, we also executed performance

experiments with a larger number of epochs.

We also wished to estimate how much time is spent on the

GPU versus the rest of the program. This allowed us to predict

the runtime more accurately, and what impact setting up the

application has on the runtime. Figure 6A shows the timemeasured

for a two-epoch case for modeling prediction and the rest of the

application. The bars in the histogram are divided while the top

part indicates the model prediction for two epochs, and the bottom

part is the rest of the application’s runtime. These numbers can then

be used to generate predictions while varying the epoch numbers

as multipliers and using the benchmark data for the particular

GPU used.

Figure 6B indicates the time spent in the application. To

produce this graph, we ran the application (as previously

mentioned) while varying the epochs between 2 and 70 to obtain

the runtime. The total runtime for various configurations with

different GPUs and file systems (where choices for the file system

existed) is shown in Figure 6B. This experiment was also run on

the desktop using an AMD 5950X with an RTX3090 and 128 GB

of memory while data were located on an NVMe. The data on

the HPC system were initially located on an NSF storage system

(indicated by the name project for the /project or scratch for the

/scratch file system). As we see, the desktop with an RTX3090 is

significantly faster than the HPC compute node equipped with any

other GPU (including an A100), which was a surprise not only

to the team but also to the research staff. To quantify this result,

we enumerate the results for a two-epoch case in Table 5. To our

surprise, we found that the RTX3090 machine was almost 2.67

times better than the HPC machine with an A100.

The same desktop computer also significantly outperformed

benchmarks conducted on Google Colab. We discovered that

Google Colab, although suitable for small epoch runs, quickly

deteriorated with an increasing number of epochs due to the older

GPUs with Google Colab’s present hardware availability.

The reason why the desktop performed so well is that it had up-

to-date, fast memory and that the data were hosted on fast NVMe

storage. As the earthquake application uses many data requests, fast

IO makes a big difference. This performance analysis has guided us

to propose changes to the HPC machine, which are in the process

of being implemented. Future expansions of the HPC machine

include a 28TB upgrade to the GPUs accessible NVMe storage. Our

benchmark is a good use case for motivating this update.

Based on these findings, we influenced a change in the

architecture of the HPC server nodes to add a file system with

NVMe storage on it. However, as our measurements show, the

desktop significantly outperformed the HPC system; additional

changes will need to take place even after this upgrade while

updating servers to the newest generation of NVIDIA hardware.

This upgrade will focus on increasing the bandwidth of data

transfers between the file system and the GPU so that the GPU can

Frontiers inHighPerformanceComputing 20 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1233877
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


von Laszewski et al. 10.3389/fhpcp.2023.1233877

FIGURE 6

Performance time measurements. GPU. (A) Time of the best fit in seconds of performance measurements while using 2 epochs on various systems

with di�erent GPUs. The lower portion (green) of each bar represents the setup time, while the upper portion (blue) represents the training and

prediction time. The setup time is constant throughout the experiments, while with an increasing number of epochs the training and prediction time

will dominate. (B) Time performance benchmark for various GPU cards on di�erent systems and variations of epochs.

be properly utilized. We anticipate that such a system will become

available to us in the fall of 2023.

However, for our experiments, we were only running the

desktop for up to 33 epochs, and the dotted line includes our

prediction of the runtime based on our previous values. The

reason for this is that during our experiments, we ran out of

memory on the desktop to produce the visualization that is

part of the overall program. The insight we gained is that one

must ensure that the data feed to the GPU can keep up with

the GPU’s performance. It is not sufficient to add GPUs to a
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server that may not have adequately fast file systems, memory,

or processors.

For our next experiments, we need to distinguish the

different phases of the application in more detail. We have

augmented the code with timers that return information about the

following phases:

• Total. This shows the total runtime of the application and

includes all additional phases mentioned here.

• Initialize. Time to initialize all variables and data and split

data into train, validation, and test.

