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Scientific discovery increasingly requires executing heterogeneous scientific

workflows on high-performance computing (HPC) platforms. Heterogeneous

workflows contain di�erent types of tasks (e.g., simulation, analysis, and learning)

that need to be mapped, scheduled, and launched on di�erent computing.

That requires a software stack that enables users to code their workflows and

automate resource management and workflow execution. Currently, there are

many workflow technologies with diverse levels of robustness and capabilities,

and users face di�cult choices of software that can e�ectively and e�ciently

support their use cases on HPC machines, especially when considering the

latest exascale platforms. We contributed to addressing this issue by developing

the ExaWorks Software Development Kit (SDK). The SDK is a curated collection

of workflow technologies engineered following current best practices and

specifically designed to work on HPC platforms. We present our experience

with (1) curating those technologies, (2) integrating them to provide users with

new capabilities, (3) developing a continuous integration platform to test the

SDK on DOE HPC platforms, (4) designing a dashboard to publish the results

of those tests, and (5) devising an innovative documentation platform to help

users to use those technologies. Our experience details the requirements and

the best practices needed to curate workflow technologies, and it also serves as

a blueprint for the capabilities and services that DOE will have to o�er to support

a variety of scientific heterogeneous workflows on the newly available exascale

HPC platforms.
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1 Introduction

Workflow systems executed at unprecedented scale are

increasingly necessary to enable scientific discovery (Badia Sala

et al., 2017). Contemporary workflow applications benefit from

new AI/ML algorithmic approaches to traditional problems but

also bring new and challenging computing requirements to the

fore (Ferreira da Silva et al., 2021). Exascale High-performance

computing (HPC) platforms can satisfy the growing need for scale

but at the cost of requiring middleware with increased complexity

and multiple dimensions of heterogeneity. A renewed impulse

to develop workflow applications for HPC platforms meets a

traditionally fragmented software ecosystem, creating several issues

for the users and middleware developers.

Domain scientists who code HPC workflow applications face

four main challenges: (1) choosing a workflow system that

satisfies the requirements of their use cases and their target HPC

platform(s); (2) learning to use the chosen workflow system to code

and execute their applications; (3) deploying the workflow system

and its middleware stack on the target HPC platform, testing that

they work as intended; (4) maintaining their workflow application

over time while ensuring that the chosen workflow system remains

functional through the routine software updates of their target HPC

platform.

In a fragmented ecosystem with many workflow systems and

workflow-related technologies specifically designed to support

scientific applications, domain scientists must review multiple

software solutions with similar capabilities but diverse maturity

levels, robustness, reliability, documentation, and support.

Furthermore, users must learn the basic functionalities of several

systems to evaluate, deploy, and test them on one or more HPC

platforms. Together, that requires a significant effort involving

significant human and time resources. Further, even after choosing

a viable software stack, the need for portability due to the different

capabilities of the HPC platforms and the availability of multiple

allocations and recurrently updated machines leads to a constant

process of deploying, testing and fixing both the workflow

applications and the middleware that support their execution.

Given the needed resources, scientists often meet those

challenges by relying on “word of mouth,” repeating the choices

made by colleagues even if sub-optimal. Alternatively, users resort

to coding new single-point solutions, furthering the balkanization

of the existing software ecosystem. Ultimately, both options make it

difficult, if not impossible, to express the potential of HPC scientific

workflow applications to support innovation and discovery. We

propose that overcoming that limitation requires a novel approach

to make available a selected set of tools that can provably support

the execution of scientific workflow applications on the largest HPC

platforms currently available to the scientific community. Further,

we need a way to grow the existing software ecosystem, avoiding

effort duplication while improving scalability, portability, usability,

and reliability and lowering the learning curve and themaintenance

effort.

This paper describes the lessons learned while delivering

ExaWorks (Al-Saadi et al., 2021), a project designed to implement

the approach described above. Specifically, this paper focuses on

the ExaWorks Software Development Kit (SDK), an effort to

select a complementary set of workflow technologies, make their

integration possible while maintaining their individual capabilities,

testing them via continuous integration (CI), making the result of

those tests publicly available, and documenting them in a way that

helps to lower the access barriers when used on HPC platforms.

This work serves not only as a blueprint for realizing the full

potential of modern scientific workflow applications but also as

a critical overview of the pros and cons of that approach, as

experienced during a three-year-long project.

The rest of the paper is organized as follows. In Section 2,

we briefly review similar efforts, outlining similarities and relevant

differences. Section 3 describes each software tool currently

included in the ExaWorks SDK. In Section 4, we detail one of the

main technical achievements of the ExaWorks project: integrating

the SDK software components to provide users with a variety

of new capabilities while reducing to a minimum the new code.

Section 5 offers an overview of exemplar success stories about

using SDK in real-world scientific research. Section 6 describes

the other two main deliverables of the ExaWork project: a testing

infrastructure based on a CI infrastructure for Department of

Energy (DOE) HPC platforms and a monitoring infrastructure

based on a public dashboard, collecting the results of the CI runs.

In Section 7, we illustrate the system we built to document the

SDK based on containerized executable tutorials. Finally, Section

8 summarizes SDK’s characteristics, the lessons we learned while

designing and developing ExaWorks SDK, and the challenges that

still lie ahead.

2 Related work

In this section, we briefly discuss some of the projects

undertaken in the community and how the SDK follows in

the steps of those experiences. The Workflows Community

Initiative (WCI) (Team WCI, 2024) represents a pioneering

collaboration to propel advancements in workflow systems and

associated technologies. This initiative unites diverse stakeholders,

including researchers, developers, and industry practitioners, to

enhance dialogue and cooperation on pivotal aspects of workflow

management. These aspects encompass the design, execution,

monitoring, optimization, and interoperability of workflow

systems. A cornerstone of the initiative is the organization of the

Workflows Community Summits (da Silva et al., 2023). These

summits are international workshops that serve as a dynamic

platform for attendees to exchange insights, discuss the latest

trends and challenges, and forge new partnerships. ExaWorks

directly collaborated with and participated in WCI’s activities,

eliciting the requirements for its SDK.

SDK addresses several of the community’s recommendations

for the technical roadmap defined during the 2021 and 2022

summits (Ferreira da Silva et al., 2021; da Silva et al., 2023).

SDK provides software products and technical insight for the

interoperability of workflow systems, delivering integrations

among all its workflow technologies (see Section 4). Indirectly,

SDK software integrations also contribute to furthering the

understanding of the roles played by standardization, placing the

accent on integrating a diversity of programming models and
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interfaces instead of searching for a single encompassing solution.

For example, the DOE Integration Research Infrastructure effort

to standardize interoperable workflows is considered a potential

venue. SDK packaging and testing infrastructure (see Section

6) contributes tangible capabilities to improve the support of

workflow technologies onHPCplatforms, and SDKdocumentation

centered on containerized tutorials (see Section 7) contributes to

training and education. While SDK does not contribute directly to

the FAIR, AI, and Exascale challenges, its workflow technologies

(see Section 3) have a roadmap to develop capabilities that will

contribute to addressing those challenges.

Separately to the community, “standards” for workflow

languages have been developed, such as the Common Workflow

Language (Amstutz et al., 2016) and Workflow Definition

Language. Additionally, a few standard formats have been tried and

tested, including JSON and YAML (Blin et al., 2003; DeLine, 2021;

Ristov et al., 2021). In the previous decades, large projects such

as SHIWA (Korkhov et al., 2012) undertook the task of workflow

interoperability by developing an interoperable representation of

a workflow language that multiple workflow managers could

enact. ExaWorks SDK takes a different approach in which tools

with diverse user-facing application programming interfaces (API)

and approaches to workflow specification are included in the

SDK and, when needed, integrated with other tools that provide

runtime capabilities. In that way, users can “compose” an end-

to-end software stack that best fits their workflow application

requirements.

Software development activities as part of the ECP project

resulted in several scientific software tools that were, in turn,

used by other projects that were built on top of them. For

instance, AMReX (Zhang et al., 2021) mesh refinement modeling

forms the basis for several other tools developed on top of it,

such as FerroX (Kumar et al., 2021), ExaAM, and many more,

forming a collection of tools for science. xSDK (The xSDK Team,

2017) is a similar effort to ours. ExaWorks SDK is designed

to take inspiration from those experiences. Still, it differs from

them because integration is considered at the level of middleware

components instead of focusing on the (math) libraries level.

Therefore, the term “SDK” assumes a more general meaning than

the one usually associated with a set of libraries that enables the

writing of a new application.

Considering ECP, ExaWorks SDK is more akin to the DOE-

sponsored Extreme-scale Scientific Software Stack (E4S) (Heroux,

2023), a community effort that provides open-source software

packages for developing, deploying, and running scientific

applications on HPC and AI platforms. E4S provides from-source

builds, containers, and preinstalled versions of a broad collection of

HPC and AI software packages (The E4S Project, 2024). Compared

to EC4, ExaWorks SDK takes a loosely coupled approach where

tools maintain a high degree of independence and are not organized

into a named distribution. For example, the SDK does not mandate

a packaging format for its components, as E4S does. Further,

ExaWorks SDK focuses on workflow technologies, not on those

utilized by the tasks of those workflows.

