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Evaluation of work distribution
schedulers for heterogeneous
architectures and scientific
applications

Marc Gonzalez Tallada* and Enric Morancho

Computer Architecture Department, Universitat Politècnica de Catalunya - Barcelona Tech, Barcelona,

Spain

This article explores and evaluates variants of state-of-the-art work distribution

schemes adapted for scientific applications running on hybrid systems. A hybrid

implementation (multi-GPU and multi-CPU) of the NASA Parallel Benchmarks -

MutiZone (NPB-MZ) benchmarks is described to study the di�erent elements that

condition the execution of this suite of applications when parallelism is spread

over a set of computing units (CUs) of di�erent computational power (e.g., GPUs

and CPUs). This article studies the influence of the work distribution schemes on

the data placement across the devices and the host, which in turn determine

the communications between the CUs, and evaluates how the schedulers are

a�ected by the relationship between data placement and communications. We

show that only the schedulers aware of the di�erent computational power

of the CUs and minimize communications are able to achieve an appropriate

work balance and high performance levels. Only then does the combination of

GPUs and CPUs result in an e�ective parallel implementation that boosts the

performance of a non-hybrid multi-GPU implementation. The article describes

and evaluates the schedulers static-pcf, Guided, and Clustered Guided to solve

the previously mentioned limitations that appear in hybrid systems. We compare

them against state-of-the-art static andmemorizing dynamic schedulers. Finally,

on a system with an AMD EPYC 7742 at 2.250GHz (64 cores, 2 threads per core,

128 threads) and two AMD Radeon Instinct MI50 GPUs with 32GB, we have

observed that hybrid executions speed up from 1.1× up to 3.5× with respect

to a non-hybrid GPU implementation.

KEYWORDS

heterogeneous architectures, scheduling, multi-GPU, work distribution, scientific

computing

1 Introduction

Hybrid computing systems have become ubiquitous in the high-performance

computing (HPC) domain. These systems are composed of computational nodes where

CPUs and accelerators coexist, defining a hybrid architecture. The most widely accepted

solution uses nodes that combine CPUs and GPUs, and given the impressive computing

power delivered by these architectures, significant efforts have been devoted in many

computing domains for port applications to this type of HPC systems. For instance,

machine learning, bioinformatics, scientific computing, and others, have clear examples

of representative applications, such as TensorFlow (Abadi et al., 2016), Caffe (NVIDIA,

2020), Smith-Waterman (Manavski and Valle, 2008), and Alya (Giuntoli et al., 2019), have

recently been developed to support GPU-based systems.
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Current technologies for programming hybrid systems are

based on language extensions to general-purpose programming

languages such as C/C++ and Fortran. Nvidia CUDA, OpenCL, and

OpenACC are reference programming models for heterogeneous

computing that follow this approach. In general, all these

programming frameworks focus on the essential actions for porting

an application to a hybrid architecture. This includes memory

allocation, data transfers between the host and devices that now

operate within a shared distributed memory address space, and the

specification of computations to be offloaded to devices, as well as

those to be executed by the host.

A hybrid parallelization simultaneously exploits fine and coarse

levels of parallelism. This parallelism, orchestrated from one or

more CPUs (e.g., one CPU to control one GPU), requires defining

memory allocation strategies for each device. It also involves

work distribution schemes that are aware of the different natures

of the host and devices to balance work execution, along with

communication phases whenever exchanging values between the

host and devices residing in different address spaces is necessary.

Current programming frameworks include almost no support

for enabling such parallel strategies. As a result, programmers have

to manually code the exploitation of the two levels of parallelism.

This is usually implemented by mixing two programming

models (e.g., OpenMP and CUDA). However, the available work

distribution schemes do not provide the necessary support and

adaptability for hybrid systems.

Moreover, communications always depend on the memory

footprint induced by the work distribution schemes, as

communication patterns arise according to where the data

has been placed. A trade-off exists between the work distribution

schemes and their impact on communication phases. Therefore,

work distribution is conditioned not only by the need for balanced

execution but also by the necessity to minimize communications

between the host and devices. All of this has been observed in

previous work in which specific work distribution mechanisms

have been described for hybrid architectures (Belviranli et al., 2013;

Choi et al., 2013; Mittal and Vetter, 2015; Zhong et al., 2012).

The challenge of simultaneously balancing both CPUs and

GPUs in a hybrid execution is essentially limited by the missing

support to deploy an appropriate work distribution. This article

addresses this challenge and builds from the previous work

developed by González and Morancho (2021a,b, 2023, 2024). The

main contributions of this paper are that

• the study of different state-of-the-art work distribution

schemes and the proposal of variants of the static and dynamic

task schedulers, based on a performance conversion factor

(pcf; the Static-pcf scheduler; scheduler Augonnet et al.,

2011; Beaumont et al., 2019) and based on task execution

times collected at runtime (the Guided and Clustered Guided

schedulers Duran et al., 2005).

