
TYPE Original Research

PUBLISHED 21 February 2025

DOI 10.3389/fhpcp.2024.1303358

OPEN ACCESS

EDITED BY

Erik Draeger,

Lawrence Livermore National Laboratory

(DOE), United States

REVIEWED BY

Stefano Markidis,

KTH Royal Institute of Technology, Sweden

Julian Kunkel,

University of Göttingen, Germany

*CORRESPONDENCE

Misun Min

mmin@mcs.anl.gov

RECEIVED 27 September 2023

ACCEPTED 19 November 2024

PUBLISHED 21 February 2025

CITATION

Min M, Lan Y-H, Fischer P, Rathnayake T and

Holmen J (2025) Nek5000/RS performance

on advanced GPU architectures.

Front. High Perform. Comput. 2:1303358.

doi: 10.3389/fhpcp.2024.1303358

COPYRIGHT

© 2025 Min, Lan, Fischer, Rathnayake and

Holmen. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Nek5000/RS performance on
advanced GPU architectures

Misun Min1*, Yu-Hsiang Lan2, Paul Fischer1,2,3,

Thilina Rathnayake2 and John Holmen4

1Mathematics and Computer Science Divison, Argonne National Laboratory, Lemont, IL, United States,
2Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL, United States,
3Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign,

Urbana, IL, United States, 4Oak Ridge National Laboratory, Oak Ridge Leadership Computing Facility,

Oak Ridge, TN, United States

The authors explore performance scalability of the open-source thermal-fluids

code, NekRS, on the U.S. Department of Energy’s leadership computers, Crusher,

Frontier, Summit, Perlmutter, and Polaris. Particular attention is given to analyzing

performance and time-to-solution at the strong-scale limit for a target e�ciency

of 80%, which is typical for production runs on the DOE’s high-performance

computing systems. Several examples of anomalous behavior are also discussed

and analyzed.

KEYWORDS

Nek5000/RS, exascale, strong scaling, small modular reactor, rod-bundle

1 Introduction

As part of its Exascale Computing Project, the U.S. Department of Energy has deployed

a sequence of platforms at its leadership computing facilities leading up to those capable of

reaching > 1 exaFLOPS (1018 floating point operations per second). These highly parallel

computers feature ≈ 103–104 nodes, each equipped with powerful CPUs and anywhere

from 4 to 12 accelerators (i.e., GPUs), which provide the bulk of the compute power. For

reasons of efficiency, a favored programming model for these architectures is to assign

a single process (i.e., MPI rank) to each GPU (or GPU processing unit, such as a GCD

on the AMD MI250X or a tile on the Intel PVC) and to execute across the accelerators

using a private distributed-memory programming model. With P = 103–105 MPI ranks,

this approach affords a significant amount of internode parallelism and contention-free

bandwidth with no increase in memory-access latency, save for the relatively sparse

internode communication that is handled by MPI.

Here, we explore parallel scalability for the open source thermal-fluids simulation

code Nek5000/RS (Fischer et al., 2008, 2022, 2021) on serveral of these high-performance

computing (HPC) platforms. Computational scientists engaged in HPC are typically

interested in reducing simulation campaign times that can take days, weeks, or months to

hours, days, or weeks. At runtime, these performance gains are realizable by increasing the

number of compute units assigned to the task at hand, provided that order-unity parallel

efficiency is sustained for the target values of P. The purpose of the present study is to

characterize parallel efficiency of DOE’s exascale and pre-exascale platforms as a function

of problem size, n, and process count, P. An important measure is the local problem size,

n/P required to sustain a parallel efficiency of ηP = 0.8. We denote this value of n/P as

n0.8 (the precise value of ηP = 0.8 is somewhat arbitrary but is not atypical for production

campaigns).

Frontiers inHighPerformanceComputing 01 frontiersin.org

https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://doi.org/10.3389/fhpcp.2024.1303358
http://crossmark.crossref.org/dialog/?doi=10.3389/fhpcp.2024.1303358&domain=pdf&date_stamp=2025-02-21
mailto:mmin@mcs.anl.gov
https://doi.org/10.3389/fhpcp.2024.1303358
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fhpcp.2024.1303358/full
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Min et al. 10.3389/fhpcp.2024.1303358

The baseline simulation code used for this study is NekRS,

which is the GPU-oriented version of Nek5000. NekRS

was developed as part of the Center for Efficient Exascale

Discretizations (CEED), supported by the U.S. Department of

Energy’s Exascale Computing Project (ECP). We expect that many

of the scalability findings herein will be similar to those realized by

other HPC codes that are based on partial differential equations

(PDEs). For example, Fischer et al. (2020) found that deal.ii (Arndt

et al., 2017), MFEM (Anderson et al., 2020), and Nek5000 had

similar performance characteristics over a suite of benchmark

problems on Argonne’s CPU-based IBM BG/Q, Cetus.

1.1 Code overview

Nek5000/RS is based on the spectral element method

(SEM) (Patera, 1984). The SEM uses Nth-order tensor-product

polynomials in the reference domain, �̂ := [−1, 1]3. Use of nodal

bases situated at the Gauss-Lobatto-Legendre quadrature points

provides numerical stability as well as convenient and highly

accurate numerical quadrature, which largely obviates the need for

interpolation to alternative quadrature points, save for evaluation

of the advection term, where accurate integration is required to

preserve skew-symmetry, as noted in Malm et al. (2013). To handle

complex geometries, the computational domain � is partitioned

into E nonoverlapping elements, �e, e = 1, . . . ,E, each of which

is a mapped image of �̂. Tensor-product-sum factorization allows

for efficient matrix-free operator evaluation in �̂ with only O(n)

memory references and O(nN) BLAS3-type (tensor-contraction)

operations, where the number of grid points is n ≈ EN3 (Deville

et al., 2002; Orszag, 1980). Semi-implicit timestepping is used to

advance the unsteady incompressible Navier-Stokes equations (and

other physical processes such as thermal transport and combustion,

which we do not address here).

The Navier-Stokes time-advancement involves three principal

substeps to update the vector velocity field, um, and pressure, pm,

at time tm. Omitting details of boundary conditions and constants,

the first step amounts to gathering known data, including explicit

treatment of the nonlinear advection terms,

û =

k
∑

j=1

βju
m−j − 1tαjNL

m−j, (1)

where the βjs and αjs are order-unity coefficients associated

with respective kth-order backward-difference and extrapolation

formulas. Evaluation of the advection term, NLm−j, is compute

intensive because it is evaluated using overintegration with a 3/2s-

rule to ensure numerical stability (Malm et al., 2013). The explicit

update (Equation 1) leads to a Courant-Friedrichs-Lewy (CFL)

limit on the stepsize of CFL := maxxi∈�
1t|ui|
1xi

≈ 0.5. To circumvent

this constraint, a frequently used alternative in Nek5000/RS is the

characteristics based formulation of Maday et al. (1990) and Patel

et al. (2019),

û =

k
∑

j=1

βjũ
m−j, (2)

where ũm−j
: = ũ(x, tm) and ũ(x, t) satisfies

ũt = −u · ∇ũ(x, t), x ∈ �, t ∈ [tm−j, tm], (3)

with initial condition ũ(x, tm−j) = um−j(x). For CFL ≈

2S, solution of Equation 3 requires 4Sk nonlinear evaluations per

timestep,1t, where S = 1 or 2 are typical numbers of subcycle steps,

and k is the temporal order of accuracy. With k = 2 and S = 1 the

advection update (Equations 2, 3) can account for ≈ 30% of the

runtime and a significant fraction of the flops.