• Sampling locations. Time to sample time-series data into

2-week batches.

• Training orModel Fit.Time to train themodel and determine

and save the best fit from all epochs.

• Bestfit or Bestfit Prediction. Time to find the best-fit model

to calculate predictions.

• Visualize. Time to organize all predictions into an organized

structure so the MSE and NNSE can be calculated, and

accuracy graphs can be identified.

• Final Plots. Time to gather data collected during model

runtime and move to a permanent directory and process

plots and graphs from data. Then, clean up data and close all

unneeded processes.

4.2.3. Accuracy performance benchmark
Since MLCommons Science Working Group’s focus is

improving an application’s accuracy, this section reports on the

accuracy of the earthquake application.

We observe that application loss for validation and training

intersects at the 30–33 epoch value (see Figure 7). We have also

tested larger epoch runs up to 90 epochs. Our best accuracy values

are found at our 90 epoch runs.

However, generally, we can say that at the intersection point,

the model’s performance on the validation set starts to degrade

while its performance on the training set continues to improve.

Hence, the model is fitting the training data too well while at

the same time not being able to generalize our validation data

leading to overfitting. As the training loss continues to decrease

with an increased number of epochs after the intersection point, the

model has become too complex and captures noise in the training

data. This analysis provides an excellent opportunity for future

benchmarking activities to deal with overfitting while considering

techniques such as early stopping, regularization, the reduction of

the model complexity, reorganization of the data, cross-validation,

and additional hyperparameter tuning.

4.2.4. Prediction parameters for input and
prediction data

For the rest of the experiments, we have chosen different input

and output vectors that are used as hyperparameters or prediction

parameters. In the subsequent benchmark results, these groupings

of data are used as part of the training to optimize their associated

accuracy values.

The data is grouped into 2 week periods. The model steps

through each of these 2-week groupings and uses training data

TABLE 5 Runtime of the two-epoch case in seconds.

Timer RTX3090 RTX3080 A100 80GB V100 K80

Desktop Laptop Rivanna Rivanna Rivanna

Total 6,589.4 8,348.5 17,574.8 20,295.0 28,343.3

Sampling
location

457.9 532.5 1,227.0 1,546.4 1,779.6

Training 1,103.2 2,068.9 1,373.0 1,671.4 6,967.3

Bestfit 4,420.3 4,997.1 13,022.1 14,795.1 17,037.6

FIGURE 7

Loss comparison between training and validation data. TFT,

temporal fusion transformer.

up to 1 year into the past from the current 2-week grouping. The

model uses up to 1 year,≤26 data points, before the current 2-week

grouping run on the model as training data. For example, if the

model is taking the first 2 weeks of January 2000, it would take≤ 26

2-week groupings before that point as training data, so all 1999 data

would be 26 data points. Then it repeats this method with the next

2-week period in sequence, which would be the 2-week grouping of

weeks 3 and 4 of January 2000, and the training data would be the

previous 26 2-week groupings from that point or the first 2 weeks of

January 2000 and the previous 25 2-weeks groupings of 1999, all of

1999 data except first 2 weeks of 1999. It repeats this until all 2-week

groupings are used in the model.

We have introduced a convenient nomenclature for the data

input. This nomenclature uses the following rules that are applied

to control how parameters are used as input and output data:

• All data were grouped into 2-week periods.

• The term Now indicates the most recent rolling sequential

date from the data set; the Term #M or #Y corresponds to the

number of months or years prior toNow to use when sampling

the data.

• An optional moving window is applied based on a range of

2-week grouping from the specified time frame. For example,

2wk+26AVG is an abbreviation for performing the calculation
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over 26 groupings. When not specified, only one observation

is collected.

Applying these rules, a range of values is notated by first

specifying a 2-week grouping and then the number of observations

to include. For example, a value of 1Y 2wk+26AVG is 1 year from

the 2-week grouping the model is currently on; the rolling training

group is run on the data set, taking 26 2-week groupings from

that date. Another example is the value of 1 Year Back, which is a

single 2-week occurrence 1 year ago from the rolling training group.