Not all workflow technologies and their middleware

implementations have been designed to foster integration

with other tools. For example, Python packages such as

Dask (Rocklin, 2015) come prepackaged with some rudimentary

API to interface with the resource manager. However, they

are limited in functionality and tightly integrated with

Dask. For that reason, SDK is a curated set of workflow

technologies, and, as described in the next section, part of the

effort goes into evaluating whether a prospective component

can be integrated with other components without significant

engineering effort.

3 Core components

Exaworks SDK seeding technologies were chosen based on

the requirements elicited by engaging with the DOE Exascale

Computing Project (ECP) workflow communities. We created

a survey to identify existing workflow systems efforts, both

ECP-related and within the broader DOE software ecosystem.

That survey helped us understand the challenges, needs, and

possible collaborative opportunities between workflow systems

and the ExaWorks project. We took a broad view of workflows,

including automated orchestration of complex tasks on HPC

systems (e.g., DAG-based and job packing), coupling simulations at

different scales, adaptive/dynamic machine learning applications,

and other efforts in which a variety of possibly related

tasks have to be executed at scale on HPC platforms. For

example, after eliciting a brief description of an exemplar

workflow, we asked about internal/external workflow coordination,

task homogeneity/heterogeneity, and details about the adopted

workflow tools.

Alongside the outcome of more than twelve community

meetings, the results of our survey highlighted the state of

the art of scientific workflow in the ECP community. To

summarize, many teams are creating infrastructures to couple

multiple applications, manage jobs—sometimes dynamically—and

orchestrate compute/analysis tasks within a single workflow and

manage data staging within and outside the HPC platforms.

Overall, there is an evident duplication of effort in developing

and maintaining infrastructures with similar capabilities. Further,

customized workflow tools incur significant costs to port, maintain,

and scale bespoke solutions that serve single-use cases on specific

platforms and resources. These tools do not always interface

with facilities smoothly and are complex and/or costly to port

across facilities. Finally, the lack of proper software engineering

methodologies leads to repeated failures, difficulty in debugging,

and expensive fixes. Overall, there was agreement in the community

that costs could be minimized, and quality could be improved

by creating a reliable, scalable, portable software development kit

(SDK) for workflows.

Based on the requirements summarized above, the ExaWorks

SDK collects software components that enable the execution

of scientific workflows on HPC platforms. We consider a

reference stack that allows the development of scientific workflow

applications, resolving the task dependencies of that application,

acquiring resources for executing those tasks on a target HPC

platform, and then managing the execution of the tasks on those

resources. The SDK includes components that deliver a well-

defined class of capabilities of that reference stack with different
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user-facing interfaces and runtime capabilities. Consistently, the

SDK is designed to grow its components, including software

systems that are open source (i.e., released under a permissive or

copyleft license) and developed according to software engineering

best practices, such as test-driven development, release early and

often, and version control.

SDK faces a fragmented landscape of workflow technologies,

with diverse systems that offer overlapping capabilities. To help

reduce duplication, SDK collects systems that can be integrated but

have distinguishing capabilities, expose diverse APIs, and support

different programming models. By integrating these systems, SDK

reduces the need to duplicate existing capabilities within each tool.

Nonetheless, each tool’s distinguishing capabilities can be used to

support use cases that require a specific API, programming model,

scaling performance, or programming language. Ultimately, SDK

does not commit to a vision in which a single technology can solve

all the requirements or all the use cases. Instead, we commit to

fostering an ecosystem of integrable and complementary tools that

can be used independently or combined, depending on the specific

requirements of each use case.

Currently, the SDK contains seven software components:

Flux (Ahn et al., 2014), MaestroWF (Di Natale et al., 2019),

Parsl (Babuji et al., 2019), PSI/J (Hategan-Marandiuc et al., 2023),

RADICAL Cybertools (Balasubramanian et al., 2016; Merzky et al.,

2021), SmartSim (Partee et al., 2022) and Swift (Wozniak et al.,

2013). As shown in Figure 1, each system delivers capabilities

end-to-end or at a specific level of our reference stack. That

way, we offer users alternative tools across or along the reference

stack, depending on their specific requirements. For example,

Parsl, RADICAL Cybertools, SmartSim, Swift, and, to a certain

extent, MaestroWF all offer end-to-end workflow capabilities but

with different programming models, application programming

interfaces (API), support for HPC platforms, and scientific domain.

Flux and PSI/J offer capabilities focused on resource and execution

management, enabling the execution of user-defined workflows on

various HPC platforms.

Further, each component is designed with sub-components,

exposing well-defined interfaces. That allows us to promote

integration among components, obtain new capabilities, and avoid

lock-in into solutions maintained by a single team or designed to

support a specific class of scientific problems and platforms. Here,

we briefly describe each tool, showing how their capabilities fit the

reference stack. In the next section, we detail the integration among

some of these components.

Flux (Ahn et al., 2014, 2020) is a next-generation resource

management and scheduling framework project under active

development at LLNL. It is composed of a modular set of projects,

tools, and libraries that can provide both system- and user-level

resource managers and schedulers under one common software

framework: system administrators and end users alike can create

their instances of Flux on a set of HPC resources using the

same commands and APIs to manage them according to their

requirements. Furthermore, the owners of a Flux instance (e.g., a

specific user who gets a set of compute nodes allocated) can spawn

one or more child Flux instances that can manage a subset of

the parent’s resources while specializing their services, and such a

nesting can further recurse.

Flux’s fully hierarchical, customizable software framework

architecture has proven effective on high-end systems, including

pre-exascale systems (e.g., LLNL Sierra) as low-level service

building blocks for complex workflows (Di Natale et al., 2019).

For instance, Flux’s flexible design allows users to decide whether

or not co-scheduling should be configured and lets users choose

their scheduling policies (e.g., a policy optimized for high job

throughput) within the scope of their instance. Further, these

workflows can connect to their Flux instance and use Flux’s

communication primitives such as publish-subscribe, request-

reply, and push-pull, as well as asynchronous event handling

to facilitate the communication and coordination between co-

scheduled jobs via Flux’s well-defined, highly portable APIs.

MaestroWF (Maestro Workflow Conductor) allows users

to define multistep workflows and automate the execution of

software flows on HPC resources. It uses YAML-based study

specifications to describe workflows as directed acyclic graphs that

can be parameterized across multiple parameters. Maestro’s study

specification helps users think about complex workflows in a step-

wise, intent-oriented manner that encourages modularity and tool

reuse. Maestro runs in user space and does not rely on external

services. Maestro is in production use at Lawrence Livermore

National Laboratory by a growing user community (several dozen

regular users).

SmartSim is a workflow library that makes it easier to use

common Machine Learning (ML) libraries, like PyTorch and

TensorFlow, in HPC simulations and applications. SmartSim

launches ML infrastructure on HPC systems alongside user

workloads and supports most HPC workload managers (e.g.,

Slurm, PBSPro, LSF). SmartSim also provides a set of client

libraries in Python, C++, C, and Fortran. These client libraries

allow users to send and receive data between applications and the

machine learning infrastructure. Moreover, the client APIs enable

the execution of machine learning tasks like inference and online

training fromwithin user code. The exchange of data and execution

of machine learning tasks is orchestrated by a high-performance

in-memory database launched and managed by SmartSim.

Parsl is a parallel programming library for Python that supports

the definition and execution of dataflow workflows. Developers

annotate Python programs with decorators, Parsl apps, indicating

opportunities for asynchronous and concurrent execution. Parsl

supports two decorators: PythonApp for the execution of Python

functions and BashApp to support the execution of external

applications via the command line. Parsl enables workflows to

be composed implicitly via data exchange between apps. Parsl

supports exchanging Python objects and external files, which can

be moved using various data transfer techniques. Parsl programs

are portable, enabling them to be moved or scaled between

resources, from laptops to clouds and supercomputers. Users

specify a Python-based configuration describing how resources

are provisioned and used. The Parsl runtime is responsible for

processing the workflow graph and submitting tasks for execution

on configured resources.

Parsl implements a three-layer architecture that makes it

amenable to interoperation with other SDK components. Parsl

workflows are interpreted and managed by the DataFlowKernel

(DFK). The DFK holds the dependency graph, determines
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FIGURE 1

ExaWorks SDK reference stack (right), current components (blue boxes), and examples of integration among components (purple boxes). SDK o�ers

a variety of interfaces, programming models, and runtime capabilities to execute scientific workflows at scale on HPC platforms.

when dependencies are met, and passes tasks for execution via

the Executor interface. The Executor interface, implementing

Python’s concurrent. Futures Executor, supports task-based

execution, returning a Future instead of results. Parsl has several

Executors designed for specific purposes, such as high throughput

and extreme scale, several external executors have also been

integrated as we describe in Section 4. Finally, the Provider interface

is responsible for provisioning resources from different parallel and

distributed computing resources. This interface enables integration

with PSI/J as a direct replacement for in-built capabilities.