• the evaluation of the proposed schedulers is done using

the NPB-MZ benchmark suite, implemented to execute a

hybrid and multilevel parallel strategy mixing OpenMP and

HIP (C++ Heterogeneous-Compute Interface for Portability).

In particular, the article studies the impact of the work

distribution in both the communication and computation

phases of this benchmark suite.

FIGURE 1

Flow diagrams of (A) NPB and (B) NPB-MZ.

On a system composed by an AMD EPYC 7742 at 2.250 GHz (64

cores, 2 threads per core, 128 threads) and 2 AMD Radeon Instinct

MI50 GPUs with 32GB, our hybrid executions speed up from 1.1×

up to 3.5× with respect to a pure GPU implementation, depending

on the number of activated CPUs and GPUs.

This article is organized as follows: Section 2 describes the NPB-

MZ benchmark suite used to perform the study and evaluation

of the new proposed scheduler for hybrid systems. Section 3

defines the concept of compute unit (CU). Section 4 describes the

implementation of the schedulers. Section 5 evaluates our proposal.

Section 6 discusses related work, and finally, Section 7 presents

our conclusions.

2 Benchmark characterization

2.1 NAS Parallel Benchmarks

The NAS Parallel Benchmarks suite (NPB; Bailey et al., 1991)

has been used to evaluate parallel computer systems since 1991.

The suite includes five kernels and three pseudo-applications.

Because the kernels are not suitable for evaluating the performance

of highly parallel systems, we focus solely on the three pseudo-

applications. These applications are designed to represent a broad

range of computational fluid dynamics problems and can adapt to

the increasing memory capacities of the new parallel systems.

Each of the three applications features amain loop known as the

time-step loop, which executes a fixed number of iterations. During

each iteration, a three-dimensional (3D) volume is traversed

to compute discrete solutions to the Navier–Stokes equation

(Figure 1A). However, the applications differ in their equation

solvers: block tridiagonal (BT), lower-upper Gauss-Seidel (LU),

and scalar pentadiagonal (SP). Each application is named after its

corresponding solver.

The multizone NPB suite (NPB-MZ; der Wijngaart and

Jin, 2003) re-implements the NPB to expose a coarse level of

parallelism. By dividing the 3D volume into tiles along both the

x- and y-dimensions (Figure 2), a grid of prisms, referred to as
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zones, is formed. While these zones can be processed in parallel,

the values of their lateral faces depend on the values of the lateral

faces of its neighbor zones. As a result, an exchange-boundaries

procedure is required between iterations of the time-step loop

to update the lateral faces of all zones (Figures 1B, 3A1). Thus,

each time-step iteration consists of two phases: the communication

period, for transferring zone faces, and the computation period, for

updating zones.

Table 1 summarizes the input classes (B, C, . . .) of the NPB-

MZ, detailing the overall 3D volume size (in terms of points and

memory usage), as well as specific information for each application,

including the number of zones, zone size, and the number of

time steps.

Notice that each application exposes the multizone parallelism

in distinct ways:

• LU: The number of zones is 16, independently on the input

class. Zone sizes are uniform.

• SP: The larger the input class, the larger the number of zones.

Like LU, the zone sizes are uniform; however the SP zones are

smaller than the LU zones.

• BT: Like SP, the larger the input class, the larger the number of

zones. However, the zone sizes are not uniform; for each input

class, the ratio between the size of the largest zone and the size

of the smallest zone is about 20×.

2.2 Sources of parallelism

The NPB-MZ suite exposes several levels of parallelism. Its

key distinction from the original NPB is the introduction of

a new parallelism level known as interzone parallelism. This

type of parallelism can be exploited during the computational

period by the parallel processing of zones across several CUs

(i.e., CPUs and GPUs). In addition to interzone parallelism, NPB-

MZ also exposes intra-zone parallelism during both periods while

processing each individual zone. It can be exploited through several

parallelization techniques (i.e., multi-threading, vectorization, and

porting to GPU).

The following subsections detail these levels of parallelism and

how they are exploited by our implementation.

2.2.1 Computation period: interzone parallelism
Figure 3A1 presents the structure of the time-step loop for the

NPB-MZ applications. The computation period is implemented

by a loop that traverses the zones and processes them. Because

the processing of a zone is independent of the others, interzone

parallelism can be exploited by parallelizing this loop.

