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ExaFEL is an HPC-capable X-ray Free Electron Laser (XFEL) data analysis
software suite for both Serial Femtosecond Crystallography (SFX) and Single
Particle Imaging (SPI) developed in collaboration with the Linac Coherent
Lightsource (LCLS), Lawrence Berkeley National Laboratory (LBNL) and Los
Alamos National Laboratory. ExaFEL supports real-time data analysis via a cross-
facility workflow spanning LCLS and HPC centers such as NERSC and OLCF. Our
work therefore constitutes initial path-finding for the US Department of Energy’s
(DOE) Integrated Research Infrastructure (IRI) program. We present the ExaFEL
team’s 7 years of experience in developing real-time XFEL data analysis software
for the DOE’s exascale supercomputers. We present our experiences and lessons
learned with the Perlmutter and Frontier supercomputers. Furthermore we
outline essential data center services (and the implications for institutional
policy) required for real-time data analysis. Finally we summarize our software
and performance engineering approaches and our experiences with NERSC’s
Perlmutter and OLCF’s Frontier systems. This work is intended to be a practical
blueprint for similar e�orts in integrating exascale compute resources into other
cross-facility workflows.

KEYWORDS

exascale, Single Particle Imaging, Serial Femtosecond Crystallography, hardware

acceleration, data-intensive, interfacility, real-time processing, high-performance

computing

Frontiers inHighPerformanceComputing 01 frontiersin.org

https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://doi.org/10.3389/fhpcp.2024.1414569
http://crossmark.crossref.org/dialog/?doi=10.3389/fhpcp.2024.1414569&domain=pdf&date_stamp=2024-10-03
mailto:jpblaschke@lbl.gov
mailto:nksauter@lbl.gov
mailto:perazzo@slac.stanford.edu
mailto:cahrens@lanl.gov
https://doi.org/10.3389/fhpcp.2024.1414569
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fhpcp.2024.1414569/full
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Blaschke et al. 10.3389/fhpcp.2024.1414569

1 Introduction

The Exascale Computing Project (ECP) was a large-scale

project within the Department of Energy (DOE) to reach the era

of exascale supercomputers, high-performance computers capable

of more than 1018 double-precision floating-point operations

per second (Messina, 2017). The goal of ECP was not only

to develop and construct the hardware platforms, but also to

prepare scientific software applications for these new capabilities

(Evans et al., 2022). Here we describe the accomplishments

as well as lessons learned while developing the application

for “Data Analytics at the Exascale for Free Electron Lasers”

(ExaFEL), a collaboration between SLAC National Accelerator

Laboratory, Lawrence Berkeley National Laboratory, and Los

Alamos National Laboratory. ExaFEL addressed the challenge of

developing cross-facility exascale-capable workflows for quasi real-

time analysis of experimental data from user facilities. Tackling

this compute-intensive and data-intensive challenge required

exceptional coordination between a diverse set of people and

facilities as well as novel approaches and new software technologies.

The ExaFEL science workflow begins in a hutch at a user facility

such as the Linac Coherent Light Source (LCLS), where a scientific

instrument generates diffraction images. With the recent major

upgrade to LCLS (LCLS-II), the light source moves from firing at

120 pulses to as many as one million pulses per second. This new

capability together with recent advances in detector technologies

are expected to deliver data rates at the scale of terabytes per second.

These large volumes of data are handled by LCLS Data Systems

(Thayer et al., 2017), where streams of data from different detectors

are assembled into a format readily available for users through

Python interfaces. Next, the data are sent over a fast network

(e.g., ESNet1) to a high-performance computing facility such as

NERSC, OLCF or ALCF, where they are promptly analyzed on a

supercomputer. The loop is closed by sending the results back to

the experimental site in real time, where scientists observe and

supervise every step of the data collection and reconstruction.

LCLS is an X-ray free-electron laser (XFEL) that produces ultra-

bright and ultra-short X-ray pulses. The pulses can be used to

study the structure of molecules, to investigate fast phenomena, or

to probe extreme energy scales. Due to these unique capabilities,

experimental time at XFELs is in high demand, and only a small

selection of requests can be met. It is therefore critical to make

the best use of the scarce experimental time through fast feedback.

Real-time feedback minimizes the time between measurement

and first scientific results. Crucially, it allows the experiment’s

operators to quickly decide how to proceed once a dataset is

complete, whether or not to continue with the next sample, or if

the experimental setup needs to be adjusted.

XFEL experiments are generally high-stakes, collaborative

efforts, which limits their reproducibility in a second experiment.

In the past, real-time feedback was typically not available and the

data quality was not assessed until after the experiment was over.

The steering of the experiment had to err on the safe side since a

subsequent experiment would typically not be possible for several

months, if ever. This meant scarce and expensive experimental time

1 https://www.es.net/

was not used efficiently, reducing the total potential science output

of the facility.

In the following Section 1.1, we will introduce the science

drivers that led to the development of the ExaFEL project, and

in Section 1.2 we will introduce the unique experimental facility

exascale data streaming requirements met by the ExaFEL project.

1.1 Science drivers

Two of the most important science drivers at LCLS are Serial

Femtosecond Crystallography (SFX or nanocrystallography) and

Single Particle Imaging (SPI). In these methods, a stream of

nearly identical microscopic samples is shot into the focus of

the X-ray beam. When the beam hits a sample, the X-rays are

scattered/diffracted and the diffraction pattern is recorded with

an image detector. From the distribution of the diffracted X-

rays, the molecular structure of the sample can be reconstructed.

Reconstructing the full 3D information of the sample requires

hundreds to thousands of diffraction patterns to cover all

sample orientations. Because the intensity of the X-ray pulse

destroys every sample it hits, each sample can only generate

one diffraction pattern. For a full dataset, patterns from many

samples must be combined correctly, but the orientation of each

sample is random and unknown. The orientation must be derived

computationally by referencing the diffraction patterns against

each other. Furthermore, the samples are not perfect copies of

each other, requiring additional modeling and complicating cross

referencing. The typical workflow is illustrated in Figure 1.

About one-third of X-ray beam time allocations at LCLS

are currently awarded to SFX experiments (Keedy et al., 2015;

Ayyer et al., 2016). SFX experiments offer huge benefits to the

study of biological macromolecules, including the availability

of femtosecond time resolution and the avoidance of radiation

damage under physiological conditions. LCLS makes it possible

to probe molecular dynamics in the sub-picosecond time domain

by triggering chemical changes with an optical pump/X-ray probe

arrangement (Pande et al., 2016).

The high X-ray pulse rate and ultra-high brightness of LCLS

make it possible to determine the structure of individual molecules

with SPI, mapping out their natural variation in conformation

and flexibility. Structural heterogeneities, such as changes in the

size and shape of nanoparticles or conformational flexibility in

macromolecules, are at the basis of understanding, predicting, and

eventually engineering functional properties in biological, material,

and energy sciences. In pursuit of these goals, the classification of

diffraction patterns into conformational states and the subsequent

phasing of the data to yield 3D electron density are computational

challenges. New algorithms, such as the Multi-Tiered Iterative

Phasing (M-TIP) (Donatelli et al., 2017) approach (Section 2.3), are

changing the way we understand how to process these data.

1.2 The exascale streaming problem

The LCLS-II upgrade increased the maximum repetition rate

of the machine from 120 to 1m (Abbamonte et al., 2015). The
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FIGURE 1

The XFEL di�raction workflow. A water jet carrying particles or molecules is shot into the X-ray beam. The scattered X-rays are recorded on a
detector in the form of di�raction patterns, which are sent to a computing facility for analysis. The results are then sent back to the experiment.

throughput from the front-end electronics is expected to increase

by three orders of magnitude by virtue of the increase in detector

readout rates from 120 Hz to 50 kHz as well as the new ability

to operate multiple beam-lines concurrently. On the data analytics

side, compute-intensive algorithms are necessary to probe atomic

features with the highest spatial resolution. This combination of

high data rates, compute-intensive data analysis and the need for

quick feedback pushes SFX and SPI into the exascale regime.

For SFX, the nature of the crystallography experiment requires

that data be collected under a series of variable conditions,

e.g., pump-probe protocols involving differing excitation energies,

reactions being followed under a series of time delays, or specimens

being prepared under differing The experimental time necessary to

investigate a single experimental condition is on the order of 10

min.We have shown in Lyubimov et al. (2016) that a more accurate

analysis than our current best practices is possible with protocols

needing a thousand times more CPU time.