The second Navier-Stokes step is the pressure Poisson solve,

−∇2pm =
1

1t
∇ · û (4)

This step uses GMRES, preconditioned by FP32 p-multigrid

with overlapping Schwarz smoothers. Each Schwarz subdomain

consists of a single spectral element with additional degrees-of-

freedom lifted from neighboring elements. The local subdomain

problems are solved using a fast diagonalization method that is

implemented as a sequence of tensor contractions, p̄e = (Sζ ⊗ Sη ⊗

Sξ)D
−1(STζ ⊗STη ⊗STξ)f̄

e
, e = 1, . . . ,E, whereD is a diagonal matrix

of eigenvalues, S∗ is the matrix of eigenvectors for the 1D Poisson

operator in each coordinate (ξ , η, ζ) in an extended reference

element, �̄, and ūe and f̄
e
are respective solutions and data in the

extended subdomain, �̄e. The lowest level of the p-multigrid entails

applying one or two V-cycles of algebraic multigrid with Hypre to a

coarse-grid problem based on the spectral element vertices. Overall,

the pressure solve is communication intensive because of the long

tails of the Green’s functions associated with the Poisson operator.

The final Navier-Stokes update entails solving a diagonally-

dominant Helmholtz system for the velocity components,

Hum = û − 1t∇pm, (5)

where H := −1t
Re∇

2 + β0I, represents the update of the

momentum equation with the implicitly treated viscous

terms. Iterative solution of the block system H updates

all velocity components simultaneously, which reduces the

number of message exchanges by a factor of three in the Jacobi-

preconditioned conjugate gradient solver and therefore amortizes

communication latency.

Parallel-work decomposition is realized by partitioning the

set of elements into contiguous subsets using recursive spectral

bisection (Pothen et al., 1990) with load-balanced partitioning

such that the number of elements per subdomain (i.e., per MPI

rank) differs by at most 1. Given that we typically have several

thousand spectral elements per GPU, load balance is not a source

of inefficiency in production simulations.

For portability, all the GPU kernels are written in OCCA

(Medina et al., 2014; OCCA, 2021), which was developed by Tim

Warburton’s group at Virginia Tech. and Rice University. Many

of the high-performance kernels originated with the libParanumal

library (Chalmers et al., 2020), also developed by Warburton’s

group. Roofline performance and scaling results can be found in the

Hipbone study of Chalmers et al. (2023) and the NekRS study (Min

et al., 2022). In the latter, which includes detail NVIDIA Nsight

timing data, the authors note that all kernels in NekRS, save for

the latency-bound gather-scatter kernels in the coarse p-multigrid

Frontiers inHighPerformanceComputing 02 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1303358
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Min et al. 10.3389/fhpcp.2024.1303358

levels, achieve near-roofline performance defined as > 70 % of the

leading-performance limiter. Additional details of the NekRS GPU

implementation, including kernel pseudocode, can be found in

Fischer et al. (2022).

1.2 Performance metrics

Aprimary concern for computational scientists is the speed that

can be realized for a particular application for a given architecture

(here, an application is a particular problem that uses Nek5000/RS,

which is an application code). For example, one frequently needs

to estimate the number of node-hours and number of wall-clock

hours that might be required for a large simulation campaign. A

common metric, which is very much case-specific, is the number

of degrees of freedom (dofs) per second that can be realized on a

platform, or perhaps the number of dofs per second per accelerator

(i.e., per MPI rank1). In the sequel, we will assign GDOFS to the

quantity “billions of dofs per second per rank.” The case-specificity

aspect of GDOFS is that one can realize amuch larger GDOFS value

for linear solution ofAx = b than would be possible for, say, a single

timestep of an incompressible Navier–Stokes solver.

Despite the large variance in GDOFS from one problem class to

the next, it is nonetheless a worthy metric when making platform-

to-platform comparisons. A related metric is the time-to-solution

or, in the case of a timestepping simulation code that could take

an arbitrarily large number of steps, the time per step, tstep,
2 which

we measure in seconds. Even for a given code and architecture

this latter quantity is subject to significant variability because some

problems or computational meshes are more ill-conditioned than

others, which leads to higher iteration counts in the linear solvers

(e.g., in the pressure solve for an incompressible flow simulation)

and hence a longer time per step.

GDOFS and tstep are dependent, or output, parameters. For a

fixed platform, code, and problem, users still have two independent

parameters at their disposal: n, the problem size or number of

dofs,3 and P, the number of ranks (here, accelerator devices) to

use. For a fixed problem size, n (which is determined by resolution

requirements), there is only one variable, namely, P. A user who

is contemplating a simulation campaign will often be interested

in predicting performance over a range of n. Under the given

conditions, we will see that the most important performance

1 We prefer dofs per second per rank because AMD’s MI250X has two

compute units (GCDs) per GPU and Aurora’s Intel has two tiles per PVC—users

view these as two processors

2 We typically take the average time over several hundreds or thousands

timesteps.

3 For fluid flow simulations, some authors set n to be 4 times the number

of grid points because there are typically three velocity components and one

pressure unknown at each grid point. We prefer to take n to be the number

of grid points. The problems are generally large enough that we do not

need to distinguish between interior points where the solution is unknown

and surface points where boundary data is prescribed. We simply set n to

represent the union of these sets given that some quantities might have

Neumann conditions on the boundary while others have Dirichlet.

predictor is

n

P
= the number of grid points per device, (6)

where we reiterate that we are assigning a single MPI rank to

each device.

Two other dependent quantities of interest are parallel

efficiency, ηP, and realized FLOPS, the measurable number of 64-

bit floating-point operations per second. We typically will report

FLOPS per rank, which is more universal than aggregate FLOPS.

Also, in cases where mixed precision is used (e.g., when 32-bit

arithmetic is used in a preconditioner), we count the FP32 flops

as a half-flop each. A typical definition of (strong-scaling) parallel

efficiency is

ηP : =
P0 tstep(P0)

P tstep(P)
=

GDOFS(P)

GDOFS(P0)
, (7)

where tstep(P) is the time per step when running a fixed problem

of fixed size, n, on P ranks and GDOFS(P) is the corresponding

number of gigadofs per second per rank. Here, P0 is the smallest

number of ranks that is able to hold the problem. On some

architectures, the amount of memory per GPU is relatively small,

which prevents extensive strong-scaling studies (from a user’s

perspective, however, this is potentially a happy circumstance since

there is “just enough” memory and not a lot of idle memory that

incurs unnecessary capital and power overhead).

An alternative definition of parallel efficiency is given by the

relationship

SP = ηP P S1. (8)

Here, SP is the speed on P processors, which could be measured

in total (not per rank) FLOPS or GDOFS. This definition is

equivalent to Equation 7 when P0 = 1. The utility of this definition

is that one can consider it for either weak- (fixed n/P) or strong-

(fixed n) scaling studies. If FLOPS are used, it is relatively easy to get

FLOPS on one rank for a smaller version of the application problem

(although that might not be a useful starting point in the exascale

era given that no exascale problem comes anywhere close to fitting

on one rank).

What Equation 8 tells us is that the speed on P ranks should

be ≈ P times the speed on 1 rank, provided we can sustain close

to unity efficiency, ηP ≈ 1. We remark that HPC users generally

want to run as fast as possible, particularly for large campaigns, so

they want P ≫ 1. However, they also need to efficiently use their

allocation, which implies ηP ≈ 1. This latter condition places a

constraint on time-to-solution that is generally stronger than the

unconstrained “min-time-to-solution” result. In our studies we will

assume that the user is willing to run at 80% parallel efficiency,

ηP = 0.8. Of course, other target efficiencies are possible, and a

user can change P and, hence, ηP on a submission-by-submission

basis for each case run in a given campaign. However, ηP = 0.8 is a

reasonable starting point for analysis.