Another example is Now 2wk+7AVG, which is 7 2-week groups

from the rolling training group.

4.2.5. Competitive accuracy benchmarks
Next, we summarize the competitive accuracy benchmark

where we use the nomenclature for the input and output

hyperparameters defining the time period used for the training

and validation. To simplify our presentation, we have decided

to use epoch values 2, 30, 70, and 90 for this article’s

experiments. We took all results and sorted them for training

and validation separately by the accuracy values. This leads

to a ranking of the experiments by accuracy. In Table 6, we

present the top 20 accuracy values, while in Figures 8A, B,

we created a histogram showcasing how many accuracy values

fall into a certain bucket over all experiments for training

and validation.

From the table, we see that we achieve the best results using the

parameters (epoch=90, Next Year Back). From the histogram, we

see that the best results stem mostly from 90 epochs.

Hence, although we are mostly interested in identifying the best

accuracy value, it is also advantageous to reflect that data place the

90-epoch case above the other values, generally leading to better

results (see Figure 8A) for training.

To identify more details about the most accurate results and

the prediction parameters (hyperparameters) used to create them,

we have plotted the accuracy values in Figures 8C, D.

Here we have sorted the hyperparameters by the accuracy

values for the validation where the best accuracy for each

hyperparameter is identified and sorted in increasing fashion. We

have then taken the same order of the hyperparameters and applied

the order to the training. The diagrams include the minimum and

maximum accuracy values for a hyperparameter found using 2, 30,

70, and 90 as epochs, while the experiment has been repeated five

times. The average for each accuracy for a given epoch is shown.

Additionally, the confidence interval for each epoch is added as a

highlighted area.

The best average value for the hyperparameter Next Year Back

is 0.937 for training and 0.937 for validation (see Table 6).

Not only did we find that the best epoch for accuracy is 90,

but the best hyperparameters are also Next Year Back for average

NNSE and Next 6 Months Back for summed NNSE, meaning that

according to our nomenclature, the previous year and 6 months of

observation readings from the current rolling training group is used

as training data in support of our model.

Although we see, on average, better accuracy results with 30

epochs, the best accuracy values we still have seen with 90 epochs.

This indicates that we have a higher variation of the results in the

90-epoch case. However, as we are competing for the best value and

not the average value, this variation has an advantage as we do not

as easily get stuck in a local minima.

One other observation we can make is that the training NNSE

value is higher than that of validation. This leads us to believe

that the input data may be incomplete to train the model more

accurately or that the input data need to be differently structured

to have a higher validation accuracy value. Hence, although this

work is a good starting point, we believe there is significant room

for improvement.

We canmake similar observations when looking at the summed

accuracy values. However, here we see that more of the best

accuracy values are retrieved when using 90 epochs. We see in the

average and summed accuracy that the best 20 values have been

created with the prediction parameters of Next Year Back, Next 6

Month Back, and Next 3 Month Back. The average shows a more

uniform distribution of these parameters in the top 20 than the

summed NNSE values (see Figure 9).

As we can see further educational opportunities can be derived

from analyzing different prediction parameters and different input

data distributions.

Summary application benchmark:

• Challenges: Today’s students have a limited

understanding of HPC resources. This not only

includes the CPU and GPU but also network

and storage resources. How to use these resources

leads to optimizations while efficiently using the

hardware. While in some educational activities,

students only gain an understanding of a single model,

application benchmarks require measuring different

combinations of input and output data as well as

various models. This is important as in many cases the

best combination has to be found.

• Opportunities:We identified while providing students

with a detailed understanding of the hardware

optimizations by the students to utilize them have been

found. Furthermore, introducing a “leader-board” of

different models and applications using a variety of

input and output options provides the students with

a more general approach to identifying good results.