For SPI, with the projected image acquisition rate of 50 and an

estimated sample hit rate of 10, LCLS-II is projected to produce

useful data throughput on the order of terabits per second. In order

to obtain a high-resolution reconstruction for a sample with a large

number of conformational states using the estimated image count,

the pre-ExaFEL M-TIP workflow would require more than 100

compute hours. The availability of exascale computing resources

and a high-performance computing (HPC) workflow that can

handle incremental bursts of data will enable data analysis to be

performed on the fly, providing immediate feedback on the quality

of the experimental data, while determining the 3D structure of the

sample at the same time.

The remainder of this paper is structured as follows: Section 2

describes the three main software packages developed by ExaFEL.

Section 3 describes the unique challenge faced by the ExaFEL

team running an exascale computing workflow across facilities

in real time. Section 3.1 discusses ExaFEL’s experiences and

path-finding work that is expected to be of value for the

DOE’s Integrated Research Infrastructure (IRI) Program (Miller

et al., 2023). Section 3.2 discusses best practices for this

infrastructure. Section 4 discusses the lessons learned developing

the ExaFEL software, and Section 5 concludes the paper. Section 1

of the Supplementary material contains information on the

Computational Crystallography Toolbox and FFT optimizations.

2 Design and execution of HPC
software technologies

ExaFEL’s software development centered around packages for

data handling at LCLS (psana), and the analysis of SFX (cctbx)

and SPI (Spinifel) data. We give a brief overview of these software

products and show how their computational motifs helped to

support exascale and cross-facility real-time computing. Figure 2

provides a high-level view of the software components used.

2.1 LCLS data systems: PSANA

The data processing framework at LCLS (Figure 3) begins

at data acquisition time where data from different detectors are

filtered and monitored prior to being written to fast-feedback

storage. This storage allows users to perform analyses while the data

are being written. For larger data volumes, LCLS can optionally

stream the data to other computing clusters or supercomputing

clusters (via ESnet) to facilitate real-time feedback. Unlike the

previous LCLS-I data acquisition system, LCLS-II data acquisition

system writes out separate files for each detector: one file with the

large-volume “big data”, and an additional supporting “small data”

file that includes fseek offsets and sizes for each X-ray shot. Both

files are written in a lightweight custom format called “xtc2”.

Most data analysis software run at LCLS (including cctbx and

Spinifel) relies on the psana software framework to read measured

data. With the recent LCLS-II upgrade, the offline data analysis

package “PSANA-II” is used with the newer xtc2 format data. An

older “PSANA-I” software framework for LCLS-I data is supported,

but is not used for the large-scale ExaFEL analysis discussed

here. PSANA-II uses Message Passing Interface (MPI) (Gropp

et al., 1996) to manage scalable data reading and analysis. The

two types of data files written by the data acquisition system

described previously are used to enable this by distributing all

detector data from different X-ray shots to different cores. Four

MPI-communication layers (Figure 4) work together starting from

the “SMall Data rank 0” (SMD0) process, which runs as a multi-

threaded single process. This process reads all SmallData xtc2

files in chunks and associates the fseek offsets for all detectors
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FIGURE 2

The ExaFEL software stack. Data processing applications cctbx and Spinifel take di�erent approaches for GPU acceleration, but both use psana, MPI,
and file system plus XRootD for data management, with Spinifel alternatively using the Legion parallel programming model and cctbx alternatively using
libHDF5 for I/O.

FIGURE 3

LCLS data flow indicating di�erent stages where data analysis can be performed. Online monitoring is the lowest-latency option, wherein data are
made available for analysis even before they are written to file, only about a second after raw signals are recorded on the various detectors. The next
fastest alternative is access to data files in fast feedback (FFB) temporary storage. From FFB, files are transferred to either psana or Scientific Data
Facility (SDF) computing systems for medium-term storage and “o	ine” analysis, and optionally to external supercomputing facilities as well using
ESnet. Data stored on psana, SDF, or the high performance file systems (HPFS) at NERSC and OLCF are later automatically backed up to tape for
long-term storage. Data transfer takes place over regular Ethernet networking, or via InfiniBand (IB).

that belong to the same X-ray shot using the recorded timing-

system timestamps. This process also optionally includes user-

specified larger xtc2 data to be used for X-ray shot filtering. These

chunks with fseek offsets and user filtering data are distributed

to “Event Builder” (EB) cores where the small data are first

made available to user Python code for filtering purposes, giving

the user the ability to reject events that they are not interested

in, thus avoiding needless big-data fetch time. The events that

pass this filter stage are passed on to the “Big Data” (BD) cores

which use the fseek offsets and sizes to read the big detector

data and process it with user-written Python code. Reduced-

size processed data can then be passed to the “Server” (SRV)

cores for real-time monitoring or persisting to Hierarchical Data

Format version 5 (HDF5) files. All communication layers apart

from SMD0 can be scaled to arbitrary numbers of nodes/cores

using MPI.
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FIGURE 4

A diagram shows the four MPI layers for LCLS-II o	ine data
management. Boxes represent MPI processes for SMall Data rank 0
(SMD0), “Event Builder” (EB), “Big Data” (BD) and “Server” (SRV).

This framework was heavily used at the beginning of the

ExaFEL project. Starting in 2016 the PSANA-II software was

integrated into cctbx (more details in Section 2.2 and Figures 5,

6) to analyze X-ray diffraction images in real time. Data were

transferred to NERSC’s “Cori” supercomputer through ESNet, read

and assembled with PSANA-II, and processed with cctbx. A data

volume of 1 million images would typically take days to process on

a normal computer, but we were able to analyze it in less than 7 min

(or 2 kHz) when utilizing 340,000 Cori cores.

PSANA-II was also integrated with the Legion Programming

System (Michael et al., 2012) to allow use of M-TIP algorithms

for SPI data processing (Spinifel) using an asynchronous task-based

model. The four layers shown in Figure 4 are considered as tasks in

the Legion programming system. These tasks share data collections

through privileges that allow the Legion core system to determine

scheduling patterns automatically to match available computing

resources. A Python interface to Legion, Pygion (Slaughter and

Aiken, 2019), was also developed to provide easier accessibility to

HPC for scientific users.

2.2 The computational crystallography
toolbox: CCBTX

The computational crystallographic toolbox (CCTBX) was

introduced over 20 years ago as a collaborative open-source

software library. It has since grown to encompass several additional

software projects and has been deployed at beamline endstations

and HPC facilities around the world. A common design feature of

all CCTBX-related software packages is that the top-level workflow

is developed in Python, and computationally intensive tasks are

developed using C++, including Kokkos (Trott et al., 2022) for

portable GPU-enabled software. The interface between Python and

C++ is made using Boost.Python.2

Four software packages relevant to the treatment of XFEL

crystal diffraction in the ExaFEL project fall broadly under the

CCTBX umbrella: (i) the cctbx software suite provides a foundation

of core algorithms (Grosse-Kunstleve et al., 2002); (ii) DIALS

builds on cctbx and provides open source implementation of

specialized data reduction algorithms, as well as data readers for

a vast range of file formats common to crystallography (Winter

et al., 2018); (iii) the cctbx.xfel toolkit (Sauter et al., 2013)

covers algorithms for high data rate XFEL processing using

MPI (Brewster et al., 2019); and (iv) diffBragg extends cctbx.xfel

and leverages modern GPUs to implement cutting-edge XFEL data

analysis (Mendez et al., 2020).

Figure 5 shows how these software packages fit together with

psana to form an exascale workflow.

2.2.1 Computational motif of CCTBX
The X-ray diffraction pattern of a protein crystal samples

the Fourier transform of the unit cell contents, creating a 3D

array of spots, or Bragg reflections. The goal of a crystallographic

experiment is to measure these peaks so the inverse Fourier

transform can recover the contents of the unit cell, including

atomic coordinates.

SFX diffraction patterns are wholly independent from each

other, as they are each single images collected from different

crystals, randomly oriented. Each pattern represents a 2D slice

through the 3D space of Fourier coefficients, containing partial

information about the complete dataset. The initial data reduction

steps can be performed for each diffraction pattern independently

(Figure 5a), thus taking advantage of massive supercomputing

parallelism at the CPU level. These initial steps are documented in

Section 1 of the Supplementary material.