The first analysis question we address is, For a fixed problem size

n, how many ranks can we use before ηP < 0.8? An accompanying

question is, What is the time per step at that value? Users and

developers are also interested in the cause of the departure from

Frontiers inHighPerformanceComputing 03 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1303358
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Min et al. 10.3389/fhpcp.2024.1303358

unity efficiency. For example, is it load imbalance? Message-

passing overhead? Or lack of parallelism on the accelerator? In our

examples, as is the case for Nek5000/RS in practice, load imbalance

will not be a leading contributor to inefficiency as the work is

sufficiently fine-grained such that it can be distributed in a balanced

way across all ranks.

The key to the first question about number of ranks is to

recognize that parallel efficiency typically drops as the local amount

of work, n/P tends toward zero. So, fixing ηP = 0.8 implies n/P is

a fixed value (for a given fixed-sized problem with P varying). We

denote this value as n0.8. It is the number of points per rank where

the application realizes 80% efficiency, which is where we anticipate

that users will typically run. For a given problem size, n,

n0.8 : =
n

P
such that ηP = 0.8. (9)

With this definition, we can address the question of the

expected tstep under these conditions. Assume that a given problem

requires a certain amount of work, W, that is measured in total

number of floating-point operations (FLOPS). Usually, W ∼ Cn,

where C is an n-independent constant, which implies that, to

leading order, the amount of work scales with n. On P processors,

we therefore expect

tstep =
W

SP
=

C n

ηP P S1
. (10)

We define t0.8 to be the value of tstep at 80% efficiency,

t0.8 =
C

0.8

n/P

S1
. =

(

C

0.8

)

n0.8

S1
. (11)

We note that Equations 10, 11 are predicated on ηP being

strongly dependent on (n/P) with no direct P dependence. There

are times when there is a weak P dependence, particularly for

P > 104. In this case, one can simply modify the analysis to have a

P-dependent n0.8.

We see from Equation 11 that the time per step is governed by

the speed on a single rank, S1 (larger is better), and the amount of

work on a single rank, n0.8 (smaller is better), where 80% efficiency

is realized. If a new platform comes out with a 2× increase in S1
but a 4× increase in n0.8, then the net time-to-solution increases by

2×. In HPC, it is the ratio, n0.8/S1, that is critical to fast time-to-

solution. Much of this analysis can be found in Fischer et al. (2015,

2020). Communication overhead on GPU-based architectures is

discussed in Bienz et al. (2021).

A typical use case for Equation 11 is that a user knows n, which

is the number of gridpoints required to resolve a given simulation,

and wants to know how many processors will be required to

efficiently solve this problem and how long it will take to execute.

The user also knows n0.8 from scaling studies of the type provided

here. From that, one can determine

P0.8 =
n

n0.8
, (12)

which is themaximumnumber of ranks that can be employed while

sustaining 80% efficiency. The time per step will be t0.8, and the total

required node-hours will be

node hours ≈
P0.8

ranks-per-node
×

Nsteps t0.8

3600 s/hour
, (13)

where Nsteps is the estimated number of timesteps.

1.3 Test cases

In the following sections we characterize these relevant

parameters for NekRS across several of DOE’s pre-exascale and

exascale platforms, including Frontier, Crusher, Polaris, Perlmutter,

ThetaGPU, and Summit. The principals from this list are described

in Table 1. Simulations are performed using ExaSMR’s 17×17 rod-

bundle geometry, illustrated in Figure 1. This geometry is periodic

in the axial flow direction, which allows us to weak-scale the

problem by adding more layers of elements in the z direction

(the model problem is essentially homogeneous in z). Each case

starts with a pseudo-turbulent initial condition so that the iterative

solvers, which compute only the change in the solution on each

step, are not working on void solutions. Most of the cases are

run under precisely the same conditions of timestep size, iteration

tolerances, and averaging procedures, which are provided case by

case in the sequel.

We remark that the following performance summaries are for

full Navier–Stokes solution times.We present a few plots that reflect

work in salient kernels, such as the advection operator, which is

largely communication-free, and the pressure-Poisson coarse-grid

solve, which is highly communication-intensive. Detailed kernel-

by-kernel breakdowns are presented in Fischer et al. (2022) and

Min et al. (2022) and are available in every logfile generated

by NekRS.

Further, we note that NekRS supports multiple versions of

each of its high-intensity kernels and communication utilities. At

runtime, NekRS selects the fastest kernel by running a small suite

of tests for each invocation of the given utility. that particular

kernel for the particular platform for the particular application.

An example of these outputs, along with the kernel-by-kernel

breakdown, is presented in Section 5.

1.4 Additional scaling studies

There have been multiple performance studies on GPUs that

are relevant to the high-order methods used in the current work.

Bienz et al. (2021) explored communication characteristics for the

NVIDIA V100-based platforms, Summit (using Spectrum MPI)

and Lassen (using MVAPICH). Kronbichler and Ljungkvist (2019)

study the performance of matrix-free p-type finite elementmethods

(FEMs) in deal.ii on several CPU and GPU architectures, including

a single NVIDIA P100, where they observe 80% efficiency for

n0.8 ≈ 3–4×105 when evaluating matrix-vector products. A more

recent study, Kronbichler et al. (2023), demonstrates that deal.ii

realizes 80% efficiency for Jacobi PCG on a single NVIDIA V100

when n0.8 ≈ 3–4×105. The same paper explores alternative PCG

formulations to provide better data caching with fewer vector

reductions on both CPUs and GPUs. Multi-GPU throughput

studies presented in Vargas et al. (2022) reveal that MFEM needs

n0.8 ≈ 0.75–1.0 M points per V100 for single-node (P = 4)

hydrodynamics simulations on LLNL’s Sierra platform. For P = 64

V100s on LLNL’s Lassen, the MFEM mini-app Laghos has n0.8 ≈

Frontiers inHighPerformanceComputing 04 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1303358
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Min et al. 10.3389/fhpcp.2024.1303358

TABLE 1 Systems overview.

Summit Frontier Perlmutter Polaris

Processor IBM Power9 22C 3.0GHz AMD EPYC 64C 2GHz AMD EPYC 64C 2.4GHz AMD EPYC 32C 2.8GHz

GPU Nodes # 4,608 9,408 1,792 560

GPUs # 27,648 37,632 7,168 2,240

Each node 6× NVIDIA V100 4× AMDMI250X 4× NVIDIA A100 SXM4 4× NVIDIA A100 SXM4

Theoretical Peak 200 PF/s 1.7 EF/s 59 PF/s 113 PF/s

Network Mellanox EDR InfiniBand Slingshot-11 Slingshot-11 Slingshot-11

Peak Power 14.5 MW 29.6 MW 4.86 MW 1.8 MW

FIGURE 1

ExaSMR full-core configuration on the left and a single 17×17 rod bundle on the right.

2M. The observed increase is expected at higher node counts

because of MPI overhead. Sathyanarayana et al. (2025) find n0.8 ≈

2–4 M for finite-difference based WENO schemes when running

on single NVIDIA A100s and AMD MI250X GCDs. Chalmers

et al. (2023) provide in-depth performance analysis of high-order

matrix-free kernel performance, including roofline models and

throughput scaling on NVIDIA V100, AMD MI100, and AMD

MI250X accelerators, all of which is of direct relevance to NekRS,

which uses many of the same kernels.

2 NekRS performance on a single GPU

Table 2 presents the time-per-step metric for NekRS

performance for ExaSMR’s single-rod simulation on a single

GPU. Simulations are performed for 500 steps; and the average

time per step, tstep, is measured in seconds for the last 400 steps.