The students understand that different parameters for

benchmarks not only include the hyperparameters of a

DL algorithm but also the data used and the hardware.

Many topics can be added to this such as identifying

overfitting and how to prevent it, which is beyond the

scope of this article.

4.2.6. Energy
When proposing research activities with students, discussions

about energy are a highly relevant and engaging topic in today’s

world due to the pressing issue of climate change. With increased

extreme weather, students become more aware of the necessity

for ML applications that can help increase understanding and
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analysis of such weather. Additionally, students understand the

need for cautious and responsible resource usage, with energy

consumption being a prime example that can be reasonably well

measured when using electronic devices such as GPUs. In our

interactions with students, we have observed that they are not

merely interested in finding out the best or most efficient results

but, once made aware of energy consumption measurement, that

they also want to understand more about how to measure it

and how it impacts different algorithms and use of different

compute resources. To cater to this curiosity, we have developed

an easy-to-use energy trace component that can be started

in parallel to our performance experiments, called cloudmesh-

gpu. It returns the energy at predefined time intervals and

contains examples on how to read and plot the data, as well

as calculate a traced energy consumption provided during the

traced events.

We have actively observed that students students changed their

attitude from “I do not care how long the experiment runs as

I do not have to pay for it” to “I should care for how long it

runs as it has a direct impact on the energy consumption, which

may adversely impact the environment I am living in.” Such

discussions are also related to one aspect of an ethics discussion

of the use of AI. What is the impact on our environment when

using AI in general? We certainly do not provide an answer

to this question, but we use this curiosity to start students to

think more globally. For example, one could ask how much

energy is consumed by students learning AI with a standard

example that has been run abundantly, such as done in regular

AI classes with, for example, MNIST. Could we not replace it
with different benchmarks that relate directly to other applications
that have a more direct impact on the well-being of humans

such as earthquakes? However, we recognize that MNIST and
character recognition in general are useful to support the blind,

for example. Thus, bringing such examples into the research
experience for students is an important aspect with energy being
one metric to consider. Furthermore, it indirectly has an impact

on the operational cost of a center and future improvements
could associate the energy cost per kWh for particular regions

and time of the day to contrast regional differences in running
such applications.

Now that we have introduced why energy is a vital topic

to be included in benchmarks, we provide a more detailed

discussion about its technical aspects and how we applied it in

our analysis.

One aspect of energy consumption that is most often

discussed is cost. Energy consumption has become an important

factor in the evaluation of computing centers due to the

high costs associated with running them on a large scale.

This not only includes common compute center-based metrics

such as power usage effectiveness but also the measurement

of application-oriented energy consumption. Such application-

oriented comparisons have led to a ranking of the most energy-

efficient supercomputers as detailed in the Green500 list (Feng

et al., 2007). In such comparisons, the metric Energy Efficiency

is used and derived by the GFlops/watts value. Just like TOP500,

this benchmark is based on Linpack performance measurements

(Top500, 2023). However, it is important to also consider

other applications when measuring energy consumption. Such

applications may consist of many different phases and may not

perform at the maximum potential performance of the available

hardware, or the available hardware may project a bottleneck for

the performance.

To measure the algorithm’s energy consumption, we need to

augment the application in such a way that we can monitor energy

use over the lifetime of the application execution. For this, we have

developed a simple-to-use energy trace program to monitor and

predict our energy uses called cloudmesh-gpu as introduced in

Section 3. We used for our initial experiments data hosted on an

NFS file system in the data center as localscratch was not available

at the time.

With this program, we can create energy traces of the GPU.

An energy trace is a sample of energy measurements periodically

taken over time of the GPU. The period of the measurements can

be decreased to increase the accuracy of the energy measurements

over time. Our presentation here only includes measurements

of the GPU and does not include the measurement of the

servers, file system, or network energy consumption, as our focus

for this study is the impact on GPUs and to see if they are

efficiently used.