Figure 3A2 illustrates the OpenMP implementation of this

parallel strategy. The parallel region is executed using as many

threads as there are CUs in the hybrid multi-CPU and multi-

GPU setup. CUs are defined in Section 3; for simplicity we can

assume that a CPU-based CU corresponds to one CPU core, while

a GPU-based CU corresponds to one GPU. For each GPU-based

CU, an OpenMP thread manages both the computation and the

FIGURE 2

(A) Unizone (NPB) vs. (B) multizone (NPB-MZ) three-dimensional

volumes.

communication associated with that GPU. Similarly, each CPU-

based CU has an OpenMP thread dedicated to executing zone

computations on a CPU core. The body of the parallel region

(Figure 3A2) consists of a while loop statement where at each

iteration the runtime checks for work availability to be offloaded

to a GPU. Based on the applied scheduling, the iterations of the

zone-phase loop are distributed among the threads. Each OpenMP

thread translates the assigned iterations to zones. Zones assigned

to a particular thread will be executed on the GPU the thread is

responsible for. The runtime invocations to get-task and commit-

task track whether a zone has already been processed.

2.2.2 Computation period: intrazone Parallelism
Figure 3B1 shows that each computational phase calls a

subroutine containing several loop nests that implement the

computation for one zone and a computational phase. The intra-

zone parallelism is derived from exploiting the parallelism exposed

by these loop nests.

For GPU-based CU, we adopt the approach outlined by

Dümmler and Rünger (2013), where a single-GPU implementation

is developed for the NPB-MZ benchmark suite. Figure 3B2 depicts

the transformation from a loop nest to a CUDA kernel definition

and its invocation. We code each loop body as a CUDA kernel,

and we translate, at kernel invocation time, the iteration space

into a CUDA <grid, block> definition; this translation requires the

definition of functions that map CUDA threads to actual elements

in the data structures (e.g., matrices) representing the zones. In

general, each computational phase contains multiple loop nests;
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TABLE 1 Input classes of NPB-MZ: overall size (number of points and memory usage) and, for each application, number of zones, zone size, and number

of time steps.

Input class 3D volume Memory Num. zones (x × y) Zone size (points per zone) Time steps

x × y × z
(points)

(GB) LU SP & BT LU SP BT LU SP BT

B 304× 208× 17 ≈0.2 4× 4 8× 8 67,184 16,786 From 2,992 to 59,976 250 400 200

C 480× 320× 28 ≈0.8 4× 4 16× 16 268,800 16,800 From 2,912 to 60,648 250 400 200

D 1,632× 1,216× 34 ≈13.0 4× 4 32× 32 4,217,088 65,892 From 11,968 to 243,236 300 500 250

E 4,224× 3,456× 92 ≈250 4× 4 64× 64 83,939,328 327,888 From 59,248 to 1,203,452 300 500 250

LU, lower-upper Gaussian-Seidel; SP, scalar pentadiagonal; BT, block triangular.

FIGURE 3

Code snippets of (A) interzone parallelism in the computation period and (B) intrazone parallelism in the computation period. (A1) Fortran 90 code

skeleton of NPB-MZ’s time-step loop. Its body traverses the zones to apply the computational phases to all zones. (A2) OpenMP and C++

implementation that distributes the zones to the GPUs. An OpenMP parallel region is defined, and one thread controls one GPU, executing the body

of the parallel region. The while loop invokes the runtime system to acquire work. (B1) C++ code skeleton of the Pth computation phase. Several

loop nests traverse the three-dimensional volume that represents the zone. (B2) C++ implementation of the Kth loop nest of the Pth computation

phase as a CUDA kernel (Kernel Definition). Each kernel operates over a single zone.

therefore, each phase is coded with as many CUDA kernels as

parallelized nests. All kernel invocations target the default CUDA

stream and, whenever feasible, we use shared memory.

For CPU-based CUs, the loop nests have been parallelized using

OpenMP directives, taking their implementation from the Fortran

version of the NPB-MZ. In all cases, a STATIC scheduling has been

selected as implemented by der Wijngaart and Jin (2003).

2.2.3 Communication period: intrazone
parallelism

The algorithm for exchanging boundary values is applied over

all zones sequentially (Figure 4A). Since zones must be processed

sequentially, interzone parallelism can not be exploited. However,

there is still potential for parallelism within the computations of

each individual zone.

This interzone parallelism can be exploited by kernels that

implement the border computation. In single-GPU execution, this

approach resembles the phase parallelization described in Section

2.2.2 (Figure 4B). Each loop iteration processes one zone and

updates the boundaries with only two adjacent zones (east and

north zones). The boundaries with the other adjacent zones (west

and south) will be updated in the loop iterations that process those

respective zones.

A hybrid execution that combines GPUs and CPUs requires

the introduction of data-transfer statements for the boundary-

exchange computations. For a zone located on a device, the

boundary computation must check if all adjacent zones are also

on that device; if any are not, those missing zones need to be

transferred. Similarly, this applies when the zone is stored in the

host memory.