PSI/J is an API specification for job submission management.

One of its primary goals is to provide an API that abstracts access

to local resource managers (LRMs), such as Slurm or PBS. PSI/J

aims to replace the ad-hoc solutions found in most workflow

systems and other software that require portability across multiple

HPC clusters. PSI/J comes with a reference Python implementation

and an infrastructure for distributed and user-directed testing.

That infrastructure enables testing of PSI/J on a wide range of

user-accessible platforms, centralizing and making test results

publicly accessible. We used a modified version of the PSI/J testing

infrastructure for the ExaWorks SDK components.

RADICALCybertools (RCT) aremiddleware software systems

designed to develop efficient and effective tools for scientific

computing. Specifically, RCT enables developing applications that

can concurrently execute up to 105 heterogeneous single/multi-

core/GPU/node MPI/OpenMP tasks on more than twenty HPC

platforms. Tasks can be implemented as stand-alone executables

and/or Python functions. RCT comprises building blocks designed

to work as stand-alone systems, integrated among themselves

or with third-party systems. RCT enables innovative science in

multiple domains, including biophysics, climate science, particle

physics, and drug discovery, consuming hundreds of millions

of core hours/year. Currently, SDK includes two RCT systems:

RADICAL-Pilot (RP) (Merzky et al., 2021) and RADICAL-

EnsembleToolkit (EnTK) (Balasubramanian et al., 2016). Both

implemented as independent Python modules, RP is a pilot

enabled (Luckow et al., 2012; Turilli et al., 2018) runtime

system, while EnTK is a workflow engine designed to support

the programming and execution workflows with ensembles of

heterogeneous tasks.

Swift/T is a workflow system for single-site workflows. It is

based on an automatically parallelizing programming language

and an MPI-based runtime. The goal of Swift/T is to efficiently

manage workloads consisting of many compute-intensive tasks,

such as scientific simulations or machine learning training runs,

and distribute them at a fine-grained level across the CPUs or GPUs

of the site. The language aspect of Swift/T allows the user to define

executions in terms of Python, R, or shell script fragments and

then set up a data dependency structure that specifies the order in

which data is created. Tasks are executed, possibly including loops,

recursive function calls, and other complex patterns. The language

has a familiar C or Java-like syntax but automatically provides

concurrency within a dataflow control paradigm. Thus, loops and

many other syntax features are automatically parallelized. The

developer can use the language to launch tasks, manage workflow-

level data, and even launch subordinate MPI jobs using multiple

mechanisms. Developers can leverage standard mechanisms to use

GPUs, node-local storage, and other advanced features.

4 Component integration

As seen in Section 1, the landscape of the software that supports

the execution of scientific workflows is fragmented into tools

with similar capabilities, often without proper maintenance and

support. The SDK contributes to reducing that fragmentation by

maintaining a collection of adequately engineered, production-

grade workflow tools with a proven track record and promoting

integration among those tools. The underlying idea is to avoid

reimplementing already available capabilities, instead spending the

resources on designing and coding integration layers between the

technologies with diverse capabilities. While the idea is simple, its

actual implementation is challenging. Software systems designed by

independent engineering teams are not thought to be compatible at

the abstraction and implementation levels.

Our integration experience showed a discrete homogeneity

of abstractions among software designed to support scientific

workflows. For example, most tools share analogous Task

abstractions, assumptions about data dependencies among tasks,

and, to some extent, the internal representation of computing
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resources and how they relate to computing tasks. Most differences

were found at the interface and runtime level, where each tool

implements distinctive designs and capabilities. SDK tools adopt

similar best engineering practices (as most software is designed

for production these days), contributing to a certain degree

of homogeneity. For example, most SDK tools adopt designs

based on well-defined APIs, connectors, and adaptors. Finally,

implementation-wise, some tools adopted similar technologies,

such as Python and ZeroMQ.

On those bases, integration points were clearly to be found

at the level of the connectors/adapters and primarily based

on translating internal representations of tasks, their data, and

their resource requirements. Overall, we could integrate user-

facing capabilities with various runtime capabilities, requiring

minimal code to be written, mainly to implement translation layers

among well-defined interfaces or connectors from existing base

classes. Integrating models of resource representations was more

challenging, especially concerning resource acquisition capabilities.

Sometimes, that required extending existing user-facing interfaces

to allow a unified definition of resource requirements, and other

times, modifying the data structures and methods used to manage

resources at runtime. Even accounting for such code extensions

and modifications, integration proved straightforward from both

a design and implementation perspective.

Overall, the experience gained with the development of

SDK shows that to mitigate and reduce fragmentation of the

landscape of scientific workflow technologies, tools need to be

designed following engineering best practices and established

patterns for distributed systems, adopt common abstractions,

and utilize common patterns and separation of concerns

for the communication and coordination protocols. Perhaps

unsurprisingly, by doing all the above, tools are more likely to

be able to be integrated with future third-party tools. In the

remaining section, we expand this summary by describing the

integration between Parsl and RADICAL-Pilot, Parsl and PSI/J,

RADICAL-Pilot and Flux, RADICAL-Pilot and PSI/J, and Swift/T

and PSI/J. Together, those integrations detail the lesson we learned

by delivering SDK.

4.1 RADICAL-pilot and Parsl integration

Integrating RADICAL-Pilot (RP) and Parsl allows two tools

developed by different research groups to work seamlessly together,

delivering new capabilities that were not available without their

integration. RP and Parsl integration is based on a loosely coupled

design, in which RP becomes an executor of Parsl (called RPEX),

and both systems send, receive, and share tasks (Alsaadi et al.,

2022). RP offers capabilities to concurrently execute heterogeneous

(non)MPI tasks acrossmultiple heterogeneous resources, with tasks

implemented as an executable or a Python function. Parsl offers

workflow management capabilities, allowing the development of

data workflows via its API. RP and Parsl capabilities are delivered

with no changes to the application code, allowing users to benefit

from Parsl’s flexible API and RP scale and performance with no

code migration or refactoring efforts.

RPEX has three main components shown in Figure 2:

executor starter, task translator, and task submitter. Once

Parsl starts the executor [Figure 2 1 ], it submits the

resolved tasks directly to RP via the Parsl workflow

manager as a ready-to-execute task [Figure 2 2 ]. Once

RP receives the task, it detects the task type, assigns the

resource requirements for each task as specified by the user

via parsl_resource_specification [Figure 2 3 ] and

submits the task to RP’s TaskManager [Figure 2 4 ]. Once the

tasks are in a state of DONE, CANCELED or FAILED, RP

notifies Parsl about the state of the tasks for further processing or

for Parsl to declare the execution as done and to shut down the

executor.

Integrating RP and Parsl was straightforward except for a

difference in resource management. That required aligning RP’s

task API with Parsl’s future tasks by creating a middle point

component responsible for translating Parsl’s futures into RP’s

tasks. Most importantly, the task translator’s primary duty is to

extract the resource requirements from Parsl’s tasks and map

them to RP’s task to enable the use of RP’s resource management

capabilities in RPEX. Beyond coding RP’s interface to Parsl’s

executor API, we wrote unit tests for RPEX and integrated those

tests into Parsl’s continuous integration infrastructure. Finally,

RPEX required documentation by extending both Parsl and RP

documentation and adding specific tutorials.

4.2 Flux integrations

We integrated Parsl and RADICAL-Pilot with Flux to add Flux’s

scheduling and launching capabilities to both systems’ launching

methods. As seen in Section 3, Flux is built to enable effective and

efficient execution of large-scale executions of tasks. Both Parsl

and RADICAL-Pilot can benefit from those capabilities, especially

for homogeneous tasks. Concurrent heterogeneous tasks and high-

throughput scheduling require executing multiple Flux instances

and partitioning the tasks across those instances.

Parsl’s FluxExecutor supports Parsl apps that require complex

sets of resources (likeMPI or other compute-intensive applications)

and collections of applications with highly variable resource

requirements. Flux’s sophisticated and hierarchical scheduling

makes these applications logically and efficiently executed across

Flux-managed resources. Flux is integrated with Parsl via a

Python-based wrapper around the Flux API that implements

Parsl’s Executor interface. We chose to implement the executor

interface rather than Parsl’s provider interface, which is used for

schedulers, as the executor interface provides more fine-grained

control over execution. For example, it allows Flux to manage

resources dynamically according to the resource specification

provided, rather than the simple batch job provisioning offered by

the provider interface. Parsl apps are submitted as Flux Jobs to the

underlying Flux scheduler via the Executor API. The Flux executor

requires a Flux installation to be available locally and located either

in PATH or through an argument passed at creation time.