In our case, we chose to measure the GPU energy used every

second leading to an energy trace that we term ET
1t=1s(GPU). Such

traces can be applied to the application running with different

hyperparameters. To showcase the drastically different energy

traces, we have limited our discussion to running applications on

different GPUs (A100 and V100) and different epochs (2, 30, and

70). These traces are depicted in Figures 10A–F. To better showcase

the impact of the different phases of the application, we have

augmented the traces with different colors for the different phases

of the application. We distinguish the phases called Initialize,
Training, Best Fit Prediction,Visualize, and Final plots. Themeaning
of these phases has been explained in Section 4.2.2 and we have
used different colors for the phases in Figure 10 to distinguish

them better.

An important observation for the training phase (colored in
green) that the energy values of the GPU are significantly higher
than in the rest of the application, indicating a much higher

utilization of the GPU during that phase.

The other phases dealing with data reparation only show

a modest use of the GPU. We have measured the energy
consumption between different GPUs. When looking at the

energy traces in Figure 10, showing the differences between

A100 and the V100 GPUs, we note that the time on the

abscissa is significantly larger for the V100. Hence, overall

energy consumption per second will be significantly larger. The

fluctuations of the energy in the training phase can be explained

through the various repeated processes that exist within the training

of the DL application.

To compare the energy values between different GPUs such

as A100, V100, and P100, we can calculate the energy trace

consumption, defined as the sum of all energy values in an energy

trace ETC
∑

ET
1t=1s(GPU) applied to a hyperparameter such as the

epoch. We can then calculate the energy trace consumption per
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TABLE 6 Ranking of the top 20 accuracy values.

Training Validation

Rank NNSE Epoch Prediction parameter Rank NNSE Epoch Prediction parameter

(A) The top 20 average accuracy values based on hyperparameters with 2, 30, 70, and 90 epochs.

1 0.937 90 Next Year Back 1 0.937 90 Next Year Back

2 0.933 90 Next Year Back 2 0.931 90 Next Year Back

3 0.932 70 Next Year Back 3 0.931 70 Next Year Back

4 0.928 90 Next Year Back 4 0.927 90 Next Year Back

5 0.926 90 Next Year Back 5 0.925 90 Next Year Back

6 0.919 30 Next Year Back 6 0.917 30 Next Year Back

7 0.916 70 Next Year Back 7 0.915 70 Next Year Back

8 0.916 70 Next Year Back 8 0.915 70 Next Year Back

9 0.911 90 Next 6 Months Back 9 0.913 90 Next 6 Months Back

10 0.907 30 Next Year Back 10 0.906 30 Next Year Back

11 0.906 30 Next Year Back 11 0.904 90 Next 6 Months Back

12 0.902 90 Next 6 Months Back 12 0.904 30 Next Year Back

13 0.899 70 Next 6 Months Back 13 0.901 90 Next 6 Months Back

14 0.899 30 Next Year Back 14 0.899 70 Next 6 Months Back

15 0.899 90 Next 6 Months Back 15 0.899 70 Next 6 Months Back

16 0.897 70 Next 6 Months Back 16 0.896 30 Next Year Back

17 0.895 30 Next Year Back 17 0.894 30 Next Year Back

18 0.89 70 Next 6 Months Back 18 0.893 70 Next 6 Months Back

19 0.886 90 Next 6 Months Back 19 0.888 90 Next 6 Months Back

20 0.882 30 Next 6 Months Back 20 0.884 30 Next 6 Months Back

(B) The top 20 summed accuracy values based on hyperparameters with 2, 30, 70, and 90 epochs.