Because the boundary computation updates both the zone and

its adjacent zones, any replicated zones must be copied back to

their original locations. Figure 4C presents the pseudocode for the

hybrid boundary-exchange algorithm. Note the communication

statements (e.g., the CUDA::copy-zone function) used between

kernels. These statements perform memory copy operations

between the host and the device address spaces that store

adjacent zones. Only the border data are exchanged, not the

entire adjacent zones, with the border data temporarily stored

in buffers. This process is implemented using nested loops to

gather border elements and place them in the temporary buffers.

The buffers are then transferred between the CUs where the

adjacent zones reside. It is important to note that, depending

on how zones are distributed, some copy statements may be
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FIGURE 4

Code snippets for exchanging boundaries. Zones are processed sequentially. No interzone parallelism exists; only intra-zone parallelism can be

exploited. (A) Shows the sequential host version. (B) Shows the single-GPU version where intra-zone parallelism is coded in the form of a kernel

invocation. (C) Shows the hybrid version with zone-transfer statements.

unnecessary. These statements are required only when adjacent

zones are mapped to different memory spaces. For simplicity,

we have omitted the code and data structures related to zone

placement management, assuming that this is handled within the

copy statement call. The impact of these communication processes

is a critical aspect of our study, as is understanding the relationship

between work distribution schemes (the mapping of zones to

hosts/devices) and their effects on the execution of the boundary-

value exchange algorithm.

3 Tasks and compute units

For scheduling purposes, we treat zones as the smallest unit

of work. As such, a task encompasses the entire processing of a

zone, including the execution of all its phases in sequence. The

task scheduling approach presented in this article maps tasks to

CUs to exploit interzone parallelism. Intra-zone parallelism, by

comparison, is exploited by each individual CU.

CUs can be either CPU-based or GPU-based. In the case of

CPU-based CUs, they consist of one or more aggregated CPUs.

For example, a CU can be formed by pairing two CPUs, which

we denote as a 1 × 2 configuration: “1” represents one CU, and

“2” indicates the number of CPUs in that CU. Similarly, a 4 × 8

configuration represents four CUs, each consisting of eight CPUs.

GPU-based CUs are structured as a single thread that manages

all operations on a single GPU, including memory allocation, data

transfers, and computation offloading.

In this work, the most common use cases are addressed with

hybrid configurations of the form N × M + G CPUs, where N

represents the number of CPU-based CUs, each utilizing M CPUs,

and G denotes the number of GPU-based CUs. All CPU-based CUs

consist of the same number of CPUs. For these configurations, a

total of N ×M + G threads are required for execution.

Threads are created using OpenMP directives. For

thread-to-CU association, we leverage the thread affinity

features available in OpenMP, specifically the environment

variables OMP_PROC_BIND and OMP_PLACES. Our

CU runtime support depends on properly configuring

these variables to establish the correct thread-to-CU

FIGURE 5

Example of an 8-CU organization: 4 CPU-based CUs composed

each one of 4 CPUs, 4 GPU-based CUs composed of 1 CPU and 1

GPU. This configuration needs 20 physical CPUs. OpenMP thread

binding is used to configure the thread-CU association. OpenMP

variables OMP_PLACES and OMP_PROC_BIND are set to achieve

the desired configuration.

mapping, enabling the simultaneous activation of both CPUs

and GPUs.

Figure 5 illustrates an 8-CU hybrid system, consisting of 4

CPU-based CUs, each with 4 CPUs, and 4 GPU-based CUs, each

with 1 CPU and 1 GPU. This configuration requires a total of 20

physical CPUs. The CPU aggregation is achieved by configuring

the OpenMP environment variables that control affinity and thread

binding to the CPUs. OMP_PLACES specifies the aggregation

of physical CPU identifiers, referred to as places, to which

threads are bound. OMP_PROC_BIND defines how the content

of OMP_PLACES is interpreted across nested levels of parallelism.

Table 2 presents the appropriate values for OMP_PLACES variable

in compact OpenMP form for specific CU configurations.

For the reader reference, a proposal for OpenMP extensions

with compute unit semantics is presented in “Compute units in

OpenMP: Extensions for heterogeneous parallel programming”

(González and Morancho, 2024). The proposal in this paper builds

upon the extensions proposed in the mentioned publication.
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TABLE 2 Value of the OpenMP OMP_PLACES environment variable for

various hybrid configurations.