While task execution via the Executor is straightforward, the

team had to integrate the Flux resource description model to enable

Parsl apps to carry requirements. The integration allows developers
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FIGURE 2

RPEX architecture. Integration between Parsl (blue boxes) and RADICAL-Pilot (purple and green boxes) via a Task Translator function.

to associate a dictionary containing the Flux resource spec with a

Parsl app. Supported keys include the number of tasks, cores per

task, GPUs per task, and nodes. The Parsl/Flux integration has been

used by various users, including for weather modeling workflows at

NOAA.

The integration process highlighted several challenges,

including diverse resource specifications and issues matching

environments. As Parsl supports various executors, each with

its way of representing resource specifications (e.g., names of

attributes, set of configurable attributes provided), we discussed

building a common resource specification. We discussed this

approach with various Parsl stakeholders and ultimately decided

to support the description used by the executor. This simplifies

integration significantly but reduces portability between executors

as users must convert resource specifications. We based our

decision on the fact that, in several cases, there was no one-to-one

mapping between attributes, and we were concerned that users

familiar with a particular executor would be confused by using

different attributes. However, we identify this as an opportunity for

future work.

After completing the integration, we worked with researchers

at NOAA to use it for weather simulations. This work aimed

to use Parsl to orchestrate a workflow comprised of diverse

task types, from single-core processes to MPI tasks. The most

significant obstacle was configuring the environments to work

cohesively. Using Spack resulted in issues regarding differing

Python dependencies between Parsl and Flux. Ultimately, the team

used Spack to deploy Flux, used Pip to install Parsl, and then

manually installed two Python libraries to specific versions that

worked with both Parsl and Flux. Future work in the SDKwill focus

on establishing compatible environments and regularly testing the

pair-wise installations to identify conflicting versions.

RADICAL-Pilot (RP) and Flux were integrated using the

Flux scheduler and task-launching mechanisms as corresponding

components within RP. RP provides component-level API, which

allows the creation of different types of RP Scheduler, Executor,

and Launching Method. Users can use Flux-based components

for a corresponding RP application by specifying it in the target

platform configuration. RP starts the Flux instance (i.e., Flux-

based scheduler and executor) while bootstrapping its components

after having obtained the HPC resources allocated via a pilot

job (see Figure 3). Flux schedules, places, and launches tasks on

the compute nodes of that allocation via its daemons. RP tracks

task completion and makes available this information across its

components. If more tasks are available, RP passes them to Flux

to execute on the freed resources. Since RP supports multiple

instances of components of the same type, RP can increase the

overall task throughput by launchingmultiple Flux instances within

the same job allocation and using them concurrently.

Internally, RP launches the Flux instances to execute on a

specific subset of compute nodes. The Flux instances are configured

by adjusting the Slurm environment settings and, specifically, the

node list so that each Flux instance “sees” a different subset of the

nodes available in the allocation. Tasks proxied from RP to Flux

are then executed on those specific nodes. Task state updates are

collected bymonitoring the Flux event channel and converting Flux
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FIGURE 3

Integration of Flux into RADICAL-Pilot.

state updates to RP task state updates. Currently, RP implements

only basic load balancing between the Flux instances, which can

be improved in the future. Flux itself also allows for hierarchical

scheduling. In contrast to the approach implemented in RP, Flux

hierarchies support only the scheduling of a homogeneous bag of

tasks where RP can handle heterogeneous tasks, which is what the

workloads that RP typically manages require.

The integration of RP and Flux is a significant step toward

enabling the execution of large-scale workflows on HPC platforms.

The integration is currently being used to support the execution of

exascale workflows on the Frontier supercomputer at Oak Ridge

National Laboratory.

4.3 PSI/J integrations

We integrated Parsl, RADICAL-Pilot, and Swift/T with PSI/J,

enabling the transparent portability of the applications written

utilizing those components acrossmost of the DOEHPC platforms.

Parsl integrates PSI/J by implementing Parsl’s extensible

provider interface in Python (using psij-python). The provider

interface requires implementing submit, cancel, and status

functions, translating to similar calls in PSI/J. These interfaces are

very similar as they are both modern and Python-based; thus,

integration was relatively straightforward. The main complexity of

the integration stems from the need to translate between Parsl job

description objects and those used by PSI/J. However, because the

data structures are similar, the implementation is minimal, with

roughly 150 lines of code, including logging and error handling.

However, the benefits of this integration are significant as it enables

the Parsl team to leverage the community-maintained interface to

the broad ecosystem of schedulers that are used.

RADICAL-Pilot (RP) uses a PilotLauncher component

to interface with the target resource’s batch system, to submit

pilot jobs, and to monitor their health. That launcher component

traditionally uses RADICAL-SAGA (Merzky et al., 2015) to

abstract those interactions. The abstractions provided by PSI/J are

conceptually very close to those exposed by SAGA; thus, adding

an additional PilotLauncher component based on psij-python

required only minor changes to RP code. The PSI/J launcher

replaced the SAGA launcher for local submissions to the batch

system (see “PSI/J API” in Figure 2). The main semantic difference

to the SAGA backend is the support for remote job submission and,

thus, for remote pilot placement in RP. However, the PSI/J API

itself, and hence the PSI/J-RP integration, is independent of the

backend, and the integration code will seamlessly support remote

submissions once PSI/J is extended to support those. The SAGA

backend will be retired once PSI/J supports remote submissions.

Swift/T has a single-site model, meaning a Swift/T workflow

executes inside a single scheduled job. Longer-running campaigns

are typically managed through a checkpoint-restart mechanism

[see Section 5 for an example with the CANDLE (Wozniak et al.,

2018) use case]. Thus, a single scheduler job has to be issued.

Constructing this job is a software engineering task that has

shared responsibility among three conceptually distinct roles: (1)

workflow developer/user, (2) Swift/T maintainer, and (3) HPC site

maintainer/administrator. The workflow developer/user simply

wants to run scientific workloads using Swift/T and has limited

knowledge of Swift/T internals or site-specific technicalities. The

Swift/T maintainer understands Swift/T conventions but cannot be

responsible for all possible use cases or runtime environments. The

HPC site maintainer/administrator installs Swift/T on the site and

has in-depth knowledge of the site in question and how to use it.

However, it has limited understanding of how Swift/T internals or

how its conventions are relevant.

Swift/T was initially packaged with a suite of shell scripts to

support running a monolithic Swift/T MPI job using job script

templates filtered with settings specified by the user. This model

made it easy for advanced users to adjust the scripts as needed

quickly. It also posed a code management challenge, as the number

of scripts and the variety of computing sites available led to

common problems. Swift/T is now bundled with a PSI/J script that

fits into this model. Still, all actual interaction with the scheduler is

done through PSI/J, pushing the complexity and responsibility of

managing scheduler changes and exotic settings into the reusable

PSI/J suite. This approach also has the benefit that experienced

PSI/J users will likely find Swift/T behavior more understandable.

Swift/T originally used GNU M4 Seindal (1997) to filter

template scripts into submit scripts for the various HPC workload

managers. In this approach, an invocation such as $ swift-t -m

pbs -n 8 workflow.swift translates workflow.swift

into internal format workflow.tic and issues a PBS job with

$ mpiexec -n 8 workflow.tic. The -n 8 specifies

eight MPI processes for the job. In practice, there are many

other system-related settings that may be provided to swift-

t via command-line flags and environment variables. Note that

the contents of workflow.swift do not affect the PBS job;

the Swift/T architecture separates the internal logic expressed in

the workflow language from the system-level specification of the

runtime environment. These settings are then translated by simple

M4 patterns into the backend script for PBS specified with -

m pbs. In the interest of maintainability, we restrict our M4 usage

to only m4_ifelse() and a custom getenv() macro. Much

Frontiers inHighPerformanceComputing 08 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1394615
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Turilli et al. 10.3389/fhpcp.2024.1394615

work goes into maintaining these scripts, as the various settings

are expressed differently among the workload managers, and site-

specific customization is common at supercomputing facilities.

In the Swift/T-PSI/J integration effort, we enabled the

user to simply specify $ swift-t -m psij -

n 8 workflow.swift. This invokes a wrapper script

turbine2psij.py, bundled with Swift/T, which is a short

Python script that does a import psij, then constructs

a psij.JobSpec with the settings. This is then issued to

the workload manager with psij.JobExecutor.submit().

Thus, no additional knowledge of workload managers and their

specifications is needed on the Swift/T maintainer side. This

solves the multi-role software engineering task specified above. The

workflow developer/user writes workflows and invokes Swift/T as

usual with trivial additional knowledge; any additional knowledge

about PSI/J will help with the Swift/T case and other PSI/J uses. The

Swift/T maintainer outsources all scripting complexity to the PSI/J

maintainers, allowing that role to focus on Swift/T improvements.

The HPC site maintainer/administrator, with moderate knowledge

of PSI/J and in-depth knowledge of the local site, will be able to

easily address any issues with making things work, even without

knowledge of Swift/T internals.