Figure 6 shows the overall orchestration of the work, with

these steps being executed for every diffraction pattern as it

is read from disk. MPI divides the job into two parts. The

communicator on rank 0 is used to find a pointer to the data in

each image (it does not actually read the big data), and then the

remainder of the work is delegated to the higher-numbered ranks

for parallel processing. Each rank loads and processes a subset of all

the data independently. Common analysis parameters are shared

across all workers using MPI collectives (using MPI_Bcast).

Results are likewise stored independently, committed to a

MySQL database, and updated across all workers using using

MPI collectives (depending on situation: MPI_Allgather or

MPI_Allreduce). For any iterative algorithms (steps b and e in

Figure 5), MPI collective communication occurs at both the start

and the end of each iteration.

Following this work in dials.stills_process (Figure 5a), the

measurements from all patterns need to be merged together, which

is a global operation, performed by the program cctbx.xfel.merge

(Figure 5b). Merging includes error calibration, since the

2 https://www.boost.org/doc/libs/1_84_0/libs/python/doc/html/index.

html

Frontiers inHighPerformanceComputing 05 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1414569
https://www.boost.org/doc/libs/1_84_0/libs/python/doc/html/index.html
https://www.boost.org/doc/libs/1_84_0/libs/python/doc/html/index.html
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Blaschke et al. 10.3389/fhpcp.2024.1414569

FIGURE 5

The protein crystallography workflow with data reduction software components (a–e) identified. Legacy analysis (a, b) terminates with the estimation
of structure factors that serve as Fourier coe�cients to compute an electron density map and ultimately the atomic structure. Exascale analysis (c–e)
carries further with the goal of estimating the structure factors more accurately. It assumes that steps (a, b) have been completed, thus the legacy
analysis is always run first. The raw data remain on disk for both analyses.

integration error will not have accounted for the full set of

systematic and random errors in the experiment, followed by

averaging of all measured intensities mapped to the same structure

factors. MPI parallelism is used here as well, but in a less obvious

way. The code transitions from assigning individual MPI tasks to

separate diffraction patterns to assigning them to separate structure

factors; this is done with the MPI primitive all_to_all().

Statistics are computed and logged throughout this process, both

in text files and in the MySQL XFEL GUI database, which is used

for data visualization and evaluation. The CPU-based merging step

has been tested up to 5× 105 diffraction patterns.

These two steps of “legacy analysis” (Figure 5a, b) were

early work products of the ExaFEL project, initially put into

production on the NERSC Edison and Cori systems (Blaschke

et al., 2024) and since ported to Perlmutter. In contrast, the

diffBragg program is still experimental work. With respect to

parallelism, the first two steps, diffBragg stage 1 and predict

(Figure 5c, d), are similar to dials.still_process in that they perform

processing steps independently for each diffraction pattern.

Therefore they are again expressed as Python scripts running

with MPI, with individual patterns delegated to MPI ranks for

processing. Architecturally, however, they differ from the legacy

steps by adding GPU processing for every image, using a custom-

written kernel implemented in Kokkos (Wittwer et al., 2023) to

calculate diffraction from physical principles. The kernel executes a

parallel_for loop where each pass through the loop produces

the total number of photons incident on one pixel, with all pixels

treated independently. Our Kokkos code is portable and can be

compiled on NVIDIA, AMD and Intel GPU architectures.

The final step (Figure 5e) is diffBragg stage 2. Whereas stage

1 refines local parameters different for each diffraction pattern,

stage 2 refines a set of global physics parameters, namely the

structure factors that are repeatedly but imprecisely measured on

many separate images throughout the dataset. Stage 2 improves

the structure factor estimates with the quasi-Newton solver

LBFGS (Liu and Nocedal, 1989). This is accomplished by the

iterative minimization of a target function, the log-likelihood of the

entire dataset given the parameters, which is a simple summation of

the log-likelihood of each image. Load balancing is accomplished

at program launch, where images with variable Bragg reflection

counts are distributed evenly across MPI ranks using longest-

processing-time-first scheduling. At the start of each iteration, each

MPI rank calculates image likelihoods and their gradients with

respect to each global parameter. Then, the per-rank likelihood

and gradient terms are aggregated in an all-to-all reduction. The

reduced terms are then broadcast back to every rank (completing

a so-called MPI All-Reduce operation). Each iteration completes

with the same LBFGS parameter update occurring in parallel on all

MPI ranks. Repeated cycles in this manner eventually lead to global

parameter convergence. We tested this GPU-based optimization

step on up to 1.25× 105 diffraction patterns on NERSC Perlmutter

and OLCF Frontier.

2.2.2 Developing portable GPU-accelerated
kernels using Kokkos

diffBragg benefits significantly from GPU acceleration. To

assess potential benefits and compare different portability options,

we created nanoBragg, a stand-alone program of the simulation

core of diffBragg, which we then ported to CUDA and Kokkos

(Mendez et al., 2020; Sauter et al., 2020; Wittwer et al., 2023).

nanoBragg uses X-ray tracing to simulate the diffraction signal

of each individual detector pixel, a highly parallelizable task well

suited to GPUs. The initial code followed the paradigm of using

mainly Python code with critical sections written in C++. These

critical sections were first ported to CUDA to assess the GPU

performance. The results are summarized in Table 1, with Edison

and Cori using the C++ version. The CUDA version shows a

dramatic speed-up, reducing the time to simulate 100,000 images

from hours to minutes. Accordingly, a CUDA version was also

written for diffBragg, showing similar speed-ups. However, Frontier

and Aurora, the Exascale systems at OLCF and ALCF, do not
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FIGURE 6

Producer-consumer structure of cctbx analysis workers. Arrows represent data-flow. cctbx relies on MPI parallelism to distribute work across ranks.
We employ a producer/consumer model to distribute work and achieve load balancing. Data are provided by psana (cf. Section 2.1), which runs on
the first MPI rank (rank 0). psana reads an index file and distributes work to the cctbx workers. The resulting program is a flat tree of MPI ranks with
data analysis ranks located at leaves. Workers access data directly by reading the raw data files using o�sets provided by the “PSANA” (root) tree node.
MPI collective communication (MPI_Bcast, MPI_Allgather, MPI_Allreduce) are used to share data between MPI ranks. Finally, the cctbx

workers save their results to disk (local to each MPI rank) and report the analysis progress to a MySQL database hosted on NERSC’s Spin
micro-services platform (cf. Section 3.1). Image adapted from Blaschke et al. (2024) with the permission of the authors.

TABLE 1 Performance of nanoBragg to simulate 100,000 di�raction

images.

Host system Hardware
per node

Time Nodes MPI ranks

Edison 2× Intel Xeon

E5-2695v2

12.3 h 280 6,720

Cori/KNL 1× Intel Xeon

Phi 7250

7.2 h 484 8,228

Summit/CUDA 6× NVIDIA

V100

91 s 297 12,474

Perlmutter/CUDA 4× NVIDIA

A100

297 s 80 1,280

Perlmutter/Kokkos 4× NVIDIA

A100

251 s 80 640

Each test used 5% of the system nodes. The number of MPI ranks was determined to best hide

latency on each system.

support CUDA and require additional code porting. For nanoBragg

and diffBragg, we had two options: Either keep the CUDA version

and write dedicated implementations for each vendor platform, or

rewrite it using a portability layer such as OpenACC or Kokkos.

We chose the second option because it requires writing and

maintaining only a single code-base.

We used the CUDA implementation as the starting point for

the Kokkos port, which allowed us to reuse large parts of the data

transfer and kernel structure.Most of the work was straightforward,

replacing CUDA arrays with Kokkos views and converting CUDA

kernels into Kokkos execution patterns. However, there were also a

number of challenges.

One hurdle was that Kokkos requires a call to its initializer

before any other Kokkos code is used and similarly requires a call

to the Kokkos finalizer after all other Kokkos code is deconstructed.

In C++ this can be achieved via code regions, as the regions

limit the lifetime of all variables and objects within it. In Python,

this is more complicated, as the garbage collector decides when

objects are actually deleted. To manage this, some scripts needed

a dedicated clean-up step so that all Kokkos objects and functions

were destroyed before the Kokkos finalizer is called.