Configuration OMP_PLACES

OpenMP

Thread

Binding

1x2 + 4 “{0:2}:1:1, {2}:4:1”

1x4 + 1 “{0:3}:1:1, {4}:1:1”

4x2 + 1 “{0:2}:4:2, {8}:1:1”

7x2 + 2 “{0:2}:7:2, {14}:2:1”

3x4 + 4 “{0:4}:3:4, {12}:4:1”

4 Schedulers

This section provides an overview of all the schedulers studied

in this work. Two of these are state-of-the-art schedulers: the

Static and Dynamic task schedulers, as implemented in their

OpenMP versions (OpenMP Architecture Review Board, 2021).

The remaining schedulers are variants of these two, specifically

adapted to address heterogeneity and computation within the NPB-

MZ suite. In this section, we define a CU as either a group of CPUs

(i.e., a CPU-based CU) or a single CPU that manages a GPU (i.e., a

GPU-based CU).

4.1 Static

This scheduling distributes zones uniformly across the CUs,

ensuring that each CU processes an equal number of zones.The

scheduler assigns to each CU consecutive zones based on

the iteration space defined in the computation period loop

(Figure 3A1). It is important to note that, due to zone adjacency (as

discussed in Section 2), each CU is assigned a group of contiguous

zones along the x-dimension. Consequently, communications

are primarily influenced by y-dimension adjacencies, while x-

dimension adjacencies lead to inter-CU communications only for

the first and last zones in each group.

Figure 3A2 illustrates that SCHEDULING::schedTasks

preassigns a group of zones to each CU. The accompanying

while statement iterates through the zones mapped to a CU.

This scheduler does not attempt to address any work imbalance

that may arise. However, it limits data transfers to the y-dimension,

which can help minimize the total number of communications

during the communication period. Additionally, because the

mapping of zones to CUs remains invariant throughout the

computation period, the volume of zone transfers during the

communication period will also remain invariant.

4.2 Dynamic

This scheduler partitions the iteration space of the computation

period loop into blocks of consecutive zones, with the size of each

block determined by the chunk parameter. The scheduler assigns a

block of zones to each CU, and once a block is processed, a new one

is immediately assigned.

In Figure 3A2, zones are not preassigned to CUs. Instead, each

iteration of the while loop allocates a block of chunk consecutive

zones to a CU. This dynamic scheduling approach helps balance

execution time when zone sizes vary, regardless of the zone

adjacency in both dimensions. However, this may result in data

transfers between adjacent zones in both dimensions, potentially

increasing the total execution time of the communication period.

The chunk parameter can smooth the impact of data transfers.

Theminimal work unit to be distributed is a block of chunk adjacent

zones along the x-dimension. Consequently, there is a compromise

between the chunk size, the number of communications, and the

work unbalance.

Because this scheduler may change the zone-to-CU mapping

on each iteration of the computation period, the number of zone

transfers will also vary.

Balancing the computation period, while simultaneously

keeping constant and low the amount of zone transfers is achieved

by implementing a memorizing variant of the feedback dynamic

loop scheduler (Bull, 1998), a state-of-the-art dynamic scheduler.

After a few iterations of the time-step loop, the scheduler locks

the zone-to-CU mapping for the remaining iterations to prevent

zone migrations between CUs. This transforms the scheduler into

an affinity-oriented one, where the chunk parameter determines the

task granularity.

4.3 Static-pcf

This scheduler is a variant of the Static scheduler, previously

described for heterogeneous architectures (Augonnet et al., 2011;

Beaumont et al., 2019). In this article we develop a new variant

designed to maximize zone adjacency for each execution flow.

Our variant relies on determining, at profile time,

the performance conversion factor (PCF). Given a hybrid

configuration and a task, the PCF is defined as the ratio between

the execution time required by a CPU-based CU and that required

by a GPU-based CU to process the same task. For instance, a

PCF1x2 equal to 3 means that the execution time required by a

2-CPU CU to process a task triples the time needed by one GPU-

based CU (e.g., 1 GPU). Similarly, PCF2x8 is the ratio between the

execution times of a 8-CPU CU and a 2-GPU CU processing the

same task.

The Static-pcf scheduler splits the task set into two subsets,

to be processed by the CPU-based CUs and the GPU-based CUs

respectively, according to the PCF value. Static scheduling is then

applied within each subset. The goal is balancing the execution time

of both kinds of CUs.

GivenT tasks,Ncpu CPU-based CUs, andNgpu GPU-based CUs,

this scheduler assigns Tgpu tasks to the GPU-based CUs:

Tgpu =

⌊

T

Ngpu · PCF + Ncpu

⌋

· Ngpu · PCF.

Additionally, Tgpu is increased by the remainder of the integer

division (but only up to Ngpu · PCF tasks). The remaining tasks are

assigned to the CPU-based CUs, that is, Tcpu = T − Tgpu.