1 0.99 90 Next 6 Months Back 1 0.983 90 Next 6 Months Back

2 0.988 90 Next 6 Months Back 2 0.98 90 Next 6 Months Back

3 0.985 30 Next 6 Months Back 3 0.976 90 Next Year Back

4 0.984 30 Next Year Back 4 0.975 30 Next Year Back

5 0.983 70 Next 3 Months Back 5 0.974 30 Next 6 Months Back

6 0.982 90 Next Year Back 6 0.974 70 Next 3 Months Back

7 0.981 30 Next 6 Months Back 7 0.973 30 Next 6 Months Back

8 0.979 30 Next 3 Months Back 8 0.971 30 Next 3 Months Back

9 0.979 30 Next 3 Months Back 9 0.97 30 Next 3 Months Back

10 0.977 30 Next Year Back 10 0.97 30 Next Year Back

11 0.976 30 Next 3 Months Back 11 0.968 30 Next 3 Months Back

12 0.973 30 Next 3 Months Back 12 0.966 90 Next 3 Months Back

13 0.971 90 Next 3 Months Back 13 0.965 70 Next 3 Months Back

14 0.971 70 Next 3 Months Back 14 0.965 90 Next 3 Months Back

15 0.97 90 Next 3 Months Back 15 0.964 30 Next 3 Months Back

16 0.967 90 Next 3 Months Back 16 0.962 90 Next 3 Months Back

17 0.958 90 Next Year Back 17 0.954 90 Next Year Back

18 0.956 90 Year Back 2wk+7 18 0.942 30 Next 6 Months Back

19 0.955 90 Year Back 2wk+7 19 0.942 90 Next 6 Months Back

20 0.955 30 Year Back 2wk+7 20 0.939 70 Next 6 Months Back
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FIGURE 8

Evaluation of the normalized Nash–Sutcli�e e�ciency average accuracy for epochs 2, 30, 70, and 90. (A) Histogram of the average accuracy values

for every epoch over all experiments for training. (B) Histogram of the average accuracy values for every epoch over all experiments for validation.

(C) Average accuracy values over all experiments for training sorted by best training values. (D) Average accuracy values over all experiments for

validation sorted by best validation values.

epoch which we plotted in Figure 11A. The time with higher epoch

numbers is dominated by the training time as seen in Figure 10.

Hence, the energy per epoch for lower numbers of epochs will

be small, while for larger numbers, the energy per epoch will be

higher. However, they will not change much with higher numbers

of epochs as demonstrated in Figure 11A. We also see that the K80

uses significantly higher energy than the other GPUs, with the A100

performing best. For K80 and 70 epochs, we could not obtain a

value as it was outside the allowed time to run applications on the

supercomputer defined by the center’s policy. We also see that the

standard deviation for the kWh/Epoch value becomes smaller with

an increasing number of epochs.

This means that the power usage of GPUs is generally constant

when training our benchmark model and could be used for

energy prediction.

In Figure 11B, we also depicted the energy trace per epoch.

However, in contrast to Figure 11A that was created using

the data on an NFS storage device, we included here the

values obtained for data hosted on a localscratch file system

and the project file system. While the localscratch uses NVMe

storage, the project file system is hosted on a shared GPFS

storage server. Accessing the data from there takes more

time and hence more energy is used during the benchmark

per epoch.
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FIGURE 9

Evaluation of the normalized Nash–Sutcli�e e�ciency summed accuracy for epochs 2, 30, 70, and 90. (A) Histogram of the summed accuracy values

for every epoch over all experiments for training. (B) Histogram of the summed accuracy values for every epoch over all experiments for validation.

(C) Summed accuracy values over all experiments for training sorted by best training values. (D) Summed accuracy values over all experiments for

validation sorted by best validation values.

Hence, it offers a clear insight into how a file system can

negatively impact the energy as the runtime is enhanced and the

GPU time to cool down or adjust for reducing the energy is too

small to have an impact.

Additionally in Figure 11C, we summarize the total GPU

energy consumption of the traces from the complete execution

of the benchmark notebook depicting measures from the phases

Initialize, Training, Bestfit Prediction, Visualize, and Final Plots.