Another hurdle was the use of certain third-party libraries in

diffBragg. CUDA is widely supported by many libraries that are

not directly connected to CUDA or NVIDIA. One of these is the

Eigen library, which is used in the C++ and CUDA version of

diffBragg for basic linear algebra operations. However, Eigen does

not support Kokkos. We had to construct Kokkos implementations

of all necessary algebra operations.

Lastly, we faced pitfalls as novice Kokkos adopters. Among

these was the difficulty of using execution patterns in class

methods, unexpected performance differences between different

hardware platforms, and the general challenge of profiling Kokkos

applications. Because Kokkos objects are heavily templated, the

generated function and object names are very long and complex.

It is somewhat difficult to cross-reference the profiler output to the

source code. While some programs, such as Nsight systems, have

the option to rename function and objects, many others only show

the full name.

2.2.3 Low-level engineering of kernel
performance

We used nanoBragg (Sauter et al., 2020) as a testbed for creating

an efficient GPU-centered workflow. A naïve first approach

is illustrated in Figure 7A, where we sum up, on the GPU,

contributions of structure factors to each pixel in the output image,

taken over 100 individual energy channels. A benefit of our object-

oriented approach is that the entire interaction between CPU host

and GPU device is encapsulated in a method of a Python class,
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FIGURE 7

Time progression diagrams showing performance engineering in the nanoBragg kernel (initially written in CUDA, then ported to Kokkos). The
timelines show interaction between host (H, CPU) and device (D, GPU) for the naïve design (A) organized around a single kernel and for the
optimized redesign (B) using the same core kernel, but adding auxiliary data structures and kernels for summation, scaling, and background
calculation, so that essentially all calculation is done on GPU. Inputs consist of the structure factor array Fi for energy channel i, with one array for
each channel, along with several metadata arrays. The output consists of the final pixel intensity array Ipixel, having a summed contribution f(Fi) from
each energy channel, an overall multiplicative scaling factor kj, plus air and water scattering Bair and Bwater.

so that it is easy to produce alternate workflows by Python re-

scripting. Indeed, the loop over energy channels is performed at the

Python level.

However, a weakness in our initial design is that each energy

channel iteration includes a time-consuming host-to-device data

transfer of the structure factors prior to kernel execution, and then

a device-to-host transfer of the incremental pixel intensities to be

added to the final output array, which stays on the CPU. This is

especially wasteful as the MPI rank repeatedly transfers the same

structure factors from host to device as it performs potentially

thousands of image simulations with slightly different metadata.

Therefore, in our redesign, Figure 7B, all the structure factor arrays

(one for each energy channel) are transferred to high-bandwidth

device memory upon initialization, so the data can be repeatedly

used to simulate many images. Each MPI rank still maintains its

own arrays on-device, i.e., we do not share pointers among ranks,

although there might be potential savings by making memory

global over all devices and nodes.

The redesign also requires that we initialize the output array

on the device instead of the host, and then keep it there until

all the contributions (and multiplicative scale factors) are applied.

The resulting design is 40-fold more efficient as it minimizes data

transfer and completely eliminates CPU-based array math.

2.2.4 CCTBX performance scaling
A main challenge of the ExaFEL project was to prepare for

a near-future scenario where it may be possible to collect useful

diffraction patterns at rates up to 5,000 Hz in contrast to the current

120 Hz. At the same time, we wish to apply our most advanced

data reduction algorithm, diffBragg, to resolve tiny differences

in the atomic structure as a function of experimental variables.

These variables include the pump-probe delay time, allowing us

to examine the time progression of enzymatic reactions, as already

demonstrated for systems such as photosystem II (Bhowmick et al.,

2023). As diffBragg is still work in progress, we assess here the limits

of computation using the resources available today on Frontier.

We assumed that one “dataset” representing a single time point

in an enzymatic progression would consist of up to 500k diffraction

patterns (219), about 10-fold larger than present-day experiments,

thus serving as a useful upper limit. We found that for one dataset,

256 Frontier nodes allow a sufficiently fast calculation when the

data are delegated to 4,096 MPI ranks (16 ranks per node, or 2

ranks per Graphic Compute Die) as shown in Figure 8. Each node

is equipped with 512 GB DDR4 RAM, and so each MPI rank is

allowed 32 GB CPU memory to hold 128 raw diffraction patterns

plus all intermediate calculations. For comparison, the raw data

assigned to each rank (128 images, each 16 Megapixel with 2-byte

depth), are about 2.2 GB compressed.

We executed numerous trials to determine if diffBragg could

be used to reduce data quickly enough to provide feedback to

the experiment. In our hypothetical scenario the 219 experimental

images would be acquired in about 100 s, and our data reduction

trials indicate that hundreds of iterative cycles of parameter

estimation can yield a result in 30 to 120 min. In each cycle

we calculate the diffraction pattern and its first derivative from
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FIGURE 8

Demonstration of weak (left) and strong (right) scaling of diffBragg stage 2 on up to 256 Frontier nodes. The red dot indicates the execution of the
same tranche during simultaneous execution of 20 tranches on 5,120 nodes.

the current estimated parameters, all on GPU. These results are

returned to CPU and used to form gradients needed for the

LBFGS quasi-Newton method, which generates better parameter

estimates for the next iteration. The LBFGS step, on CPU,

is the gathering point where results from all MPI ranks are

merged together.

With the single-dataset workflow in place, we then

investigated how to stack the analysis of many data sets at

once, as would be necessary during a real experiment. Our

preferred plan was to preserve the model of one-Slurm-job-

per-dataset, which is currently implemented at Perlmutter

and described in Blaschke et al. (2024). By arrangement with

NERSC, we reserve a fixed number of supercomputer nodes

for the duration of the data collection shift. An external

workflow manager (our interactive GUI of Section 4.1)

then submits repeated Slurm jobs to the reserved queue

every few minutes, each time new data become available.

The results provide quick experimental feedback to guide

decision making.

The reservation paradigm was not available for a full-

scale test at Frontier. Instead, we wrote a single Slurm

script to encapsulate a compound job, analyzing 20 datasets

simultaneously on 5120 nodes, using parallel srun commands

to start separate MPI communicators. While differing from

our proposed workflow in the job initiation step, the single-

Slurm-job workflow reproduced most aspects of inter- and

intra-node communication, file I/O, memory usage, and raw

computing power. Our main result is that under the fastest

data collection rate anticipated in the future (107 diffraction

patterns collected in 33 min), our groundbreaking algorithm

for estimating structure factors, diffBragg stage 2, can be run on

roughly the same time scale as data collection. Even moderately

large problem sizes yield a meaningful number of structure

factor estimations (and by extension, a biologically meaningful

quantitative difference between related molecular structures) in

two hours.

2.3 Software for Single Particle Imaging:
Spinifel

With LCLS-II upgrades, single-particle diffraction experiments

are expected to operate at rates between 100 and 1,000 kHz

and produce 20-Megapixel images. Furthermore, there is a desire

for experimentalists to obtain real-time feedback from these

experiments, which, when combined with the expected imaging

rates, will require a vast amount of computing power. In order to

meet these needs, we designed and developed Spinifel, a software

package for determining 3D molecular structure from an ensemble

of single-particle diffraction patterns at scale. Similar to cctbx

(Section 2.2), Spinifel’s top-level workflow is developed in Python

with computationally intensive tasks offloaded to compiled Python

extension modules written in C++, HIP, and CUDA. The interface

between Python and C++ is made using Pybind11.3 Unlike cctbx,

the extension modules are not portable between NVIDIA and

AMD. The decision of which code to call is made by the Python

workflow at runtime.

Spinifel is based on the Single-Particle Multi-Tiered Iterative

Phasing (SPMTIP) algorithm introduced in Donatelli et al.

(2017). In particular, SPMTIP simultaneously determines the

conformational states, orientations, 3D intensity complex phases,

and the underlying structure in a single iterative framework.

By simultaneously determining all missing degrees of freedom

in this manner, SPMTIP is able to leverage constraints on the

possible 3D structures, e.g., sparsity, positive density, symmetry,

density statistics, etc., to boost the effective information content

of the system and reduce the amount of data needed to obtain a

successful reconstruction.