Note that the integer division of T by Ngpu · PCF + Ncpu gives

the number of task groups that can be formed with enough work
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FIGURE 6

Steps for Guided scheduling. Step 1 calculates the total workload

and estimates the work assigned to each CU. Step 2 enters in an

iterative process where per each CU steps 3, 4, and 5 are performed.

Steps 3 and 4 increment and decrement, respectively, the chunk of

iterations assigned to current CU. Step 5 sets the exact first and last

zones to be processed by the current CU.

to distribute the tasks among both kinds of CUs in a balanced way.

For instance, if T = 40, Ngpu = 1, Ncpu = 1, and PCF = 4, then we

want to form groups of five tasks (Ngpu · PCF + Ncpu = 5), where

four of them will be mapped to the GPU and one will to the CPU.

As PCF = 4, this distribution is balanced.

After determining Tgpu and Tcpu, the Static-pcf applies a static

scheduling within each subset.

4.4 Guided

Similar to the Static scheduler, this scheduler partitions the

zones in number of CUs chunks of consecutive zones. However,

the chunks may vary in size. The zone-phase loops traverse chunks

of consecutive iterations (i.e., zones). The starting and ending

points of the chunks depend on the workload of each chunk. We

have developed two versions of the Guided scheduler: Guided-

Sizes andGuided-Runtime. Both variants rely on approximating the

workload of the chunks.

Guided-Sizes approximates the workload of a chunk by

summing its zone sizes. Like the Static scheduler, this scheduler

assigns to each CU zones adjacent along the x-dimension (except

for the first and last zones of the chunk). The workload is balanced

based on the sum of the zone sizes.

Guided-Runtime approximates the workload of a chunk

by summing the execution time of its zones. This scheduler

collects, at runtime, the execution time of each zone (excluding

communications and boundary computations). This information

guides balancing the execution time among CUs. Like the Guided-

Sizes scheduler, communications appear just in the y-dimension.

Figures 6, 7 depict the structure and pseudocode for both

Guided schedulers. The algorithm takes two input vectors:

FIGURE 7

Algorithm for the Guided schedulers. Input vectors: the work done

by each compute unit (WorkDonePerCU) and the zone sizes

(WorkPerZone). Input/output vectors: indexes that define chunks of

consecutive zones along the global numbering of zones

(IndexFirstZone and IndexLastZone).

WorkPerZone, which represents the workload of each zone, and

WorkDonePerCU, which represents the workload processed by

each CU during the previous iteration of the computation period.

These input vectors define the workload in terms of either zone

sizes (Guided-Sizes) or execution time (Guided-Runtime). The total

workload, TotalWork, is just the accumulation of the workload

processed by each CU; the ideal balanced workload per CU,

WorkPerCU, is computed by dividing the total work by the number

of CUs (Figure 7 from line 1 to 3, corresponding to step 1 in

Figure 6).

The algorithm also takes two input/output vectors,

IndexFirstZone and IndexLastZone, which indicate the current

starting and ending points of each chunk (the first and last zones in

the chunk of consecutive zones). The remainder of the algorithm

explores how to adjust the current chunk limits to improve the

work balance. For each CU, if its work done is smaller than the

ideal WorkPerCU (line 8) the algorithm tries to add new zones

at the end of its chunk (lines 9–17), step 3 in Figure 6. The while

loop (line 9) increases Last as long as the workload assigned to the

CU gets closer to WorkPerCU. However, if the workload of the

CU exceeds WorkPerCU, the algorithm tries to detach zones at

the end of its chunk (lines 19–27). Similarly, the while loop (line
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19) decreases Last as long as the assigned workload to the CU gets

closer to WorkPerCU (step 4 in Figure 6). Finally, lines 28–31 set

the new assignment of zones to the current CU (step 5 in Figure 6).

4.5 Clustered Guided

The Clustered Guided scheduler partitions the zones into two

clusters: one for CPUs and one for GPUs. For each cluster, likewise

the Static scheduler, zones are distributed in as many chunks of

consecutive zones as the number of CUs in the cluster. However,

chunk sizes may vary to balance the execution time across CUs.

Figure 8D depicts the zone set, represented as a segment

ranging from zone 1 to zone Nzones. The partition point, labeled

Pivot, divides the zones: Those from zone 1 up to the Pivot are

assigned to CPUs, while zones beyond the pivot are assigned

to GPUs. The chunks are represented as the pairs Tfirst and

Tlast . The convenient value for the Pivot is determined using a

dichotomic search.

Clustered Guidedmaintains several data structures (Figure 8A).

The Pivot marks the partition point. Integers DEC and INC

indicate the current steps applied by the dichotomic search. Vector

TaskTime[Nzones] records the execution time of each zone. Vector

CUtime[NCUs] tracks the total execution time of each CU. Vectors

FirstTask[NCUs] and LastTask[NCUs] store the Tfirst and Tlast values

that describe the zone assignment per each CU.