For a given system, the speedup is the inverse ratio of tstep to that

of Summit. vi and pi represent the average iteration counts per

step of the velocity components and pressure. Timestepping is

based on the second-order characteristics method (Equations 2,

3) with one substep and the timestep size is 1t = 1.2e-3 (CFL

= 1.82). Pressure preconditioning is based on p-multigrid with

Chebyshev and additive Schwarz method (CHEBYSHEV+ASM)

smoothing and hypre AMG (algebraic multigrid) for the coarse-

grid solve (Fischer et al., 2022). Tolerances for pressure and

velocity are 1e-4 and 1e-6, respectively. We note that this test case

has been explored in the context of NekRS kernel and algorithm

development on other architectures in earlier work, including

Kolev et al. (2021), Abdelfattah et al. (2021), and Fischer et al.

(2021).

The single-device results of Table 2 show that, for the current

version of NekRS,4 a single GCD of theMI250X on Crusher realizes

a 1.12× gain in Navier–Stokes solution performance over a single

V100 on Summit. Similarly, the A100s are realizing≈ 1.6-fold gain

over the V100.

We explore the single-GPU performance as a function of local

problem size, n/P (P = 1) in Figure 2 both with (right) and

without (left) the characteristics-based timestepping (Equations 2,

3). Various problem sizes are realized for the single-rod geometry

4 NekRS version 22.0 is used.

Frontiers inHighPerformanceComputing 05 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1303358
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Min et al. 10.3389/fhpcp.2024.1303358

TABLE 2 NekRS performance on various architectures using a single GPU.

GPU performance on a single GPU: singlerod, E = 7,168, n = 2,458,624, N = 7

System GPU Device API vi pi tstep (sec) Speedup

Summit 1 16GB V100 GPU CUDA 4 1 6.78e-02 1.00

Spock 1 32GB MI100 GPU HIP 4 1 7.98e-02 0.84

Crusher 1 64GB MI250X (1 GCD) HIP 4 1 6.01e-02 1.12

ThetaGPU 1 40GB A100 GPU CUDA 4 1 4.31e-02 1.57

Perlmutter 1 40GB A100 GPU CUDA 4 1 4.17e-02 1.62

Polaris 1 40GB A100 GPU CUDA 4 1 4.16e-02 1.62

FIGURE 2

n/P scaling on single-GPU/GCD architectures for single-rod test case: left: using Equation 1 without characteristics timestepping; right: using

Equations 2, 3 with characteristics timestepping.

by extruding a baseline two-dimensional mesh to comprise one

or more levels in the axial flow direction. The polynomial order

is N = 7 and the number of quadrature points for the dealiased

advection operator is Nq = 11 in each direction, in each element.

In these cases, there is no MPI overhead and, as can be seen from

the match between Polaris and Perlmutter, no significant system

noise. The saturated sustained performance on Polaris/Perlmutter

is 1.75 TFLOPS when using characteristics and only 1.00 TFLOPS

for the less computer-intensive formulation (Equation 1), which

requires only three nonlinear evaluations per timestep (one for

each velocity component). The relative drop-off on Frontier, 1.15

→ 0.75 TFLOPS, is not as steep, perhaps because a single GCD of

the MI250X is sustaining only 3 TFLOPS for the advection kernel

whereas the A100 is sustaining 5 TFLOPS, in isolation. On the other

hand, Summit manifests a drop of 0.99 → 0.57 TFLOPS, which is

roughly the same ratio seen for the A100-based platforms.

As the problem size diminishes, performance drops from a lack

of intra-device parallelism and from the overhead of kernel-launch

latency, which becomes important when there is insufficient work

to keep the accelerator busy. Consequently, we find n0.8 ≈ 700K for

Polaris/Perlmutter for the characteristics-based timestepping (80%

efficiency = 1.4 TFLOPS) and n0.8 ≈ 600K without characteristics.

For Frontier, n0.8 ≈ 1M with characteristics and ≈ 900K

without. For Summit the corresponding numbers are n0.8 ≈ 1.5M

with characteristics and ≈ 700K without. These n0.8 values are

significantly lower than the n0.8 = 2M–5M that we observe for

production runs described in the next sections, where P ≫ 1,

which points to the significance of MPI overhead in the case of

multi-GPU simulations.

3 NekRS performance on Frontier vs.
Crusher

We next consider multi-GPU performance for ExaSMR’s

17×17 rod-bundle geometry (Figure 1, right), which we extend in

the streamwise direction with 10, 17, and 170 layers, keeping the

mesh density the same. This sequence corresponds to 277 thousand

spectral elements of order N = 7, for a total of n = 0.27M

×73 = 95M grid points, 471 thousand spectral elements of order

N = 7, for a total of n = 0.47M ×73 = 161M grid points, and

4.7 million spectral elements of order N = 7, for a total of n =

4.7M×73 = 1.6B grid points, respectively. Table 3 summarizes the

configurations for these tests.

Simulations are performed for 2,000 steps; and the average

time-per-step, tstep, is measured in seconds for the last 1,000

steps. Timestepping is based on Equation 1 with third-order

backward-differencing (BDF3) for the time derivative and third-

order extrapolation (EXT3) for the nonlinear advection term.

The timestep size is 1t = 3.0e-04, which corresponds to a

Courant number of CFL = 0.82. We run a single MPI rank

per GCD, and there are 8 GCDs per node. On Frontier,

Frontiers inHighPerformanceComputing 06 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1303358
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Min et al. 10.3389/fhpcp.2024.1303358

TABLE 3 Problem setup for strong-/weak-scaling studies.

Strong scaling test sets

E n Rank, P

Case 1 277,000 95M 8–64

Case 2 470,900 161M 14-128

Case 3 4,709,000 1.6B 128–16,320

rocm/5.1.0 and cray-mpich/8.1.17 were used. On

Crusher, simulations were performed with several versions such

as rocm/5.1.0, rocm/5.2.0, cray-mpich/8.1.16, and

cray-mpich/8.1.19. On Crusher, rocm/5.1.0 is 2%–5%

faster than rocm/5.2.0.

Figure 3 shows strong scaling performance of Frontier and

Crusher for the three test cases. The left panel shows the average

time per step vs. the number of MPI ranks, P. The plot illustrates

classic strong scaling as P is increased for fixed problem sizes of n =

95M, 161M, and 1.6B on Crusher (black) and on Frontier (red).

Dashed lines in sky-blue represent ideal strong-scale profiles for

each case. As is typical, larger problem sizes, n, correspond to cases

that are able to effectively use a greater number of MPI ranks, P.

The critical observation is that these plots collapse to (nearly)

a single curve when the independent variable is number of points

per rank, n/P, which is evident in Figure 3, right. This figure

illustrates that the strong-scale performance is primarily a function

of (n/P) and only weakly dependent on n or P individually, which

is in accord with the extensive studies presented in Fischer et al.

(2020) and analysis in Fischer et al. (2015). Based on this metric,

we can estimate values of (n/P) for a given parallel efficiency

and, from there, determine the number of MPI ranks required

for a problem of size n to meet that expected efficiency. For

example, an efficiency of ηP = 0.80 is realized in this case for

n/P ≈2M–3M. In the sequel, we explore performance behavior for

a variety of problem sizes and platforms, including non-standard

“large P” cases where one must consider both n/P and P to

forecast performance.

4 NekRS performance on Summit,
ThetaGPU, Perlmutter, Polaris,
Crusher, and Frontier

In this section, we extend the scaling studies on the 17×17 rod

bundle simulations to the NVIDIA-based GPU platforms, Summit

(V100), ThetaGPU (A100), Perlmutter (A100), and Polaris (A100),

and compare these with the AMDMI-250X platforms, Frontier and

Crusher. We discuss the performance in detail in Figures 4–6. In

Figure 5 we include performance on ThetaGPU. We run one MPI

rank per V100 or A100 on the NVIDIA-based nodes and one MPI

rank per GCD on the AMDMI250X nodes.