As part of the ExaFEL project, Spinifel was built by redesigning

some of the core computational routines in SPMTIP to improve

computational complexity for large data sets and implementing

these routines to run and scale on next-generation exascale

3 https://github.com/pybind/pybind11
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FIGURE 9

Scalable SPMTIP algorithm realized by Spinifel code for single particle imaging reconstruction using a Cartesian basis. The portion on the left side
(Phasing: yellow box) indicates code that scales as O(Mlog(M)) with assigned grid resolution M, while on the right side: Slicing (blue), Orientation
Matching (green), and Merging (red) indicate parallel code and GPU O	oading that scales as O(N) with number of images N. The targets for GPU
o	oading are implemented for the forward transform, orientation matching, and adjoint transform, respectively. Image adapted from Chang et al.
(2021) with the permission of the authors.

computer architectures. In particular, the SPMTIP routines in

Spinifel were converted from a spherical-polar-grid framework to

a Cartesian grid/sparse data framework based on non-uniform Fast

Fourier transforms, which reduces the computational complexity

of the algorithm from O(N4D) to O(N2D), where N is the number

of Shannon channels (i.e., grid points per dimension) modeled in

the reconstruction and D is the number of diffraction patterns

used. Furthermore, we scaled Spinifel code to run efficiently

on Frontier with additional functionality to reconstruct multiple

particle conformations.

2.3.1 Computational motif of Spinifel
Figure 9 shows how the computations of Spinifel can be

decomposed into three subproblems:

1. “Slicing” and “Orientation Matching” recover the orientations

corresponding to each of the diffraction patterns.

2. “Merging” aggregates the oriented diffraction patterns into a

single diffraction volume, which is equivalent to reconstructing

the autocorrelation of the electron density of the particle.

3. “Phasing” recovers the missing phase information of the

diffraction volume, which is equivalent to reconstructing the

electron density of the particle.

The solution to these three subproblems is scaled in Spinifel, as

described below. In particular, for our problem, the experimental

data are very large (1012-1015 floats) and need to be distributed

over multiple nodes, but the molecular density model that we wish

to reconstruct and most of the intermediate quantities (1003-5003

floats) will typically fit on one or a few nodes.

Slicing and orientation matching are solved by first generating

a set of 2D reference images on a predetermined selection of

orientations (given as a 3D grid of Euler angles), by computing

the Non-Uniform Fast Fourier Transform (NUFFT) of the

autocorrelation of the current electron density estimate of the

molecular model. Next, each experimental 2D diffraction image is

compared against all of the reference images. The orientation of

the experimental image is then selected as the one that minimizes

the distance (e.g., a weighted L2 norm or negative log-likelihood)

between the experimental and corresponding reference images.

This process was scaled over multiple nodes by providing each

node with a copy of the reference images (involving a single

initial scattering operation) and distributing the experimental

images over the nodes; these images are kept in memory

between iterations of the main M-TIP iteration, and so do not

require any communication after initialization. Therefore, apart

from the initial scattering operation, these computations are

embarrassingly parallel.

Merging can be formulated as inverting a type-2 NUFFT

(uniform to nonuniform grid) on the oriented experimental data

to solve for the autocorrelation of the electron density estimate

(Figure 10). In particular, the normal equations for this linear

system can be expressed as a convolution on a Cartesian grid

with dimensions equal to the number of resolution elements per
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FIGURE 10

Autocorrelation recovery from NUFFT of model electron density (F); Comparison between the known autocorrelation of the electron density (Exact
AC) versus recovered autocorrelation (Approximate AC) show good convergence. G is the Fourier transform of F, the exact AC is given by G2.

dimension (Fessler et al., 2005). Setting up these normal equations

requires two type-1 NUFFTs (nonuniform to uniform grid) to be

computed, one on the nonuniform experimental data and one

with the nonuniform data replaced with 1’s. With this setup, only

the type-1 NUFFT computations (which are computed just one

time) need to be distributed, since they are a function of the

entire experimental dataset. Fortunately, we can exploit linearity

of the NUFFT calculations by computing them separately on the

experimental data belonging to each node, and then use a reduction

operation to compute their sum. Once these type-1 NUFFTs are

computed, the linear system can then be solved efficiently via

conjugate gradient, where we can use Cartesian FFTs to efficiently

compute the convolution operator in the normal equations. Since

these Cartesian FFTs are applied on a grid with size about the

same as used for the density model, they can, in principle, be

computed on a single node. However, instead of allowing nodes

to become idle, we repeat this linear solve over several different

nodes, where each node attempts the solve with a different set of

hyper-parameters, e.g., Tikhonov regularization parameters. Out

of these computations with different hyper-parameters, the best

solution (in terms of fit to the data and norm of the solution) is

then selected.

Phasing does not require access to the experimental data, and

only requires computing model values on a Cartesian grid that is

about the same size as the density model we wish to reconstruct.

Therefore, this step can also, in principle, be efficiently solved

on just a single node. However, as was done in the conjugate

gradient solve inmerging, instead of allowing nodes to become idle,

we perform this step over multiple nodes, where different hyper-

parameters are tried on each node. The global SPMTIP framework

consists of an iterative loop, where during each iteration each

of the above three subproblems are solved one after the other.

These iterations are repeated until the molecular density model

converges to a solution consistent with the data. Additionally, to

initialize the process in the first iteration, random orientations are

initially given to the different diffraction patterns and the three

sub-steps are performed as a first pass. The obtained model is

then used as a reference to align the orientations on the second

pass. Afterward, the three sub-steps are iteratively applied as

described above.

2.3.2 Agile experiments with programming
models

ExaFEL took the approach of implementing Spinifel with

multiple programming model back-ends. It is a holistic approach

and forward looking with some R&D aspects. This approach

was taken also to mitigate risk for delivering a programmatic

version of Spinifel; ECP desired more production-ready codes.

Multiple programming models had the advantage of providing

a seasoned bulk-synchronous programming model or an

emerging task-based model. This dual back-end provided the

ability to do performance checks and comparisons between

both models, as well as comparisons of ease of use and
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FIGURE 11

Breakdown of the time spent in each module (cf. Figure 9) for each
iterative cycle (generation) using MPI and Legion programming
model. Figure reproduced from Chang et al. (2021) with the
author’s permission.

portability. This also enabled research within both an established

programming model (MPI) and a task-based programming

model (Legion).

Figure 11 demonstrates that Legion’s task-based parallelism

approach yields improved performance over MPI due to dynamic

load-balancing (Chang et al., 2021). In the future, it would

be beneficial to explore this further by exercising the different

code paths of Spinifel and compare programming models within

the design space and with different datasets. It is one of the

few scalable analytics codes that has the capability to support

such research.

2.3.3 Development strategy for portable GPU
kernels

Earlier Spinifel code and dependencies were designed based

on generally portable CPU code and NVIDIA GPU code. While

there were no meaningful differences for the CPU code, porting

CUDA-related modules, i.e., CUDA kernel code for orientation

matching, NUFFT, and Python library dependencies like Numba,

CuPy, and PyCUDA is non-trivial because they span multiple

modules and libraries across both custom code and the broader

Python ecosystem, made worse by how the ecosystem was designed

and supported by AMD and Intel. In 2023, we completed the

port of the Spinifel software suite to AMD GPUs. Building on the

previous year’s efforts in developing portability layers to various

Python ecosystem libraries (cuFINUFFT, CuPy, and PybindGPU),

the last mile involved implementing page-locked memory to

support the existing CUDA code, support for Python ecosystem

GPU array interfaces, eliminating a dependency on Numba which

was originally available on AMD GPUs, but then dropped, and

vendor-portable, real-time GPU resource tracking. These efforts

have resulted in a Spinifel code base that runs on both NVIDIA and

AMD hardware.

2.3.4 Spinifel performance scaling
After porting Spinifel to Frontier we ran strong scaling tests to

determine how well 3D reconstruction with Spinifel could keep up

with experimental data rates. The test was done on 128–1024 ranks

(16–128 nodes with 8 ranks per node setting). The total number

of images processed for all the runs is 131,072 (1,024 images per

rank for 128 ranks, 512 images per rank for 256 ranks, and so on)

with 10 fixed generations. Figure 12 (left) shows the data rate for the

four runs. Our scaling runs indicate that for 131 K images, strong

scaling stops at approx 512 ranks (or 256 images per rank). Adding

more ranks (we tested up to 1,024 ranks) does not result in an

overall speedup. During our strong scaling tests, Spinifel encounters

a runtime error at 128 ranks (16 nodes). We are still investigating

this issue.