Figure 8C shows the state diagram of the scheduler. Figure 8B

describes the actions performed by the scheduler in each state and

which data structures are updated.

• The INIT state assigns one zone to each CPU; thus, Pivot =

NCPUS and sets the initial value for both INC/DEC asNzones /2.

Finally, one time-step iteration is performed.

• The PROBE state also performs a time-step iteration, keeping

constant the latest zone distribution, with the purpose of

collecting accurate timings.

• The MOVE state computes which cluster is executing slower.

If CPUs take longer, then the Pivot moves left. If GPUs

take longer, the Pivot moves right. The scheduling uses the

timing information kept inCUtime. At his point, the INC/DEC

increment/decrement is halved. This makes smaller the step

the scheduling follows to find the work balancing point. Then,

within each cluster, a Static scheduler is applied among the

CUs that belong to the cluster. Then, a time-step iteration is

executed under the new scheduling (PROBE state).

• The BALANCE state balances the execution within each

cluster (pseudocode in Figure 8 is applied to each cluster

separately). It calculates TotalWork, the cumulative execution

time for each cluster, by summing each CU’s time from

CUtime. Then, the ideal balanced workload per CU

(WorkPerCU) is obtained by dividing the total work by the

number of CUs in the cluster. Given a CU, if the work done is

less than the estimated WorkPerCU the scheduling adds new

zones at the end of the chunk. This is performed by the while

loop that increases Last as long as the assigned workload to

the CU approaches to WorkPerCU. If the workload is greater

than WorkPerCU, then the state discards zones at the end

of the chunk: The while loop decreases Last as long as the

assigned workload to the CU approaches WorkPerCU. After

the reassignment, one time-step is executed.

• The STEADY state is reached once INC/DEC value is 1 and the

scheduling detects a switch frommoving left/right to right/left.

After that, the scheduling remains constant for the remaining

time steps.

Corner cases have been deliberately omitted to simplify the

description. For instance, the Pivot may define an empty cluster

(e.g., the CPUs are too slow to compute any zone). Additionally,

the BALANCE state for a zero-zone cluster is not included. Also,

when the number of zones in a cluster is smaller than the number

of CUs in the cluster, then the BALANCE state assigns a single zone

per each CU.

Note that the scheduler requires four time-step iterations to get

closer to the balanced work distribution (states MOVE, PROBE,

BALANCE, and PROBE). Then, less than 4 · log2(Nzones) iterations

are needed to reach the STEADY state. The effect of this aspect of

the scheduler is analyzed in Section 5.

To sum up, Figure 9 shows possible schedulings of eight zones

among two CPUs and two GPUs. Static scheduler maps adjacent

zones to each CU regardless work balance. Dynamic balances

work regardless zone adjacencies. Clustered Guided gets the best

of both strategies, balancing workload while preserving adjacency

where possible.

5 Evaluation

This section evaluates the schedulers for a hybrid

implementation of the NPB-MZ benchmark suite. We have

used the ROCm-3.5.0 framework and llvm 12 compiler with -O3

and -openmp flags. The hybrid code has been compiled combining

a C++ NPB-MZ implementation (Dümmler and Rünger, 2013)

and the original NPB-MZ Fortran implementation (der Wijngaart

and Jin, 2003) to generate a version compatible with the ROCm

implementation of the applications. All experiments have been

performed in a system composed of an AMD EPYC 7742 at

2.250GHz (64 cores, 2 threads per core, 128 threads) and two AMD

Radeon Instinct MI50 GPUs with 32GB. We run class D NPB-MZ

benchmarks (Table 1), so the input mesh is composed by 16 zones

(LU-MZ) or 1024 zones (BT-MZ and SP-MZ); memory usage is

13 GB.

The evaluation is organized in a first section where we

analyze the effect of the schedulers in the execution times for

the computation period and communication period. A second part

describes the overall performance of the applications under all of

the schedulers. Along the evaluation, we refer to a CU as defined in

Section 3.

5.1 Performance analysis

Along this section we analyze the effect of the work scheduling

in both the computation period and the communication period. We

have taken 50 samples of execution time for both and computed
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FIGURE 8

Data structures (A), states and computation (B), state transitions (C), and graphical interpretation (D) of the Clustered Guided scheduling.

FIGURE 9

Possible schedulings of 8 zones on 2 CPUs & 2 GPUs.

the average and standard deviation of the samples. As all the NPB-

MZ applications perform a first initial iteration where memory

allocation happen, the samples do not include this event. In all

cases, with a 99% confidence interval, the margin of error for

the average values is from ±0.02% to ±0.53%. Consequently, the

average execution times are significant. For the Clustered Guided

scheduling, we have taken the samples after reaching the steady

state. The effect of the search process of this scheduling is addressed

in Section 5.2 where we study the overall performance.