Figures 4–6 show tstep as a function of P in (a) and as a

function of n/P in (b). Parallel efficiency as a function of P and

of n/P is plotted in (c) and (d), respectively. Throughput, in

terms of (GDOFS per step)/(time-per-step × P) is plotted versus

time-per-step in (e) and vs. n/P in (f). The average time per step for

the compute-intensive makef routine, which sets up the dealiased

right-hand side of Equation 1, is plotted in (g), and the average

time per step for the communication-intensive coarse-grid solve is

plotted in (h).

We point out that these strong-scaling plots start from a high

level of performance. NekRS currently leverages extensive tuning

of several key FP64 and FP32 kernels in libParanumal, including

the standard spectral element Laplacian matrix-vector product,

local tensor-product solves using fast diagonalization, and dealiased

evaluation of the advection operator on a finer set of quadrature

points. These kernels are sustaining 3–5 TFLOPS FP64 and 5–8

TFLOPS FP32, per GPU or GCD. At the strong-scale limit, with

MPI overhead, NekRS is sustaining ≈ 1 TFLOPS per rank (i.e.,

per A100 or GCD) for the full Navier–Stokes solution (Merzari

et al., 2023). We also note that NekRS selects either host-based

MPI or GPU-aware MPI for each kernel communication handle

by making runtime tests to determine which option is fastest. We

will refer to the GPU-aware MPI cases as GA-MPI in the legends

and text.

From Figure 4D, one can readily identify the key scalability

metric, n0.8, as the value of the n/P where the efficiency is 0.8

for the case n = 95M. Here we find n0.8 < 2M for Summit

and GA-Polaris, n0.8 = 2M for Frontier, and n0.8 = 4M for

Polaris without GA-MPI. We remark that the value of n0.8 is

smaller for the relatively small values of n and P in Figure 4 than

it is for the larger (n, P) pairs of Figures 5, 6. One reason is that

the coarse-grid costs rise relatively quickly when the processor

count is low. Another is that the nearest-neighbor communication

required for operator evaluation does not begin to saturate until

P > 26. Below this value, the domain partitioner will invariably

assign each processor to a subdomain that is connected to the

boundary. Once the problem is larger, more MPI ranks will

have subdomains that are completely within the domain interior

and will therefore have more communication. If the domain

and decomposition were perfect tensor products, the smallest

number of subdomains where communication saturates would

be for P = 27. Even then, only one domain would be in the

interior and it would generally not need to wait on neighboring

subdomains to make their surface data available, as they would

be underworked.

Figure 4E indicates that a remarkably small tstep value of 0.025

second is realizable on Polaris, albeit at 60% efficiency. Figure 4G

shows that the time in the advection update strong-scales quite

well, as would be expected. The curves for the single GCD and

A100 collapse to nearly the same performance while the older

V100 technology of Summit is about 1.5× slower. In the absence

of communication, this kernel is sustaining 3–4 TFLOPS FP64 on

these newer architectures, although the graphs here do include

the communication overhead. By contrast, Figure 4H shows the

performance for the communication-intensive coarse-grid solve,

which is performed using Hypre on the host CPUs. Here, Crusher,

Frontier, and Summit show relatively poor performance compared

to Polaris and Perlmutter, although the performance also falls off

for the latter once P > 20, which corresponds to a local coarse-

grid problem size of ≈ E/P = 277,000/20=13,850 unknowns

per rank. Note that the coarse solve is completely executed on

Frontiers inHighPerformanceComputing 07 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1303358
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Min et al. 10.3389/fhpcp.2024.1303358

FIGURE 3

Strong scaling on Frontier and Crusher for 17× 17 rod bundles with 10, 17, and 170 layers with total number of grid points of n = 95M, 161M, and

1.6B. Average time per step vs. rank, P (left), and average time per step vs. n/P (right). Frontier is set with (cray-mpich/8.1.17, rocm/5.1.0)
and Crusher with (cray-mpich/8.1.19, rocm/5.2.0).

the hosts, so there is no performance difference with or without

GPU-aware MPI.

As we increase the problem size to n = 161M (Figure 5),

the Polaris-GA efficiency curve coalesces with Perlmutter. We find

n0.8 = 2M for Summit and n0.8 ≈ 2.8M for Frontier, Crusher,

Perlmutter, and Polaris-GA. ThetaGPU and Polaris without GA

have n0.8 = 4.5M, which means that one can only use half

the number of processors in these cases if one is targeting 80%

efficiency in production runs, which in turn implies a two-fold

increase in time-to-solution. In Figure 5G we see that Summit is

≈ 1.5× slower in evaluating the nonlinear term (makef) than

the other platforms and that, along with Crusher, it is slower for

the host-based coarse-grid solves (h). At larger processor counts,

Perlmutter also exhibits noise in the coarse-grid solve, as evidenced

by the large oscillations in the strong-scale plot, (h).

Moving to the largest case of n = 1.6B, shown in Figure 6, we

see that Polaris exhibits system noise both with and without GA-

MPI, as is clear from the parallel efficiency plots (c) and (d). From

(h), we can see that the noise is due to the communication-intensive

coarse-grid solve, which is susceptible to network congestion.

Looking at efficiency vs. n/P (d), Frontier and Summit exhibit

n0.8 ≈ 2.8M–3M, while the other platforms are clustered around

n0.8 = 5M. If one is willing to accept ≈ 38% efficiency, per-step

times as low as 0.025 s can be realized on Polaris.

The most crucial observation from Figure 6, is that production

runs at 80% efficiency will have roughly the time-to-solution on

Frontier as on Polaris, despite the relatively high throughput

(GDOFS) of Polaris that is evident in row 3, left. At n0.8 =

3M, Frontier has tstep = 0.065 s. For Polaris, at n0.8 ≈ 4.7M,

tstep ≈ 0.066 s. The performance advantage of the A100 is offset

by the increased n0.8 and both platforms exhibit the same time-

to-solution. There is of course enough variance in these results,

especially with respect to problem size, that either machine could

end up with a demonstrable advantage under slightly different

circumstances. The key point here, however, is to understand how

large the problems are, per rank, under production circumstances

and to build and optimize algorithms accordingly.

5 Discussion

In this section we discuss a variety of “anomalous”

behaviors encountered in these studies. By anomalous we

mean adverse behaviors that either appear or disappear

with software and hardware updates. One could argue that

these are passing phenomena not worthy of reporting.

However, as users work on these platforms it is important

to understand potential pitfalls in system performance

that might directly impact their own timing studies or

production runtimes.

The behaviors described here include the performance of the

large-memory (32 GB vs. 16 GB) nodes on Summit, the use of

a nonmultiple of 8 ranks on Crusher, the influence of GPU-

direct communication on Polaris, the upgrade from Slingshot 10

to Slingshot 11 on Perlmutter, and network interactions with GPU-

aware MPI for large node counts on Frontier.

5.1 Performance on Summit V100 16 GB
vs. 32 GB

Most of the 4608 nodes on Summit have 16 GB of device

memory, which limits how small one can take P0 in the efficiency

definition (Equation 7). A few nodes, however, have 32 GB, which

allow one to fit more points onto each V100. Unfortunately, as

seen in Figure 5, the Summit 32 GB curves perform about 10%

slower than their 16 GB counterparts. The last row of graphs in

Figure 5 is particularly revealing—one can see from the makef

plot that the V100s perform at the same rate for both the 16

GB and 32 GB nodes but that the host-based coarse-grid solve

Frontiers inHighPerformanceComputing 08 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1303358
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Min et al. 10.3389/fhpcp.2024.1303358

FIGURE 4

(A–H) Strong-scaling on various GPU architectures for 17×17 rod bundle with 10 layers.