5 Success stories

We propose three exemplar “success stories” of using

SDK technologies for different use cases in diverse scientific

domains. Those show how SDK enables a wide range of

workflow applications and resources while offering consistent

packaging, testing, and documentation of those technologies. Note

that we present use cases that require individual components

of SDK but also their integration. That shows how SDK

provided an aggregation venue and added value in the form of

new capabilities.

Note that the choice of a specific workflow technology offered

by SDK to satisfy a specific use case is socio-technical. That means

that each choice is grounded both on a set of specific capabilities

that each tool offers but also on more qualitative factors like

ongoing collaborations among research groups and PIs, personal

preferences, and present or future funding opportunities. As SDK

offers tools with overlapping capabilities, often a use case could be

supported by more than a single tool. We see that as a positive

factor of the SDK approach, which promotes a software ecosystem

with complementary technologies that adhere to high engineering

standards, are maintained, well documented, and tested on the

target infrastructures.

Beyond the three exemplar “success stories” listed below, SDK

components and their integrations are being used to support a

variety of ongoing use cases. Those use cases span diverse scientific

domains and benefit from the documentation, testing, and

capabilities offered by SDK. For example, RADICAL-Cybertools is

using the integration with Flux to support the execution of exascale

workflows on Frontier.Without Flux, RADICAL-Cybertools would

be limited in the number of concurrent tasks that could be executed

due to the configuration choices made by the Frontier management

team. Further, PSI/J is now the default resource management API

for Parsl, RADICAL-Cybertools and Swift and, as such, it is used

in every use case supported by those systems. Note that, beyond

supporting use cases, Exaworks SDK is now also focusing on

expanding the number of workflow technologies supported and

establish its testing infrastructure as an official capabilities of several

DOE labs.

5.1 Using EnTK for ExaAM workflows

The DOE ECP Exascale Additive Manufacturing project

(ExaAM) developed a suite of exascale-ready computational tools

to model the process-to-structure-to-properties (PSP) relationship

for additively manufactured (AM) metal components (Carson

et al., 2023). ExaAM built an uncertainty quantification (UQ)

pipeline (aka campaign) to quantify uncertainty’s effect on local

mechanical responses in processing conditions.

ExaWorks teamed up with ExaAM to implement a scalable UQ

pipeline solution using ExaWorks SDK components. After initial

meetings to elicit the ExaAM workflow requirements, the teams

selected the SDK and its RADICAL Cybertools component (see

Section 3) to implement that workflow. The details of the ExaAM

workflow are presented in Bader et al. (2023); below, we offer a

summary of the implementation and execution of this workflow at

scale.

ExaWorks collaborated closely with the ExaAM team and

user(s) to replicate the existing UQ pipeline and its capabilities

using SDK’s RADICAL Cybertools and, specifically, its workflow

engine called EnTK. EnTK enables expressing workflows as

pipelines, each composed of a sequence of stages. Each stage

contains a set of tasks, enabling concurrent execution, depending

on available resources. EnTK’s programming model allowed us to

directly implement the UQ pipeline into a set of EnTK pipelines

without costly and conceptually difficult translations between

different workflow representations.

EnTK workflows replaced existing shell scripts that required

hands-on management and constant tweaking, made debugging

difficult, and consumed resources otherwise available to progress

scientific research. SDK and RADICAL Cybertools offered a

performant, scalable, automated, fault-tolerant alternative that

replicated and enhanced existing capabilities. The developed code

is published in the ExaAM project GitHub repository (The ExaAM

Project, 2023).

We scaled up the EnTK implementation of the ExaAM UQ

pipeline on Frontier, utilizing between 40 and 8,000 compute nodes

for between 2 and 4 h. Figure 4 shows a utilization plot for the

run on Frontier, demonstrating scalability and utilization. Resource

utilization reached 90% of the 448,000 CPU cores (Figure 4) and

64,000 GPUs (Figure 4) available for a single run, scaling to the

whole Frontier.

5.2 Enabling CANDLE with Swift/T

The Swift/T component of the ExaWorks SDK has been

developed throughout the project to make it easier to use Swift/T

workflows on exascale computers. As part of the SDK effort, we

improved Swift/T packaging by developing integration withDocker
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FIGURE 4

RADICAL Cybertools were used to implement a scalable UQ workflow with the ExaAM team. These plots show overall utilization for the Frontier

challenge run was 448,000 CPU cores and 64,000 GPUs, not including eight CPU cores per node reserved for system processes.

containers and more maintainable Spack (Gamblin et al., 2015a)

and Anaconda packaging scripts. In this integration, Swift/T was

used to run a data analysis workflow called “Challenge Problem:

Leave One Out (CPLO)” developed by ECP/AD/CANDLE on

Frontier (see Figure 5). The workflow was previously developed

for Summit and ran full scale there, consisting of about 5,000

tasks. The workflow task trains the Uno model, a neural network

cancer drug response developed at ANL (Wozniak et al., 2020).

Each task trains the model on a slightly different subset of

the Uno data set; common subsets are trained first, and the

model weights are reused in fine-tuning tasks by subsequent

tasks, resulting in an expanding tree of training tasks. The

goal is to study model performance for each record left out

at the leaves of the workflow tree (“Leave One Out”). The

workflow was expanded for the transition from Summit to

Frontier by breaking up the data set further, resulting in an

expansion in the number of child tasks per workflow from

N = 4 on Summit to N = 16 on Frontier, resulting

in a new workflow tree of size 18 ∗ 106, a growth factor

of 3,600.

Multiple changes were needed to run at the expanded scale on

Frontier. Most importantly, the training time for the Uno model

was significantly shortened on Frontier, necessitating attention to

other parts of the workflow, such as its structure plan file and data

subset preprocessing. We applied previously developed MPI-IO-

based techniques to stage this data to node-local storage before

workflow execution. Checkpointing is part of the workflow at the

model and workflow task levels; thus, models can be restarted

from the previously saved epoch (a configurable setting), or, if

complete, the whole model is reused, and the workflow task

is skipped entirely. We typically run at quarter-system-scale on

Frontier, with one GPU per Uno model, totaling eight Uno models

per node.

5.3 Colmena with RADICAL-Pilot and Parsl
integration

Colmena is a Python package for intelligent steering of

ensemble simulations (Ward et al., 2021). Colmena is used to steer

large-scale heterogeneous MPI Python functions and executable

tasks. Further, Colmena uses Parsl to drive an ensemble of

computations on HPC platforms to fit interatomic potentials.

Often, Colmena applications require executing MPI computations

at a modest scale, which, in turn, requires efficiently running many

MPI tasks concurrently. Currently, Parsl executors offer limited

MPI capabilities, but SDK provides the integration between Parsl

and RADICAL-Pilot, one of the RADICALCybertools components

(see Section 4). RPEX, the name given to that integration,

satisfies Colmena MPI requirements without requiring changing

the existing interface between Parsl and Colmena.

RPEX enables Colmena to explore complex multi-physics

and multi-scale models by flexibly coupling various types of

simulations. This includes seamlessly executing ensembles of tasks

with heterogeneous sizes and types, using different computational

engines in complex workflows. The provided capabilities are

delivered without compromising Colmena’s performance and

efficiency. We used RPEX in Colmena to execute MPI and Python

functions, requiring no changes to the Colmena code base. Figure 6

shows that RPEX reaches a resource utilization of ∼99% while

executing both MPI executables and Python functions on up

to 256 compute nodes of TACC Frontera, with 56 cores per

node (Alsaadi et al., 2022). While REPEX provides Colmena

with new MPI capabilities, RPEX does not introduce additional

overheads compared to when Colmena executes only non-MPI

functions via Parsl and without RP. In Ward et al. (2021), Figure 3

shows resource utilization comparable to the one achieved with

RPEX and showed in Figure 6.
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FIGURE 5

Progress of a typical “Challenge Problem: Leave One Out” campaign implemented for the CANDLE team with the Swift/T ExaWorks SDK component.

Several restarts are performed at various scales over a month. During execution, workflow tasks are rapidly completed. This run was used to look for

problems in the training data, and only two epochs were run per Uno (see the text) task.

FIGURE 6

Colmena resource utilization with RPEX (see Section 4) on 32, 64, 128, and 256 nodes on TACC Frontera with 56 CPU cores per node. (A) 32 nodes,

450 tasks. (B) 64 nodes, 900 tasks. (C) 128 nodes, 1,800 tasks. (D) 256 nodes, 3,600 tasks.

6 Testing

One of the most challenging problems of testing software

on HPC platforms is their heterogeneity: tests on one HPC

cluster are not necessarily reproducible on other HPC clusters.

This difficulty stems from several reasons, including hardware

differences, the use of heavily optimized cluster-specific library

implementations, and differences in software and configuration.