This graph is important, as it shows the impacts of the energy

usage of the GPU throughout the runtime and when compared

to the plots in Figures 11A, B, outlier events, such as a potential

interaction from other users sharing the benchmark infrastructure

can be identified.

Such phases and making clear that GPUs may not be used in

some of them could also lead to a rewrite of the code to also use

GPUs in these phases.

Students now have easy means to measure and improve

through algorithmic means the energy consumption in the various

phases, but also the overall consumption for a scientific application.

External data (ene, 2020) can be used to obtain information

about the cost of such calculations. However, in many cases, these

data need to be augmented as data centers may have special

pricing for energy consumption. Thus, it is very useful to also

consider greenhouse gas emissions instead (Oar, 2023). In our

future work, we like to integrate such data into the energy monitor

we have currently.
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FIGURE 10

Energy traces for training and validation for epochs 2 (A, B), 30 (C, D), and 70 (E, F). The sampling rate is 1s. (A) A100 energy trace ET
1t=1s(GPU) for 2

epochs training and validation. (B) V100 energy trace ET
1t=1s(GPU) for 2 epochs training and validation. (C) A100 energy trace ET

1t=1s(GPU) for 30

epochs training and validation. (D) V100 energy trace ET
1t=1s(GPU) for 30 epochs training and validation. (E) A100 energy trace ET

1t=1s(GPU) for 70

epochs training and validation. (F) V100 energy trace ET
1t=1s(GPU) for 70 epochs training and validation.
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FIGURE 11

Averaged energy consumption of various GPUs targeting a 1 second data sampling rate. The recorded values in (A) and all V100 reported are

produced with an NFS-mounted file system. The data for A100 in (B, C) are using localscratch’s NVMe storage. GPU, graphical user interface; NFS,

network file system; NVMe, non-volatile memory express.
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Summary energy benchmarks:

• Challenges: MLCommons has not yet integrated a

comprehensive energy benchmark. Tools to easily

gather energy information are unknown to the students

and often not accessible.

• Opportunities: We have discovered that energy as

a topic attracts a number of students and increases

interest in applications. We have made simple tools

as part of cloudmesh available to create energy traces

and display their result. These tools were not only used

by the students but also to demonstrate that we used

the indeed GPUs, as our initial benchmark showed

they were very slow due to the use of a recommended

parallel file system. It showed to us that we need

to spend more time in future activities on energy

monitoring in general.

5. Discussion

This article summarizes a large body of work that addresses

multiple aspects of ML benchmarking. We identified that

benchmarking can lead to a significant educational contribution

to students and researchers. We identified that not only is

software carpentry needed but also benchmark carpentry, an

effort that we termed in conjunction with the MLCommons

Science Working Group. We have demonstrated that students

are capable of conducting sophisticated benchmarks while dealing

with complex system-related infrastructure and working with

policies set by HPC compute centers that deal with fair resource

management. To deal with this, we have also developed a

compute coordination and workflow management system in

two components called cloudmesh-ee and cloudmesh-cc

that allow benchmark jobs to be automatically generated from

hyperparameter permutations. It also allows us to coordinate such

benchmarks on different machines. We have identified the patterns

of selection, cooperation, and competition which are part of a

benchmark workflow. Furthermore, we have improved the original

benchmark code in many aspects. To simplify benchmarking,

we also developed an easy-to-use StopWatch that in contrast

to the mllog library used by MLCommons is simpler and is

immediately humanly readable. Finally, our benchmarks had a

significant impact on the operation and accessibility of software

in the educational cluster we used. Plans for new file system

management and updated compute nodes excite us to conduct

more such studies. We intend to submit our results to the

MLCommons Science Working Groups as earthquake forecasting

is one of their benchmark codes and efforts. We have outlined

opportunities and challenges how MLCommons benchmarks can

be integrated in AI classes and focusing on DL.

6. Nomenclature

6.1. Resource Identification Initiative

Organization: RRID:SCR_011743
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