Frontiers inHighPerformanceComputing 09 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1303358
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Min et al. 10.3389/fhpcp.2024.1303358

FIGURE 5

(A–H) Strong-scaling on various GPU architectures for 17×17 rod bundle with 17 layers.

Frontiers inHighPerformanceComputing 10 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1303358
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Min et al. 10.3389/fhpcp.2024.1303358

FIGURE 6

(A–H) Strong-scaling on various GPU architectures for 17×17 rod bundle with 170 layers.

Frontiers inHighPerformanceComputing 11 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1303358
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Min et al. 10.3389/fhpcp.2024.1303358

FIGURE 7

Strong-scaling on Perlmutter with runs using SS10 and SS11 on di�erent days for 17× 17 rod bundle simulations with 10 layers.

FIGURE 8

Navier-Stokes time-per-step for P = 72, 000 runs on Frontier: (left) 500-layer full-core configuration of Figure 1 with GPU-aware MPI; (right)

800-layer case without GPU-aware MPI.

costs differ by almost 1.5×, which indicates either an excessive

device-host communication overhead or some type of interhost

communication slowdown for the 32 GB nodes.

5.2 Performance on Crusher with rank
dependency

In our timing studies we typically do not require that each node

be fully occupied. This happens, for example, if one wants to make

a device-to-device comparison between Summit, with six V100 per

node, and Crusher, which has 8 GCDs per node. Our initial plot

of Crusher timing data (not shown) appeared to be very erratic

in its dependence on P. Closer inspection, however, revealed that

the performance for mod(P, 8) 6= 0 was about 2× slower than

for the case of mod(P, 8) = 0. Unlike the Summit behavior of

the preceding section, this was clearly a device issue and not a

host issue. Performance of the makef routine that implements

Equation 1 was 2× slower if mod(P, 8) 6= 0, but the host-based

coarse-grid solve was the same for all values of mod(P, 8). This

Frontiers inHighPerformanceComputing 12 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1303358
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Min et al. 10.3389/fhpcp.2024.1303358

anomaly was ultimately resolved and did not appear as an issue

on Frontier.

5.3 Performance on Polaris with
GPU-aware MPI

As expected, communication overhead is more significant

without GA-MPI, and consequently the no GA-MPI curves on

Polaris show relatively poor performance as the amount of local

work, n/P, is reduced. For example, in row 2, right, of Figure 5

the n0.8 for Polaris with GA-MPI is 2.5M, whereas it is 4.5M

without GA-MPI. In the last row of the same figure we see that

neither makef nor the coarse-grid solve are influenced by the

presence or absence of GA-MPI. For makef, communication does

not matter. The coarse-grid solve is communication intensive, but

all of that communication originates from the host. We can also

see in the results of Figure 6 that the no GA-MPI results are

relatively noisy.

5.4 Performance on Perlmutter with
Slingshot 10 vs. Slingshot 11

One other discovery was a sudden change in the behavior

of Perlmutter at NERSC. Polaris and Perlmutter have similar

architectures, so it was expected that they would have similar

performance, as is indeed evident in, for example, Figure 7.

Later in our studies, however, the Perlmutter interconnect was

upgraded from Slingshot 10 (SS10) to Slingshot 11 (SS11).

The performance started to vary radically with P, albeit in a

highly repeatable fashion, which indicated that the issue was not

network noise.

The strong-scaling plot in Figure 7 illustrates the problem

for the n = 95M 17×17 rod-bundle case of Figure 4. For

P = 48 ranks, the Navier–Stokes runtime with SS11 jumps by

a factor of 3 over that with SS10. These were repeatable results,

as evidenced by timings over a period of several months. Our

timing profiles indicated that the anomaly was neither a GPU

issue, since makef timings were essentially identical for SS10 and

SS11, nor a host-to-host communication issue, since the coarse-grid

times were also nearly the same. Inspection of the NekRS profiles

showed that the SS11 timing increase was focused in the non-

local Schwarz-based smoother for the p-multigrid preconditioner

of the pressure Poisson problem, which was running 10× slower

than its SS10 counterpart. Below, we show the profiles for the

two simulations with P = 48 (which was the slowest case).

Remarkably, the issue was found to be related to short messages,

since it arose only at the coarsest levels for the GPU-based

communication of the p-multigrid solver, which was employing

32-bit reals.

Fortunately, a later release of SS11 restored the expected

performance of the SS11 network, with minimal variance over a

wide range of processor counts, as seen by the gold dashed-dot

line in Figure 7. For P = 6, the 1.5× gain in the SS11 bandwidth

is manifest as an 11% Navier-Stokes performance gain over SS10.

For larger values of P, SS11 continues to offer performance benefits

over SS10, but the gains are somewhat diminshed because the

messages are smaller and hence tend to be latency-bound rather

than bandwidth bound.

SS10 profile:

name time % calls

setup 3.82904e+01s 0.38 1

loadKernels 1.03634e+01s 0.27 1

udfExecuteStep 4.79398e-03s 0.00 2001

elapsedStepSum 6.13724e+01s 0.62

solve 6.12031e+01s 0.61

min 2.31879e-02s

max 5.51687e-02s

flop/s 3.36729e+13

makef 5.59237e+00s 0.09 2000

udfUEqnSource 3.98969e-02s 0.01 2000

udfProperties 4.82886e-03s 0.00 2001

velocitySolve 1.73346e+01s 0.28 2000

rhs 2.29362e+00s 0.13 2000

pressureSolve 3.42052e+01s 0.56 2000

rhs 4.69203e+00s 0.14 2000

preconditioner 2.26178e+01s 0.66 2470

pMG smoother 1.51609e+01s 0.67 9880

coarse grid 5.33568e+00s 0.24 2470

initial guess 3.18958e+00s 0.09 2000

SS11 profile:

name time % calls

setup 3.98696e+01s 0.16 1

loadKernels 8.86541e+00s 0.22 1

udfExecuteStep 4.79946e-03s 0.00 2001

elapsedStepSum 2.06042e+02s 0.84

solve 2.05867e+02s 0.84

min 5.50540e-02s

max 3.32500e-01s

flop/s 1.00108e+13

makef 5.57575e+00s 0.03 2000

udfUEqnSource 3.99624e-02s 0.01 2000

udfProperties 4.88246e-03s 0.00 2001

velocitySolve 1.72489e+01s 0.08 2000

rhs 2.29522e+00s 0.13 2000

pressureSolve 1.79243e+02s 0.87 2000

rhs 4.48683e+00s 0.03 2000

preconditioner 1.67813e+02s 0.94 2470

pMG smoother 1.49445e+02s 0.89 9880

coarse grid 5.53950e+00s 0.03 2470

initial guess 3.20173e+00s 0.02 2000

For completeness, we also include the kernel performance

numbers as reported in the NekRS logfiles:

SS10 profile:

Ax: N=7 FP64 GDOF/s=13.2 GB/s=1260 GFLOPS=2184 kv0

Ax: N=7 FP64 GDOF/s=13.2 GB/s=1260 GFLOPS=2183 kv0

Ax: N=3 FP64 GDOF/s=12.6 GB/s=1913 GFLOPS=1883 kv5

Ax: N=7 FP32 GDOF/s=25.0 GB/s=1194 GFLOPS=4145 kv4

Ax: N=3 FP32 GDOF/s=18.0 GB/s=1368 GFLOPS=2693 kv2

fdm: N=9 FP32 GDOF/s=44.9 GB/s= 812 GFLOPS=7452 kv4

fdm: N=5 FP32 GDOF/s=34.1 GB/s= 825 GFLOPS=4301 kv1

flop/s 3.36729e+13 (701 GFLOPS/rank)

Frontiers inHighPerformanceComputing 13 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1303358
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Min et al. 10.3389/fhpcp.2024.1303358