Group II chaperonin occurs in two possible conformational

states: (i) the Open State (PDBID: 3IYF); and (ii) the Closed State

(PDBID: 3J03). Real-world sampled often contain a mixture of

multiple conformational states. As a simple test of such a situation,

we simulated an SPI dataset using thse two conformations. The

total number of images used was 1 milion at 128 × 128 pixel

resolution. We performed weak scaling by assigning 256 images

per rank running from 256 to 4096 ranks (equivalent to 32 to 512

nodes). This test was limited to 512 nodes due to an issue found

with the HPE “slingshot” network on Frontier. Each test was set to

run with 20 generations. The timing shown in Figure 12 (right) is

the total time after start-up until the results are written out. Spinifel

autocorrelation and phasing phases require all-to-one and one-to-

all broadcast operations. As a result, we see a reduction in speedup

as we scale to a larger number of processors.

The scaling tests are further evaluated by examining the results

of the reconstructed structures. In this case, we expect to see

two different models per completion at each generation. Figure 13

shows the reconstructed models at generation 20. The model in

Figure 13A (top and side view) resembles the Open State whereas

the model in Figure 13B resembles the Closed State of the group

II chaperonin.

2.4 Python as a scientific HPC workflow
language

The majority of ExaFEL’s software products are not singular

applications, but rather constitute a suite of tools that collectively

generate sophisticated XFEL data analysis workflows using

Python as a workflow language. HPC capabilities are leveraged

using specialized packages, such as mpi4py, CuPy, Legion,

and custom Python extension modules, that are compiled

using each HPC HPC system’s preferred SDK. In addition to

SFX and SPI-specific python extension modules, the ExaFEL

project developed the following general purpose HPC python

packages which can be used independently from the ExaFEL

software suite.

2.4.1 PybindGPU
Having developed kernels for each of the hardware

architectures, we lacked a single unified API capable of calling

GPU code and managing GPU resources across different

vendors. Hence we developed the “PybindGPU” Python module

(https://github.com/JBlaschke/PybindGPU) to fill this need. This
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FIGURE 12

Left: Strong-scaling tests running Spinifel on Frontier with 131K total images. Right: Weak scaling plot running Spinifel Legion with simulated
di�raction images with two conformations of group II chaperonin. Each rank receives 256 images and is set to run on a fixed 20 generations.

FIGURE 13

The two constructed structures at generation 20 are found to resemble the Open State (A) and Closed State (B) of group II
chaperonin—demonstrating that Spinifel is capable of accurately reconstructing a molecular structure even if the sample contains a mixuture of
conformations.

module provides a Python frontend that unifies the different

vendor-specific APIs. This module is built using Pybind11

and provides:

1. A NumPy-compatible array interface using NumPy’s

buffer protocol;

2. Control over memory placement, e.g., GPU data are made

available via the __cuda_array_interface__,

and pagelocking;

3. Real-time GPU resource tracking for benchmarking.

PybindGPU uses CUDA syntax, as the Spinifel developers
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are most familiar with CUDA, and can therefore interface with

packages like CuPy even when running on AMD hardware.

2.4.2 Skopi

The Skopi (Peck et al., 2022) SPI diffraction simulation package

was designed to simulate more realistic experimental conditions in

six ways: (1) introducing the ability to place multiple particles at the

interaction point, (2) including the ability to simulate self-amplified

spontaneous emission (SASE) spectra and beam fluctuation, (3)

taking into account the contribution of a hydration layer, (4)

expanding the dynamic range of the recorded intensity with the

use of autoranging detectors, (5) adding the ability to simulate SPI

diffraction patterns of a protein at various conformations, and (6)

simulating diverse types of realistic noise such as Poisson noise,

beam miscentering, fluence jitter, and static sloped background.

We optimize and accelerate the code using GPU-enabled Python

packages such as Numba and CuPy.

2.4.3 FFTX and cuFINUFFT
FFTX is the exascale follow-on to the FFTW open-source

package for executing the discrete Fast Fourier Transform, as well

as higher-level operations composed of FFTs and linear operators.

It is based on SPIRAL (Franchetti et al., 2018), a build-time

code generator that produces high-performance kernels targeted to

specific uses and platform environments.

Compared to CuPy, we found that FFTX produced an

overall performance boost ranging from 3.85x to 4.95x. Detailed

information on our how FFTX improves the FFT performance in

Spinifel is described in Section 2 of the Supplementary material.

Furthermore, only a few Python packages existed for Non-

Uniform FFTs. Therefore, the ExaFEL project worked with the

cuFINUFFT developers (Shih et al., 2021) to make it compatible

with Spinifel. This involved: (i) enabling multi-GPU support, and

(ii) developing a HIP version (as the original code was written in

CUDA).

3 Real-time data processing for XFEL
science

As discussed in Section 1, leveraging exascale HPC resources for

real-time data processing necessitates several preparatory activities:

already stretching (i) the development of cross-facility workflows

(Giannakou et al., 2021; Blaschke et al., 2023, 2024), (ii) the

development of codes targeting GPU accelerators (Wittwer et al.,

2023; Shah et al., 2024), (iii) the development of infrastructure

and services to facilitate cross-facility workflows within HPC data

centers (Bard et al., 2022), and (iv) the development of inter-

institutional policies and best practices to accommodate workflows

bridging experimental facilities and HPC data centers (Miller et al.,

2023).

All of these activities are featured in the ExaFEL project. The

first two were discussed earlier in Section 2.4. In this section we will

focus on the last two.

3.1 Facility services for real-time data
processing and Integrated Research
Infrastructure (IRI)

Broadly speaking, real-time and cross-facility HPC workflows

have three ingredients: (i) HPC resources such as compute nodes,

(ii) a data plane consisting of high-performance file systems and

networking, and (iii) a control plane which allows for workflow

tasks to be orchestrated (Antypas et al., 2021). HPC data-centers

have traditionally focused on providing the former two (nodes,

networks, and file systems), whereas the latter often is a new

addition to HPC data-center offerings.

Our experiences with real-time data processing underscore

the importance of facilities offering services required by the

workflow orchestration control-plane. For ExaFEL these services

are described below.

3.1.1 Hosting for persistent state and services
While analyzing data during a live experiment, many things

happen between execution of individual compute jobs. These

include data transfer, decision logic on which jobs to submit next,

and the creation of metadata pertaining to multiple data sets.

For ExaFEL this is accomplished by three programs: (i) XRootD

transfers data from LCLS to the HPC data center, (ii) cctbx.xfel’s

workflow manager is constantly running in the background,

monitoring the state of any file transfers, compute jobs, and user

inputs, and (iii) aMySQL database stores the state and metadata of

any data analysis jobs.

It is therefore crucial that data centers provide appropriate

infrastructure host these programs. What makes hosting

infrastructure appropriate depends on the program being hosted.

We identify four conditions needed to effectively orchestrate

real-time data analysis workflows: (i) orchestration programs must

be able to run unattended longer than the data analysis jobs they

manage (usually several days), (ii) data transfer orchestration

programs must have simultaneous connectivity to both HPC

file systems and external hosts, and iii) workflow orchestration

programs must have access to the HPC center’s resource manager

(e.g., Slurm). Nodes in anHPC system thatmeet these requirements

are collectively known as “Workflow Enablement Nodes.”

We observe that Data Transfer Nodes and Login Nodes often

fill this role due to their access to HPC resources and connectivity

beyond the data center. However, cloud-native service platforms

such as Kubernetes clusters are often more suitable locations

due to their flexible and configurable networking, their ability to

dynamically scale workloads, and the fact that the micro-services

architecture has become a de facto standard for hosting many

web-services such as APIs and databases.

By this analysis, NERSC’s Kubernetes-based Spin cluster would

be be the preferred location to host XRootD, cctbx.xfel, and

MySQL. However, as Spin does not have access to the scratch

file system on Perlmutter, and as additional development work

is necessary to access Slurm from Spin (via the Superfacility

API), at present only MySQL is hosted on Spin. XRootD runs on

dedicated Workflow Nodes using scrontab, and cctbx.xfel runs on

Login Nodes. Figure 14 shows the rate of transactions from 4096
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FIGURE 14

Rate of database transactions during live data processing. The main plot shows the number (in thousands) of database transactions per minute
during a 12-h shift. The inset shows a 40-min snapshot of number (in thousands) per second. We see that the database receives up to 8,000
commits/s when data processing takes place; the “bursts” in the inset show individual data analysis jobs. The Spin micro-services platform was
capable of handling this heavy load level. Figure reproduced from Blaschke et al. (2024) with the permission of the authors.