Specific projects, such as PSI/J (Hategan-Marandiuc et al., 2023),

reduce this difficulty by providing a uniform API for accessing

parts of the software/library stack. Still, limitations exist to how

much one can abstract without compromising performance and

required specificity. Thus, a natural solution is to test software

on an exhaustive set of HPC platforms. However, such a strategy

is generally met with different difficulties since HPC clusters are

often found under separate administrative domains with little to

no infrastructure that would allow a software package development

team to reach a reasonable subset of them. Typically, the result

is that the average HPC software package is tested on a small

set of platforms that the development team can muster access to,

with most testing on other platforms being delegated to users in

an ad-hoc fashion. It is important to distinguish here between

unit and integration testing. We assume (and encourage, as part

of participation in the SDK) that each SDK component contains

appropriate unit-level tests.

6.1 Testing infrastructure overview

The ExaWorks SDK addresses the testing problem by providing

an infrastructure that enables testing of the SDK components

on DOE platforms and other platforms that users can access.

The infrastructure consists of a test runner framework and

a dashboard.

The test runner framework is a collection of tools and practices

that enable the deployment of SDK components and the execution

of tests therein. The main drivers for the framework are GitLab

Continuous Integration pipelines deployed at various DOE labs.

In addition, GitHub actions and direct invocation (which can be

driven by thecron tool) are also supported and used. Each pipeline

consists of a deployment step and a test execution step. Three

means of deployment are provided: pip, conda, and spack, but

the support varies by the package being tested and the location

where the pipeline is run. A location-agnostic version of the

SDK is also provided as a Docker container. Active pipelines

are configured for ALCF/ANL (Polaris), LLNL (Lassen, Quartz,
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and Ruby), NERSC (Perlmutter), and OLCF/ORNL (Ascent and

Summit). The test execution step invokes a set of validation tests for

each SDK component and integration tests that validate the correct

interfacing of two or more SDK components when appropriate.

A testing infrastructure would not be complete without the

means to collect andmeaningfully present results to developers and

(potential) users. The ExaWorks SDK testing dashboard addresses

this piece of the testing puzzle: the mechanism to report test results

to developers and, in its final production version, also to users.

The testing dashboard was initially developed for the PSI/J-Python

project, where it enabled the centralization of results of user-

maintained test runs. Like PSI/J-Python, the ExaWorks SDK adopts

a hybrid approach, with tests on some HPC systems maintained

by the ExaWorks team while allowing users to set up test runs on

machines under their control.

The testing process is as follows. A client-side test runner

(typically invoked by a GitLab pipeline) executes desired tests

and captures the result and ancillary information, such as output

streams or logs. This information is then uploaded to the testing

dashboard to present the results to users and developers. By default,

results are aggregated by site and date into a calendar view—see

Figure 7, which shows a quick overview of the overall pass/fail

trends over the last few days. Users then can select sites and navigate

to specific test runs, which allows them to examine individual test

results and client-provided outputs and logs.

The testing dashboard consists of a backend and a frontend.

The backend provides authentication, stores test results in a

database, and responds to queries for historical test data; the

frontend is a web application implemented using the Vue.js (The

Vue.js Team, 2024) library and displays the test information

to developers and users alike. Like the PSI/J-Python testing

dashboard, the SDK dashboard uses a simple authentication

mechanism that requires a verified email address. This is done to

associate result uploads with an identity that can be used to manage

access to the dashboard. The choice to use simple email validation

rather than an authentication provider service is motivated by a

desire to allow test results from users from any institution and

private users.

6.2 Challenges

Our approach is not without challenges, some of which are

essential to the problem we are attempting to address, while others

are consequences of choices we made along the way. One of

such difficulties, which results from essential and circumstantial

complexities, is that SDK package tests are done with all SDK

packages installed. That is because many of the SDK packages are

meant to be interoperable, as well as the assumption that in many

realistic environments, it is entirely possible or even desirable to

have multiple arbitrary SDK packages installed on one system.

This can lead to dependency conflicts that individual package

maintainers cannot reasonably or effectively address.

A related but distinct difficulty is installing diverse packages

on heterogeneous computing platforms. In many cases of actual

and possible component packages of the SDK, compilation on

target compute resources is necessary, with exceptions for Python

projects with no native (compiled) parts and other projects

written exclusively in interpreted languages. The ExaWorks SDK

supports two solutions for compiling and installing packages:

Conda (The Conda Team, 2024) and Spack (Gamblin et al.,

2015b). Member projects of the SDK must either provide a Conda

package specification or be available through Spack (or both).

Many projects, however, lack the resources to maintain Conda

or Spack packages, and providing such packages as a condition

for inclusion in the ExaWorks SDK represents an additional cost.

Furthermore, both Conda and Spack are designed to create a

sandbox in which specific dependencies are compiled and installed,

such as to not conflict with system packages, some of which are

optimized specifically for the target system. Although both Conda

and Spack allow exceptions to be made and system packages to be

used directly, a trade-off is forced: run the risk of incompatibilities

by using an optimized dependency provided by the system or

sacrifice performance both at run-time as well as during installation

by compiling and installing unoptimized dependencies.

Finally, testing on multiple HPC platforms managed by diverse

organizations poses sociotechnical issues related to supporting

those tests on those resources, resource allocation and scheduling,

and security policies. Often, in the DOE space, tests need to

be audited and approved before being routinely executed on

HPC platforms. Further, routinely running tests requires dedicated

resources associated with a project and a related allocation.Without

specific policies and agreements about resources and allocations

dedicated to testing within each institution, ExaWorks runs the

SDK tests utilizing the allocation of the project. While that worked

for the project’s duration, it does not allow the establishment of a

long-term testing strategy for SDK within the DOE community.

During our work on a testing infrastructure, we encountered

several practical obstacles. Our first (chronologically) obstacle was

access to HPC systems, especially when a proposed ECP project-

wide testbed failed to materialize fully. Our team was left with

submitting individual project applications for each HPC center

where tests were to be deployed. While we could apply for

startup allocations without much effort, none of the centers had

provisions for allocations that were meant to address infrastructure

testing. Much effort was spent deciphering the required GitLab

configurations for each HPC center, with specific and complex

configuration files needed for each machine. This could be seen as a

success story since individual software package maintainers would

have to go through a similar process to run tests on these systems,

and the ExaWorks SDK has the potential to tame this difficulty.

7 Tutorials and documentation

Alongside testing, documentation is also a fundamental

element of the ExaWorks SDK. SDK documentation has to satisfy

three main requirements: (1) centralize into a single venue and

under a consistent interface all the information specific to SDK;

(2) avoid duplication of documentation between SDK and its tools;

(3) minimize maintenance overheads; (4) manage a rapid rate of

obsolescence in the presence of continuously and independently

updated software components; (5) use the same documentation

for multiple purposes like training, dissemination, hackathons, and

tutorials.
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FIGURE 7

The SDK testing dashboard summary page.

Documenting the SDK poses specific challenges compared to

documenting a single software system. The SDK is a collection

of software components independently developed by unrelated

development teams. While each tool is part of SDK, the ExaWorks

team does not participate in the development activities supporting

each component, decide when and how those components are

released, and how each component’s documentation is updated or

extended. That has the potential to make the SDK documentation

obsolete, very resource-intense to maintain, and prone to create

duplication detrimental to the end user.

We consistently scoped the SDK documentation to offer static

and dynamic information. Static information focuses on the SDK

itself, offering the needed information about what it is and it is

not, the list of current components, the minimum requisites for

a component to be part of the SDK, the process to follow to

include that component, and details about code of conduct and

governance. Due to the challenges listed above, we avoid static

information about the SDK components, directly linking specific

documentation for each tool. As such, we provide a hub where

users can find a variety of pointers to the vast and often dispersed

software ecosystem to support the execution of scientific workflows

at scale on DOE HPC platforms.

Notwithstanding the availability of tool-specific

documentation, we had to document the use of those tools

on a specific set of DOE platforms and, especially, as a set of

integrated systems. Thus, we devised a novel approach to dynamic

documentation centered on tutorials designed to be used for

outreach, training, and hackathon events. At the core of our

approach are Jupyter notebooks containing both documentation

and code to deliver: (1) paradigmatic examples of scientific

applications developed with the SDK components and executed

on DOE platforms; (2) tutorials about capabilities of SDK that

serve the specific requirements of the DOE workflow community;

(3) detailed examples of resource acquisition, management, tasks

definition and scheduling; (4) debugging and tracing workflow

executions; and (5) many other common tasks required by

executing workflows on HPC platforms.

The SDK tutorials avoid overlapping with the tutorials specific

to each SDK component, focusing on documenting the use of

SDK within the DOE software ecosystem and the integration

among SDK components. Such integrations are not specific to

any tool, so SDK documentation represents an ideal venue for

collecting and organizing that information. Further, SDK tutorials

are maintained and distributed via GitHub to make them available

to other projects supporting the development of DOE platform

workflow applications. GitHub enables contributions from the

whole community, creating a single body of encoded information

that can be maintained and updated beyond the end of the

ExaWorks project.