SS11 profile:

Ax: N=7 FP64 GDOF/s=13.2 GB/s=1256 GFLOPS=2179 kv0

Ax: N=7 FP64 GDOF/s=13.2 GB/s=1257 GFLOPS=2180 kv0

Ax: N=3 FP64 GDOF/s=12.6 GB/s=1912 GFLOPS=1882 kv5

Ax: N=7 FP32 GDOF/s=25.0 GB/s=1194 GFLOPS=4144 kv5

Ax: N=3 FP32 GDOF/s=18.1 GB/s=1369 GFLOPS=2696 kv2

fdm: N=9 FP32 GDOF/s=44.9 GB/s= 812 GFLOPS=7444 kv4

fdm: N=5 FP32 GDOF/s=34.1 GB/s= 825 GFLOPS=4303 kv1

flop/s 1.00108e+13 (208 GFLOPS/rank)

In SS10 profile and SS11 profile,kv reflects the particular kernel

version chosen out of the suite of available kernels in NekRS for the

particular operation. We see that the 64-bit Ax kernels (the matrix-

vector product with the Laplace operator for spectral element order

N) realize ≈ 2 TFLOPS per device, while their 32-bit counterparts

realize 3–4 TFLOPS (32-bit arithmetic is used in the preconditioner

only). The fdm kernel implements the fast-diagonalization method

described earlier for the overlapping Schwarz preconditioners. This

is a fast operation and can be seen to sustain > 7 GFLOPS (FP32).

Note that, as expected, the kernel performance, which does not

include any MPI overhead, is not dependent on the Slingshot

version. NekRS also reports the total observed GFLOPS, which is

seen to be 701 GFLOPS/rank for SS10 and 208 GFLOPS/rank for

SS11 with P = 48, prior to the bug fix.

5.5 Network issues for large-P runs on
Frontier

Our largest runs to date have been on 72,000 MPI ranks

of Frontier (Merzari et al., 2023). Unfortunately, above several

thousand nodes, the Frontier network exhibited erratic behavior

such that the sustained performance for the default version of

NekRS dropped to ≈150 GFLOPS/rank. The performance is

illustrated in Figure 8 (left), which shows the NekRS time-per-

step on 9000 nodes (P = 72000) for a simulation with 500

layers of the full-core geometry of Figure 1 (left). The fluid

domain had n = 172B gridpoints while the solid domain (for

conduction in the individual rods) had ns = 198B gridpoints.

In Figure 8 (left), we see that a lower bound time-per-step of

tstep ≈ 0.3s, which is the performance level we would expect,

and a cloud of points above that with tstep as high as 10s, which

is > 30× the expected value. Testing for these full-scale runs

was challenging because of system stability issues. The limited

tests that were feasible, however, indicated that the significant

variance arose from from flooding the system network during

the relatively simple (and normally fast) Jacobi-preconditioned

Helmholtz solves Equation 5 for velocity. Tests indicated that the

flooding could be mitigated by moving from block (uvw) solves

in the velocity to scalar (u, v, w) solves for each component

(i.e., smaller messages instead of fewer large messages). It was

found however, that among the limited trials that time permitted,

turning off GPU-direct and routing the messages through the

host was the better option, with results illustrated Figure 8

(right) for an 800-layer case that sustains 390 GFLOPS per rank

for P = 72000.

6 Conclusions

We explored the performance of a highly-tuned incompressible

flow code, NekRS, on current-generation HPC architectures

featuring accelerator-based nodes. The principal accelerators under

consideration are the NVIDIA V100, NVIDIA A100, and MI250X

with eight GCDs per node. We found that the raw performance

of a single GCD is about 85% of a single A100. We also

found that the AMD-based Crusher platform had slower host-

based communication than its Polaris/Perlmutter counterpart,

as witnessed by the relatively poor performance of the Hypre-

based coarse-grid solver, which runs on the host. This situation is

significantly improved on Frontier.

We further identified that, despite having lower throughput,

Frontier had better scalability (i.e., lower n0.8) than the NVIDIA

A100 platforms Perlmutter and Polaris, which led to Frontier

having a slight advantage in time-to-solution (although the

advantage was arguably within the variance arising from system

noise).

A key finding was that n0.8 = 2M–5M are typical values of

n/P required to sustain 80% parallel efficiency on DOE’s current

set of leadership HPC platforms. This number is of interest for

algorithmic (and hardware?) optimization because this will be the

most likely operating point for production users. Running with

n/P ≫ n0.8 will result in significant slow-down. Running with

n/P≪n0.8 will result in significant waste of an allocation.Moreover,

under these production-run conditions, time-to-solution (here,

tstep) depends strongly on n/P and only weakly on n or P

individually. As a consequence, one can predict tstep with reasonable

fidelity for any problem size n provided it does not saturate the full

machine (meaning n/P < n0.8, where P is the maximum number

of processes available).

Finally, several examples of anomalous behavior that were

encountered during the study were identified and discussed, and

ultimately resolved either by system upgrades or by altering

execution paths to avoid the source of difficulty.

Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found here: https://github.com/Nek5000/nekRS.

Author contributions

MM: Conceptualization, Data curation, Formal analysis,

Funding acquisition, Investigation, Methodology, Project

administration, Resources, Software, Supervision, Validation,

Visualization, Writing – original draft, Writing – review &

editing. Y-HL: Data curation, Investigation, Methodology,

Software, Validation, Visualization, Writing – review & editing.

PF: Conceptualization, Formal analysis, Funding acquisition,

Investigation, Methodology, Project administration, Resources,

Software, Supervision, Validation, Writing – original draft, Writing

– review & editing. TR: Investigation, Software, Validation, Writing

– review & editing. JH: Data curation, Investigation, Resources,

Software, Writing – review & editing.

Frontiers inHighPerformanceComputing 14 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1303358
https://github.com/Nek5000/nekRS
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Min et al. 10.3389/fhpcp.2024.1303358

Funding

The author(s) declare financial support was received for

the research, authorship, and/or publication of this article. This

material was based upon work supported by the U.S. Department

of Energy, Office of Science, under contract DE-AC02-06CH11357

and by the Exascale Computing Project (17-SC-20-SC). The Oak

Ridge Leadership Computing Facility at the Oak Ridge National

Laboratory was supported by the Office of Science of the U.S.

DOE under Contract No. DE-AC05-00OR22725. The Argonne

Leadership Computing Facility at Argonne National Laboratory

was supported by the Office of Science of the U.S. DOE under

Contract No. DE-AC02-06CH11357.

Acknowledgments

This research used resources at the Argonne and the Oak Ridge

Leadership Computing Facility. This research also used resources

of the National Energy Research Scientific Computing Center, a

DOE Office of Science User Facility using NERSC award ALCC-

ERCAP0030677.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Abdelfattah, A., Barra, V., Beams, N., Bleile, R., Brown, J., Camier, J.-S., et al.
(2021). GPU algorithms for efficient exascale discretizations. Par. Comput. 108:102841.
doi: 10.1016/j.parco.2021.102841

Anderson, R., Andrej, J., Barker, A., Bramwell, J., Camier, J.-S., Dobrev, J. C. V., et al.
(2020). MFEM: A modular finite element library. Comp. Mathemat. Appl. 81, 42–74.
doi: 10.1016/j.camwa.2020.06.009

Arndt, D., Bangerth, W., Davydov, D., Heister, T., Heltai, L., Kronbichler, M.,
et al. (2017). The deal.II library, version 8.5. J. Num. Math. 25, 137–145.
doi: 10.1515/jnma-2017-0058

Bienz, A., OLson, L., Gropp, W. D., and Lockhart, S. (2021). “Modeling data
movement performance on heterogeneous architectures,” in IEEE High Performance
Extreme Computing Conference (HPEC) (Waltham, MA: IEEE), 1–7.