MPI Ranks processed by MySQL. This demonstrates that Spin

is capable of hosting database services for ExaFEL’s HPC jobs.

Current work on Perlmutter and future NERSC systems includes

exploring the intergration of platform file systems (such as scratch)

and the HPC resource manager (Slurm) with Spin, or similar k8s-

based micro-service platforms. Such integration needs to be done

carefully to avoid potentially destabilizing Spin (e.g. would a scratch

degradation also degrade Spin?). However this work indicates that

the payoff is significant, as workflow orchestration, file transfer, and

database services could then be autmatically and reliably managed

by the same micro-services platform.

3.1.2 Real-time responsive HPC resources
Highly responsive HPC resources are critical components of

real-time feedback computing infrastructure. NERSC provides two

mechanisms for access to such resources: (i) a small number

of nodes (up to 20) are permanently set aside in a “realtime”

QOS, reserved exclusively for providing real-time feedback at

experiments, and (ii) users can request additional reservations of

a variable number of nodes. Figure 15 shows both being used to

analyze data at the P1754 experiment at LCLS (Blaschke et al.,

2024). Before the start of the dedicated reservation, preparatory

work was carried out using the “realtime” QOS (blue bars). Once

the reservation started (green line), live data processing was done

using the reserved nodes. The reservation was increased to 64 nodes

mid-experiment when it became clear that the existing reservation

was too conservative an estimate of the required resources, and

4 “P175” is an identifier used by LCLS to describe a particular allocation of

beamtime.

the “realtime” QOS was used in addition as overflow. During this

experiment, approximately 90% of data processing utilized the

reservation, while 10% utilized the “realtime” or the “regular” QOS,

depending on urgency.

While exact numbers vary from experiment to experiment, a

reservation large enough to accommodate the typical “bursty” use

of compute resources will also allow nodes to sit idle at other

times, so that only a fraction of allocated resources are ultimately

consumed. For example, during the P175 experiment, only about

22% of the reserved node time was utilized. Furthermore, dataset

sizes grow over the course of data collection (Blaschke et al., 2024).

This phenomenon results in a “triangular” computational burden,

with the final stretch of data collection consuming substantially

more node hours than earlier segments of the same length. The

aforementioned increased reservation during P175, shown by the

green line in Figure 15, demonstrates this challenge.

The following overall picture emerges: real-time data

processing requires a relatively large amount of HPC resources

(compute nodes, file systems, and networks) during relatively

short, unpredictable “bursts”. Normally these bursts also become

larger over time and are predictable at most a few hours ahead

of time.

In order to balance adequate resource availability during bursts

with minimization of node-hours spent idle, we have begun

exploring Slurm’s preemptible reservations. Job preemption5 is a

feature offered by the Slurm scheduler whereby jobs can be marked

as “preemptible” by sending the scheduler a signal to this effect

along with a “preemption time,” or minimum time before the job

5 https://slurm.schedmd.com/preempt.html
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FIGURE 15

Based on data from Blaschke et al. (2024). Example of the CPU utilization during a 12-h beam-time shift. The “bursty” CPU utilization results from
urgent computing tasks: Whenever new data are available they need to be analyzed as quickly as possible. Colors indicate which real-time resource
was utilized. The green line shows the number of CPU cores reserved (at 50 hours, the reservation was increased to 64 nodes).

can be checkpointed and stopped to allow other traffic through the

queue. In other words, a non-preemptible job can request a node

currently running a preemptible job, and the preemptible job will

be notified and given a time limit to shut down gracefully before

being killed.

This mechanism extends to reservations as well: preemptible

jobs may use idle nodes in a reservation, provided the preemption

time is less than a specified setting. In effect, the longest preemption

time of any preemptible jobs in a given reservation is the upper

limit on wait time for a non-preemptible job to start. In Figure 16

we show the results of an experiment testing the delay incurred

by allowing preemptible jobs access to a reservation. Under those

conditions, jobs belonging to the reservation used approximately

12% of the reservation’s total node-hours, while preemptible jobs

used approximately 65%.

Allowing preemption increases the overall utilization of

reserved nodes (in the above case to approximately 77%), but at

the cost of significant startup delays while waiting for preemptible

jobs to shut down. Figure 17 shows job wait time as a function of

submit time. In this example, most preemptible jobs consumed the

full 5 min allowed before shutting down, resulting in wait times of

over 10 min for some backlogged, non-preemptible jobs. To date,

we have not found a method to accurately predict maximum wait

time in a preemptible reservation.

3.1.3 Collaborative user environments
Data analysis from ExaFEL experiments is a highly

collaborative process: raw data from instruments and analysis

artifacts need to be accessible to the whole team driving the

experiment. Our experience has been that default Unix file

permissions often hamstring this effort by preventing others

from editing shared files, and sharing login credentials is not an

acceptable workaround.

At NERSC, the ExaFEL team has access to two valuable

tools that facilitate collaborative data analysis: (i) collaboration

accounts, named collabsu, and (ii) shared database services.

Collaboration accounts are managed using NERSC’s Iris6 account

management platform. Project PIs (and designated PI proxies)

can manage collaboration accounts (e.g., by adding or removing

users) internal to their projects, and users can run the collabsu shell

command to switch their user environment to the collaboration

account. Shared database services likewise allow users to manage

access permissions.

Together these services create a shared user environment to

which multiple team members have access. As a standard practice,

all collected data and analysis artifacts are accessible within

this shared user environment. An unintended but advantageous

consequence of this approach is that user settings (e.g., Unix

dotfiles) are also shared. This means that all users of the cctbx.xfel

software via the collabsu account use the same settings, greatly

accelerating some forms of troubleshooting.

3.2 Policies and best practices for
integrating experiments and HPC data
centers

Many of the services listed in Section 3.1 rely on corresponding

institutional policies and best practices in order to function

properly. For example, NERSC’s Spin micro-services platform is

6 https://iris.nersc.gov
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FIGURE 16

Based on data from Blaschke et al. (2023). Experiment demonstrating preemptible (orange) and urgent (blue) Slurm jobs sharing a reservation. Top:
preemptible jobs successfully fill any gaps between urgent jobs. Bottom: Slurm’s job preemption system in action: when urgent jobs enter the
reservation (green line), preemptible jobs are given a warning signal to exit gracefully, and then are killed 5 minutes later (orange line). All-in-all this
does delay urgent jobs but improves overall utilization.

FIGURE 17

Job-startup delay as a function of time for the preemptible reservation shown in Figure 16. The “spikes” in job wait time between hour 4 and 6
coincide with multiple urgent jobs being submitted to the reservation. As Slurm has to give jobs up to the full preemption time (in this experiment a
preemption time of 5 min was chosen), several jobs had to wait for over 10 min.

located within the data center’s network and can accommodate up

to 8000 transactions per second (Figure 14), a rate made possible by

that network’s low latency. Also, NERSC users can quickly reserve

compute nodes (within a week of submitting a reservation request).

Both of these capabilities are the result of institutional policy.

The former results from a networking security policy that allows

arbitrary micro-services access to the same network as the compute

nodes, and the latter depends on a policy to permit reservations for

as long as users have a justifiable need.7

Facility services listed in Section 3.1 serve to streamline

resource management and cross-institutional collaboration. It is

7 https://docs.nersc.gov/jobs/reservations/

Frontiers inHighPerformanceComputing 17 frontiersin.org

https://doi.org/10.3389/fhpcp.2024.1414569
https://docs.nersc.gov/jobs/reservations/
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Blaschke et al. 10.3389/fhpcp.2024.1414569

therefore important for HPC centers and IRI partner facilities to

develop and maintain a best practice of assessing whether center

policy is disruptive to cross-facility workflows, and if so, how to

minimize the disruption. Using Spin as an example, preventing

micro-services platforms from running arbitrary Docker images

would appear to be a good policy from a security perspective, but

it would severely limit the kinds of workflows that can run at

scale. NERSC’s Spin takes a permissive approach to micro-services

within the data center network, provided users have undergone

the necessary training and the micro-services pass security checks

enforced by Spin’s Open Policy Agent (OPA).8

4 Experiences and lessons learned
while developing XFEL data analysis on
HPC systems

Here we detail our experiences running ExaFEL on NERSC’s

Perlmutter and OLCF’s Frontier systems.