Organizing the dynamic component of SDK documentation

on GitHub allowed us to extend its use beyond its traditional

boundaries. Utilizing GitHub workflows, we created a continuous

integration platform where each Jupyter notebook can be

automatically executed every time any SDK component is released.

That avoids manually maintaining all the tutorials and makes

it immediately apparent when a new component release breaks

the tutorial’s code. Further, the same tutorials can be seamlessly

integrated with Readthedocs (The ExaWorks Project, 2024a), the

system we use to compile and distribute the SDK documentation.

Executing the tutorials every time the documentation is published

guarantees that the tutorials work, greatly improving the quality

of the information distributed to the end user. Finally, as part of

the GitHub workflows, we package all the tutorials into a Docker

container (The ExaWorks Project, 2024b) that enables users to

execute the tutorials both locally or via Binder (Konkol et al., 2020)

with minimal overheads and portability issues.

8 Conclusions

Our experience developing the ExaWorks SDK offers valuable

insight. There is a gap in the DOE software ecosystem to

support the execution of scientific workflows at scale. On

the one hand, many middleware components are required to

execute those workflows; on the other hand, DOE maintains

diverse HPC platforms with different capabilities, policies, and

support levels.

Users face the challenge of selecting a set of middleware

components to obtain an end-to-end software stack that works on

one or more of those resources. That choice is challenging because

middleware components have overlapping capabilities, work only

on a subset of platforms, may work with some other components,

or require the user to lock into a specific software stack. Further,

users do not know whether and how well each component is
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tested, internally (unit tests) and on a specific DOE platform

(integration tests). Finally, users must patch together component-

specific documentation without tutorials designed to illustrate how

to execute workflows at scale on a given DOE platform. Ultimately,

users face a steep learning curve and time-consuming testing and

debugging of diverse middleware components.

As seen in Section 3, ExaWorks SDK fills that gap by providing

a curated set of components that: (1) span the software stack

required to execute scientific workflows on DOE HPC platforms;

(2) comply with software engineering best practices, including

testing coverage, continuous integration, well-defined APIs, and

comprehensive documentation; and (3) are maintained, open

source and widely adopted. These properties are proven to satisfy

the requirements elicited from the DOE workflow community and

represent a valuable guideline for future SDKs.

Reducing the cost and effort duplication that has produced a

slew of comparable software tools with overlapping capabilities

requires enabling their integration, independent of the

development team that develops and maintains each component.

As shown in Section 4, ExaWorks SDK has proven that such an

integrative approach works, requires minimal development effort,

and provides added value. Section 5 detailed how SDK components

delivered necessary capabilities to diverse scientific domains, both

stand-alone and integrated.

Beyond curating and integrating a set of suitable components,

the ExaWorks SDK reaffirms the importance of both testing

(Section 6) and documentation (Section 7). ExaWorks delivered

novel approaches and technologies in both domains, showing

that continuous integration on the HPC platforms has become

necessary.With the growing importance of workflows as a scientific

application paradigm, users must be given tangible proof that a

middleware stack will not fail them when deployed on a specific

HPC platform. Gone are the days when users had the time

and resources to work as beta testers or could stand months-

long delays before executing a computational campaign. Similarly,

documentation is not a useful but an ancillary add-on to the

software tools. Building deep stacks of middleware components is

becoming increasingly complex, and, again, users do not have the

time or resources to “try it out” and explore the problem space by

trial and error.

Overall, our experience with SDK indicates that DOE must

commit resources to create, maintain, and integrate a curated set

of workflow technologies in the long run. The DOE computing

facilities must officially support those technologies, and those need

to go beyond just the HPC platforms. Continuous integration

platforms and git-based repositories integrated with workflow

capabilities, alongside virtualization platforms, are becoming

necessary components of an HPC platform and require careful

design and analysis from a performance point of view, as with any

other system of an HPC facility. ExaWorks SDK has paved the way,

showing the importance of those capabilities and offering tools,

policies, and prototypes that can be readily used and extended. In

that direction, follow-up projects like the Partnering for Scientific

Software Ecosystem Stewardship Opportunities (PESO) (The PESO

Project, 2024) or the Center for Sustaining Workflows and

Application Services (SWAS) (The SWAS Project, 2024) are the

natural successors of ExaWorks and are already leveraging the work

done with the ExaWorks SDK.
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Heuer, M., et al. (2016). Common Workflow Language, v1.0. Manchester.
doi: 10.6084/m9.figshare.3115156.v2

Babuji, Y., Woodard, A., Li, Z., Katz, D. S., Clifford, B., Kumar, R., et al.
(2019). “Parsl: pervasive parallel programming in Python,” in 28th ACM International
Symposium on High-Performance Parallel and Distributed Computing (HPDC) (NEW
York, NY: IEEE), 25–36. doi: 10.1145/3307681.3325400

Bader, J., Belak, J., Bement, M., Berry, M., Carson, R., Cassol, D., et al. (2023).
“Novel approaches toward scalable composable workflows in hyper-heterogeneous
computing environments,” in Proceedings of the SC ’23 Workshops of The International
Conference on High Performance Computing, Network, Storage, and Analysis,
SC-W ’23 (New York, NY: Association for Computing Machinery), 2097–2108.
doi: 10.1145/3624062.3626283

Badia Sala, R. M., Ayguadé Parra, E., and Labarta Mancho, J. J. (2017). Workflows
for science: a challenge when facing the convergence of HPC and big data.
Supercomput. Front. Innov. 4, 27–47. doi: 10.14529/jsfi170102

Balasubramanian, V., Treikalis, A., Weidner, O., and Jha, S. (2016). “Ensemble
toolkit: scalable and flexible execution of ensembles of tasks,” in 2016 45th
International Conference on Parallel Processing (ICPP) (Philadelphia, PA: IEEE),
458–463. doi: 10.1109/ICPP.2016.59

Blin, M. J., Wainer, J., and Medeiros, C. B. (2003). A reuse-oriented workflow
definition language. Int. J. Coop. Inf. Syst. 12, 1–36. doi: 10.1142/S0218843003000553

Carson, R., Rolchigo, M., Coleman, J., Titov, M., Belak, J., Bement, M., et al. (2023).
“Uncertainty quantification of metal additive manufacturing processing conditions
through the use of exascale computing,” in Proceedings of the SC ’23 Workshops of
The International Conference on High Performance Computing, Network, Storage, and
Analysis, SC-W ’23 (New York, NY: Association for Computing Machinery), 380–383.
doi: 10.1145/3624062.3624103

da Silva, R. F., Badia, R. M., Bala, V., Bard, D., Bremer, P-. T., Buckley, S., et al.
(2023). Workflows Community Summit 2022: a roadmap revolution. arXiv [Preprint].
arXiv:2304.00019. doi: 10.48550/arXiv.2304.00019

DeLine, R. A. (2021). “Glinda: supporting data science with live programming,
guis and a domain-specific language,” in Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems (New York, NY: ACM), 1–11.
doi: 10.1145/3411764.3445267

Di Natale, F., Bhatia, H., Carpenter, T. S., Neale, C., Kokkila-Schumacher, S.,
Oppelstrup, T., et al. (2019). “A massively parallel infrastructure for adaptive
multiscale simulations: modeling RAS initiation pathway for cancer,” in Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis (New York, NY: ACM), 1–16. doi: 10.1145/3295500.335
6197

Ferreira da Silva, R. F., Casanova, H., Chard, K., Altintas, I., Badia, R. M., Balis, B., et
al. (2021). “A community roadmap for scientific workflows research and development,”
in 2021 IEEE Workshop on Workflows in Support of Large-Scale Science (WORKS) (St.
Louis, MO: IEEE), 81–90. doi: 10.1109/WORKS54523.2021.00016

Gamblin, T., LeGendre, M., Collette, M. R., Lee, G. L., Moody, A., De
Supinski, B. R., e al. (2015a). “The Spack package manager: bringing order
to HPC software chaos in Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis (New York, NY: ACM),
1–12. doi: 10.1145/2807591.2807623

Gamblin, T., LeGendre, M. P., Collette, M. R., Lee, G. L., Moody, A., de Supinski, B.
R., et al. (2015b). “The spack package manager: bringing order to HPC software chaos,”
in Supercomputing 2015 (SC’15) (Austin, TX), 1–12.