Chalmers, N., Karakus, A., Austin, A. P., Swirydowicz, K., and Warburton, T.
(2020). libParanumal: A Performance Portable High-Order Finite Element Library.
doi: 10.5281/zenodo.4004744

Chalmers, N., Mishra, A., McDougall, D., and Warburton, T. (2023). HipBone:
a performance-portable graphics processing unit-accelerated C++ version
of the NekBone benchmark. Int. J. High Perf. Comput. Appl. 37, 560–577.
doi: 10.1177/10943420231178552

Deville, M., Fischer, P., andMund, E. (2002).High-OrderMethods for Incompressible
Fluid Flow. Cambridge: Cambridge University Press.

Fischer, P., Heisey, K., andMin,M. (2015). “Scaling limits for PDE-based simulation
(invited),” in 22nd AIAA Computational Fluid Dynamics Conference, AIAA Aviation
(Dallas, TX).

Fischer, P., Kerkemeier, S., Min, M., Lan, Y., Phillips, M., Rathnayake, T., et al.
(2021). NekRS, a GPU-accelerated spectral element Navier-Stokes solver. arXiv
[preprint] arXiv:2104.05829. doi: 10.48550/arXiv.2104.05829

Fischer, P., Kerkemeier, S., Min, M., Lan, Y.-H., Phillips, M., Rathnayake, T., et al.
(2022). NekRS, a GPU-accelerated spectral element Navier–Stokes solver. Par. Comput.
114:102982. doi: 10.1016/j.parco.2022.102982

Fischer, P., Lottes, J., and Kerkemeier, S. (2008). Nek5000: Open source spectral
element CFD solver. Available at: http://nek5000.mcs.anl.gov; https://github.com/
nek5000/nek5000

Fischer, P., Min, M., Rathnayake, T., Dutta, S., Kolev, T., Dobrev, V., et al. (2020).
Scalability of high-performance PDE solvers. Int. J. of High Perf. Comp. Appl. 34,
562–586. doi: 10.1177/1094342020915762

Kolev, T., Fischer, P., Min, M., Dongarra, J., Brown, J., Dobrev, V., et al. (2021).
Efficient exascale discretizations. Int. J. of High Perf. Comp. Appl. 35, 527–552.
doi: 10.1177/1094342021102080

Kronbichler, M., and Ljungkvist, K. (2019). Multigrid for
matrix-free high-order finite element computations on graphics

processors. ACM Trans. on Par. Comp. 6, 1–32. doi: 10.1145/
3322813

Kronbichler, M., Sashko, D., and Munch, P. (2023). Enhancing data locality of the
conjugate gradient method for high-order matrix-free finite-element implementations.
Int. J. High Perf. Comput. Appl. 37, 61–81. doi: 10.1177/10943420221107880

Maday, Y., Patera, A., and Rønquist, E. (1990). An operator-integration-factor
splitting method for time-dependent problems: application to incompressible fluid
flow. J. Sci. Comput. 5, 263–292. doi: 10.1007/BF01063118

Malm, J., Schlatter, P., Fischer, P., and Henningson, D. (2013). Stabilization of
the spectral-element method in convection dominated flows by recovery of skew
symmetry. J. Sci. Comp. 57, 254–277. doi: 10.1007/s10915-013-9704-1

Medina, D. S., St-Cyr, A., and Warburton, T. (2014). OCCA: A unified
approach to multi-threading languages. arXiv [preprint] arXiv:1403.0968.
doi: 10.48550/arXiv.1403.0968

Merzari, E., Hamilton, S., Evans, T., Romano, P., Fischer, P., Min, M., et al. (2023).
“Exascale multiphysics nuclear reactor simulations for advanced designs (Gordon Bell
Prize Finalist paper),” in Proc. of SC23: Int. Conf. for High Performance Computing,
Networking, Storage and Analysis (downtown Denver: IEEE).

Min, M., Lan, Y., Fischer, P., Merzari, E., Kerkemeier, S., Phillips, M., et al. (2022).
“Optimization of full-core reactor simulations on Summit,” in Proc. of SC22: Int. Conf.
for High Performance Computing, Networking, Storage and Analysis (Dallas, TX: IEEE).

OCCA (2021). OCCA: Git Repository. Available at: https://github.com/libocca/occa

Orszag, S. (1980). Spectral methods for problems in complex geometry. J. Comput.
Phys. 37:70–92. doi: 10.1016/0021-9991(80)90005-4

Patel, S., Fischer, P., Min, M., and Tomboulides, A. (2019). A characteristic-based,
spectral element method for moving-domain problems. J. Sci. Comp. 79, 564–592.
doi: 10.1007/s10915-018-0876-6

Patera, A. (1984). A spectral element method for fluid dynamics : laminar flow
in a channel expansion. J. Comput. Phys. 54, 468–488. doi: 10.1016/0021-9991(84)90
128-1

Pothen, A., Simon, H., and Liou, K. (1990). Partitioning sparse matrices with
eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11, 430–452. doi: 10.1137/061
1030

Sathyanarayana, S., Bernardini, M., Modesti, D., Pirozzolia, S., and Salvadore,
F. (2025). High-speed turbulent flows towards the exascale: STREAmS-2 porting
and performance. J. Par. Dist. Comput. 196:104993. doi: 10.1016/j.jpdc.2024.10
4993

Vargas, A., Stitt, T., Weiss, K., Tomov, V., Camier, J., Kolev, T., et al. (2022). Matrix-
free approaches for GPU acceleration of a high-order finite element hydrodynamics
application using MFEM, Umpire, and RAJA. Int. J. High Perf. Comput. Appl. 36,
492–509. doi: 10.1177/10943420221100262

Frontiers inHighPerformanceComputing 15 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1303358
https://doi.org/10.1016/j.parco.2021.102841
https://doi.org/10.1016/j.camwa.2020.06.009
https://doi.org/10.1515/jnma-2017-0058
https://doi.org/10.5281/zenodo.4004744
https://doi.org/10.1177/10943420231178552
https://doi.org/10.48550/arXiv.2104.05829
https://doi.org/10.1016/j.parco.2022.102982
http://nek5000.mcs.anl.gov
https://github.com/nek5000/nek5000
https://github.com/nek5000/nek5000
https://doi.org/10.1177/1094342020915762
https://doi.org/10.1177/1094342021102080
https://doi.org/10.1145/3322813
https://doi.org/10.1177/10943420221107880
https://doi.org/10.1007/BF01063118
https://doi.org/10.1007/s10915-013-9704-1
https://doi.org/10.48550/arXiv.1403.0968
https://github.com/libocca/occa
https://doi.org/10.1016/0021-9991(80)90005-4
https://doi.org/10.1007/s10915-018-0876-6
https://doi.org/10.1016/0021-9991(84)90128-1
https://doi.org/10.1137/0611030
https://doi.org/10.1016/j.jpdc.2024.104993
https://doi.org/10.1177/10943420221100262
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

	Nek5000/RS performance on advanced GPU architectures
	1 Introduction
	1.1 Code overview
	1.2 Performance metrics
	1.3 Test cases
	1.4 Additional scaling studies

	2 NekRS performance on a single GPU
	3 NekRS performance on Frontier vs. Crusher
	4 NekRS performance on Summit, ThetaGPU, Perlmutter, Polaris, Crusher, and Frontier
	5 Discussion
	5.1 Performance on Summit V100 16 GB vs. 32 GB
	5.2 Performance on Crusher with rank dependency
	5.3 Performance on Polaris with GPU-aware MPI
	5.4 Performance on Perlmutter with Slingshot 10 vs. Slingshot 11
	5.5 Network issues for large-P runs on Frontier

	6 Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