Each Perlmutter GPU compute node consists of 1x 64-core

AMD EPYC 7763 with access to 256 GB of DDR4 RAM. Each node

also contains 4x NVIDIA A100 GPUs. Each Frontier compute node

consists of 1x 64-core AMD EPYC 7453 CPU with access to 512

GB of DDR4 RAM. Each node also contains 4x AMD MI250X,

each with 2 Graphics Compute Dies (GCDs), for a total of 8 GCDs

per node.

4.1 HPC workflow management and
visualization

Initial efforts prioritized simple command-line scripts to

process data, alongside other scripts to dynamically write the batch

submission script. Keeping track of file paths and experiment

metadata rapidly became tedious at best, and at worst critically

delayed real-time feedback. To this end, a HPC-capable workflow

manager was designed and integrated into cctbx.xfel to streamline

the process and enable real-time feedback. The workflow manager

consists of two components: an interactive graphical user

interface (GUI) that generates Slurm job scripts and manages job

dependencies, and a MySQL database backend that tracks the

progress of compute jobs in real time (cf. Sections 3.1.1). An

intentional design element of the workflow manager is that the

generated jobscripts are retained, allowing jobs to be archived for

debugging purposes.

4.1.1 Performance visualization
One of the first XFEL experiments that included data transfer

and processing at NERSC was hindered due to slow loading of

Python modules on compute nodes. As hundreds of MPI ranks

loaded the same Python source files, the filesystem lagged, leading

to long start-up times. This was ultimately solved by using OCI-

compatible containers, but initially a lack of information precluded

rapid diagnosis of the problem. To this end, the main processing

8 https://docs.nersc.gov/services/spin/

script was modified to (optionally) create debug files that report

the time of completion for each processing step of each diffraction

pattern. From these, we developed the “computational weather

plot” (Figure 18). These plots are discussed extensively in Blaschke

et al. (2024), but briefly, they display the processing rate for every

rank. At a glance they reveal I/O bottlenecks, nodes with poor

network access, metadata synchronization issues, and problematic

images. They have been used to solve a variety of problems, both

online (during beam-times) and offline.

4.2 I/O lessons learned for HPC scientific
data analysis applications

With full diffraction datasets including as many as 107

diffraction patterns, there is a potential “small file problem”

if the data reduction results from each diffraction pattern are

written to individual files, in which case the large number of

metadata operations would quickly overwhelm the filesystem. This

problem is compounded by the fact that we generate intermediate

results at each step of the analysis pipeline, Figure 5a–e, and

even for each sub-step of the dials.stills_process step (Figure 5a)

as detailed in Section 2.2.1. For this reason we provide the

(default) option of serializing the intermediate results in composite

containers, in different formats (json, Python pickle, and

pandas dataframe) depending on the analysis step. In this

design we write out one container file per MPI worker rank,

so that Figure 6 would result in 10 output files, exclusive of

the rank 0 controller. When needed, each step of our pipeline

has access to the original raw data on flash memory (such

as the performance tier of the Orion filesystem of Frontier),

either in HDF5 or psana/xtc format, thus eliminating any need

to create and store big data (such as corrected images) to

temporary files.

We tested the scaling of all I/O operations used by diffBragg.

For this test, both the data and the program installation were

stored on Frontier’s “Orion” high-performance scratch filesystem.

Keeping all reconstruction parameters constant, we reconstructed

the dataset with four different node configurations, using 256, 512,

1,024, and 2,048 Frontier nodes. Figure 19 summarizes the results.

Up to 1,024 nodes, the overall runtime goes down, but it increases

abruptly when 2,048 nodes are used. This is the result of two

simultaneous effects. The first is a faster refinement time on a larger

number of nodes: increasing the number of nodes from 256 to 1,024

reduces the refinement time from 850 s to 350 s. For 2,048 nodes,

the refinement could only finish 312 of the 451 iterations within

the 30-min time limit. However, because the time per iteration is

constant, we can extrapolate that it would take 290 s to complete

451 iterations. This speed-up is offset by longer startup times with

increasing node count. For 256 nodes, it takes 190 s to start Python

and initialize MPI. This grows to 400 seconds for 1,024 nodes,

already longer than the refinement time of 350 seconds. For 2,048

nodes, the startup time grows to over 16 min, longer than the

complete runtime for the 512 node run.

To reduce these long startup times, we implemented the

mitigation described in Section 4.3 below.
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FIGURE 18

Example of a “weather plot”: each MPI rank is assigned a di�erent row. When a task is completed, a green dot is plotted at the corresponding wall
time. The figure on the right shows the e�ect of intermittent I/O contention. Figure reproduced from Blaschke et al. (2023) with the author’s
permission.

FIGURE 19

Strong scaling tests of di�Bragg stage 2 on Frontier for reconstructing 130,000 images. Using more nodes leads to faster refinement but longer
start-up times. At some point, this becomes unsustainable, resulting in the job exceeding its time limit (horizontal dashed line).

4.3 Importance of the runtime
environment to Python applications

Python imports require searching and linking libraries in

PYTHONPATH. As reported in Giannakou et al. (2021), Python

startup times therefore scale very poorly on shared file systems.

At the start of the project, to run on multiple nodes, we deployed

OCI-compatible container technology such as Docker, Shifter, and

Podman-HPC. The container runtime caches the image’s contents

(and therefore all Pythonmodules) on node-local storage, making it

accessible optimally on the compute nodes. The container approach

was implemented as part of the previous NERSC system (Cori)

in 2019 using Shifter, and later implemented on Perlmutter in

2022 using Podman-HPC. As of FY23, OLCF Frontier does not

support container technology. Investigating Python import for

Spinifel and all its dependencies shows that it takes ~5 minutes on

100 nodes and >30 minutes on 1000 or more nodes. This presents

a problem for ExaFEL, which aims to achieve SPI data processing

TABLE 2 Startup times for Spinifel from the compressed (and sbcast’ed)
Python environment on Frontier.

No. of nodes 100 1,000 2,000 4,000

sbcast (s) 60 80 73 84

Python import (s) 6.85 51.34 67.47 175.85

exiting (s) 0.15 4.66 4.53 8.15

Total time (s) 67 136 145 268

rates of 5 kHz. Figure 19 shows similar Python load time scaling for

cctbx.

To approximate the functionality of a container runtime, we

packed the entire application environment (Python code, compiled

code, and all dependencies) into a tarball on Frontier’s Lustre

filesystem, which was then broadcast at run time (using sbcast)

to flashmemory on each node. The observed start-up time with this

fix is shown in Table 2. However, code changes are now more time
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consuming and complicated, as each change requires extracting the

tar archive, applying the changes, and then creating an updated tar

archive. Therefore, it must be stressed that this approach is at best

a workaround.

5 Conclusion

ExaFEL is a HPC-capable XFEL data analysis software

suite for both Serial Femtosecond Crystallography (SFX) and

Single Particle Imaging (SPI) developed in collaboration with

the Linac Coherent Lightsource (LCLS), Lawrence Berkeley

National Laboratory (LBNL) and Los Alamos National Laboratory.

ExaFEL supports real-time data analysis via a cross-facility

workflow spanning LCLS and HPC centers including NERSC

and OLCF. Our work constitutes initial path-finding for the US

Department of Energy’s (DOE) Integrated Research Infrastructure

(IRI) program.

In this work, we discussed the ExaFEL team’s 7-years experience

and results in developing XFEL data analysis code for the DOE

Exascale machines. Furthermore we reviewed essential data center

services (and their implications on institutional policy) required

for real-time data analysis. We summarized our software and

performance engineering approaches and our experiences with

NERSC’s Perlmutter and OLCF’s Frontier systems. Our efforts have

resulted in an exascale-ready software suite capable of running real-

time data analysis workflows onmodern supercomputers, as well as

the body of knowledge and experience necessary to maintain and

further develop this workflow for upcoming experiments.

We expect that the ExaFEL workflow will be an essential data

analysis tool for real-time data processing during LCLS-II’s future

high data-rate experiments. Furthermore, we hope this review

is a practical blueprint for similar efforts in integrating exascale

compute resources into other cross-facility workflows.
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