Hategan-Marandiuc, M., Merzky, A., Collier, N., Maheshwari, K., Ozik, J., Turilli,
M., et al. D. (2023). “PSI/J: a portable interface for submitting, monitoring, and
managing jobs,” in 2023 IEEE 19th International Conference on e-Science (e-Science)
(Limassol: IEEE), 1–10. doi: 10.1109/e-Science58273.2023.10254912

Heroux, M. A. (2023). Scalable delivery of scalable libraries and tools: how
ECP delivered a software ecosystem for exascale and beyond. arXiv [Preprint].
arXiv:2311.06995. doi: 10.48550/arXiv.2311.06995

Konkol, M., Nüst, D., and Goulier, L. (2020). Publishing computational research-a
review of infrastructures for reproducible and transparent scholarly communication.
Res. Integr. Peer Rev. 5, 18. doi: 10.1186/s41073-020-00095-y

Korkhov, V., Krefting, D., Montagnat, J., Huu, T. T., Kukla, T.,
Terstyanszky, G., et al. (2012). “SHIWA workflow interoperability solutions for
neuroimaging data analysis,” in HealthGrid (New York, NY: ACM), 109–110.
doi: 10.1145/2110497.2110508

Kumar, P., Nonaka, A., Jambunathan, R., Pahwa, G., Salahuddin, S., and Jackie, Z.
Y. (2021). FerroX massively parallel, 3D phase-field simulation framework. Comput.
Phys. Commun. 290:108757 doi: 10.1016/j.cpc.2023.108757

Luckow, A., Santcroos, M., Merzky, A., Weidner, O., Mantha, P., Jha, S., et al.
(2012). “p∗: a model of pilot-abstractions,” in 2012 IEEE 8th International Conference
on E-Science (Chicago, IL: IEEE), 1–10. doi: 10.1109/eScience.2012.6404423

Merzky, A., Turilli, M., Titov, M., Al-Saadi, A., and Jha, S. (2021). Design and
performance characterization of Radical-Pilot on leadership-class platforms. IEEE
Trans. Parallel Distrib. Syst. 33, 818–829. doi: 10.1109/TPDS.2021.3105994

Merzky, A., Weidner, O., and Jha, S. (2015). Saga: a standardized access
layer to heterogeneous distributed computing infrastructure. SoftwareX, 1, 3–8.
doi: 10.1016/j.softx.2015.03.001

Partee, S., Ellis, M., Rigazzi, A., Shao, A. E., Bachman, S., Marques, G.,
et al. (2022). Using machine learning at scale in numerical simulations with
SmartSim: an application to ocean climate modeling. J. Comput. Sci. 62:101707.
doi: 10.1016/j.jocs.2022.101707

Ristov, S., Pedratscher, S., and Fahringer, T. (2021). AFCL: an abstract function
choreography language for serverless workflow specification. Future Gener. Comput.
Syst. 114, 368–382. doi: 10.1016/j.future.2020.08.012

Rocklin, M. (2015). “Dask: parallel computation with blocked algorithms and task
scheduling,” in Proceedings of the 14th python in science conference, Vol. 130 (Austin,
TX: SciPy), 126–132. doi: 10.25080/Majora-7b98e3ed-013

Seindal, R. (1997). GNU m4, version 1.4, Vol. 59. Free Software Foundation.

Team WCI. (2024). Workflows Community Initiative (WCI). Available online at:
https://workflows.community/

The Conda Team (2024). conda.or. Available online at: https://conda.org/

The E4S Project (2024). E4S: A Software Stack for HPC-AI Applications. Available
online at: https://e4s-project.github.io/

The ExaAM Project (2023). GitHub UQ repository. Available online at: https://
github.com/ExascaleAM/Workflows

The ExaWorks Project (2024a). ExaWorks: Software Development Kit. Available
online at: https://exaworkssdk.readthedocs.io/en/latest/

The ExaWorks Project (2024b). ExaWorks Software Development Kit Docker
Container. Available online at: https://github.com/ExaWorks/SDK/tree/master/docker

The PESO Project (2024). PESO: Partnering for Scientific Software Ecosystem
Stewardship Opportunities. Available online at: https://pesoproject.org/

The SWAS Project (2024). SWAS: Sustaining Workflows & Application Services.
Available online at: https://swas.center/

The Vue.js Team (2024). Vue.js. Available online at: https://vuejs.org/

The xSDK Team (2017). xSDK: Extreme-scale Scientific Software Development Kit.
Available online at: https://xsdk.info

Frontiers inHighPerformanceComputing 15 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1394615
https://doi.org/10.1016/j.future.2020.04.006
https://doi.org/10.1109/ICPPW.2014.15
https://doi.org/10.1109/WORKS54523.2021.00012
https://doi.org/10.1109/WORKS56498.2022.00009
https://doi.org/10.6084/m9.figshare.3115156.v2
https://doi.org/10.1145/3307681.3325400
https://doi.org/10.1145/3624062.3626283
https://doi.org/10.14529/jsfi170102
https://doi.org/10.1109/ICPP.2016.59
https://doi.org/10.1142/S0218843003000553
https://doi.org/10.1145/3624062.3624103
https://doi.org/10.48550/arXiv.2304.00019
https://doi.org/10.1145/3411764.3445267
https://doi.org/10.1145/3295500.3356197
https://doi.org/10.1109/WORKS54523.2021.00016
https://doi.org/10.1145/2807591.2807623
https://doi.org/10.1109/e-Science58273.2023.10254912
https://doi.org/10.48550/arXiv.2311.06995
https://doi.org/10.1186/s41073-020-00095-y
https://doi.org/10.1145/2110497.2110508
https://doi.org/10.1016/j.cpc.2023.108757
https://doi.org/10.1109/eScience.2012.6404423
https://doi.org/10.1109/TPDS.2021.3105994
https://doi.org/10.1016/j.softx.2015.03.001
https://doi.org/10.1016/j.jocs.2022.101707
https://doi.org/10.1016/j.future.2020.08.012
https://doi.org/10.25080/Majora-7b98e3ed-013
https://workflows.community/
https://conda.org/
https://e4s-project.github.io/
https://github.com/ExascaleAM/Workflows
https://github.com/ExascaleAM/Workflows
https://exaworkssdk.readthedocs.io/en/latest/
https://github.com/ExaWorks/SDK/tree/master/docker
https://pesoproject.org/
https://swas.center/
https://vuejs.org/
https://xsdk.info
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Turilli et al. 10.3389/fhpcp.2024.1394615

Turilli, M., Santcroos, M., and Jha, S. (2018). A comprehensive perspective on
pilot-job systems. ACM Comput. Surv. 51, 1–32. doi: 10.1145/3177851

Ward, L., Sivaraman, G., Pauloski, J., Babuji, Y., Chard, R., Dandu, N.,
et al. (2021). “Colmena: scalable machine-learning-based steering of ensemble
simulations for high performance computing,” in 2021 IEEE/ACM Workshop on
Machine Learning in High Performance Computing Environments (MLHPC) (Los
Alamitos, CA: IEEE Computer Society), 9–20. doi: 10.1109/MLHPC54614.2021.
00007

Wozniak, J. M., Armstrong, T. G., Wilde, M., Katz, D. S., Lusk, E., Foster,
I. T., et al. (2013). “Swift/T: large-scale application composition via distributed-
memory dataflow processing,” in 2013 13th IEEE/ACM International Symposium on
Cluster, Cloud, and Grid Computing (Delft: IEEE), 95–102. doi: 10.1109/CCGrid.
2013.99

Wozniak, J. M., Jain, R., Balaprakash, P., Ozik, J., Collier, N. T., Bauer, J.,
et al. (2018). CANDLE/Supervisor: a workflow framework for machine learning
applied to cancer research. BMC Bioinformatics 19, 59–69. doi: 10.1186/s12859-018-
2508-4

Wozniak, J. M., Yoo, H., Mohd-Yusof, J., Nicolae, B., Collier, N., Ozik, J., et al.
(2020). “High-bypass learning: automated detection of tumor cells that significantly
impact drug response,” in 2020 IEEE/ACM Workshop on Machine Learning in
High Performance Computing Environments (MLHPC) and Workshop on Artificial
Intelligence and Machine Learning for Scientific Applications (AI4S) (IEEE), 1–10.
doi: 10.1109/MLHPCAI4S51975.2020.00012

Zhang, W., Myers, A., Gott, K., Almgren, A., and Bell, J. (2021). AMReX:
block-structured adaptive mesh refinement for multiphysics applications. Int. J. High
Perform. Comput. Appl. 35, 508–526. doi: 10.1177/10943420211022811

Frontiers inHighPerformanceComputing 16 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1394615
https://doi.org/10.1145/3177851
https://doi.org/10.1109/MLHPC54614.2021.00007
https://doi.org/10.1109/CCGrid.2013.99
https://doi.org/10.1186/s12859-018-2508-4
https://doi.org/10.1109/MLHPCAI4S51975.2020.00012
https://doi.org/10.1177/10943420211022811
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

	ExaWorks software development kit: a robust and scalable collection of interoperable workflows technologies
	1 Introduction
	2 Related work
	3 Core components
	4 Component integration
	4.1 RADICAL-pilot and Parsl integration
	4.2 Flux integrations
	4.3 PSI/J integrations

	5 Success stories
	5.1 Using EnTK for ExaAM workflows
	5.2 Enabling CANDLE with Swift/T
	5.3 Colmena with RADICAL-Pilot and Parsl integration

	6 Testing
	6.1 Testing infrastructure overview
	6.2 Challenges

	7 Tutorials and documentation
	8 Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