5.1.1 BT-MZ
Figure 10 shows the performance of the BT-MZ and class

D application under several configurations and Static, Dynamic,

Static-pcf, Guided, and Clustered Guided schedulers. The charts

expose the performance of the computation period and the

communication period (execution time in ms). The right-side part

of the charts shows the speedup observed in the computation

period with respect the non-hybrid CPU-based execution. Also,

the bottom-right chart exposes the speedup observed in the

communication period with respect the 1-CPU serial version to

understand the effects of the schedulers on this phase on the overall

performance. For CPU-only execution with several CPU-cores,

the computation period speedups range from 8× and 19×. The

modest scalability is related to two main aspects. The last level of

cache memory has a small capacity compared to the input data

size: 256 MB in contrast to 13 GB (Figure 1). The time it takes to

compute one zone when executing with 16, 32, 48, and 64 CUs is

not constant (see Table 3). This is essential for understanding the

effects of the schedulers in the computation period. We refer to the

data in Table 3 several times along the scheduler analysis. Moreover,

BT-MZ computes over a mesh composed of 1,024 unequally sized

zones. The input set defines an scenario of many tasks combining

small, medium, and large tasks. These increments in the average

task execution time limit the effectiveness of the schedulers. The

following paragraphs describe the performance for each one.

Static: Hybrid configurations show poor performance as the

scheduler fails to balance the work distribution (speedup factors

from 8× to 20×). In addition to the combination of GPUs and

CPUs, the zones are not equally sized, which complicates the

definition of a well-balanced work distribution. In none of the

hybrid configurations did the scheduler exposes more than a

speedup of 20×, compared to non-hybrid configurations with 1-

GPU (10×) and 2-GPU (15×) configurations (notice how this

corresponds to poor scaling, essentially caused by the the degree

of work unbalance in the input mesh). The lower rightmost chart

in Figure 10 shows the observed speedup for the communication

period: 1.10 × –1.20 × across all hybrid configurations. This

implies that the work distribution is not negatively impacting

on the communication period. The main reason for that is that

zone adjacency is maintained when zones are assigned to CUs. If

adjacency is maintained, then data locality is improved with respect

the border computation. This will become an important issue for

Dynamic-based schedulers where zone adjacency is no longer kept,

leading to data transfers associated to border elements.

Dynamic: Speedups for the computation period range from

21× to 48×, improving the Static performance. This scheduler

responds well work unbalance due to the differences in the zone

sizes and the compute power of the CUs. But this scheduler

causes that adjacent zones are assigned to different CUs, which
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FIGURE 10

Benchmark BT-MZ. computation period (light gray) and communication period (dark gray) execution times (left axis) and speedup (right axis) for the

computation period with respect to 1-CPU configuration. From left to right, CPU-only, 1-GPU, and 2-GPU hybrid configurations (for 1 GPU, version

16 × 1 corresponds to 1 + 16 × 1 configuration). BT, block triangular. *For configurations with 1 and 2 GPUs, one CPU thread is dedicated to manage

a GPU. Therefore, configurations with 64 CPU threads actually use 63 and 62 CPU threads for actual computation, respectively.

requires additional data transfers to compute border values.

Therefore, the communication period is affected by an increment

in its execution time. We have observed that for CPU-only

configurations, the communication period takes approximately 80

ms, while for hybrid configurations, it takes approximately 200

ms. The lower rightmost chart in Figure 10 shows the observed

slowdowns for the communication period: 0.3×–0.5× across all

hybrid configurations. This corresponds to data transfers of border

elements of adjacent zones that have been executed by different

CUs. This effect will justify the overall performance levels for this

scheduler. One particular observation for the BT-MZ benchmark

is that the zones in its input mesh are not equally sized. This

results that for a scheduling that balances the work across the

CUs, the balancing effect generates speedup values much greater

than would be expected. For instance, the 1-GPU configuration is

approximately 2 times slower than the 64 × 1 CPU configuration.

One would expect that the 64 × 1 + 1 hybrid configuration be at

most 3 times faster than the 1-GPU configuration. But because of

the work balance induced by the scheduling, we observe a greater

speedup of 4×. The same happens with the case of 2-GPU and

hybrid configurations, where the baseline performance value is a

STATIC scheduling and when switching to hybrid configurations,

the scheduling balances not only according to the nature of the CUs

but also in terms of the zone sizes and the total amount of work

assigned to a CU. In general, this phenomenon appears in any of

the studied schedulings for the BT-MZ benchmark.

Static-pcf : The Static-pcf scheduler uses a PCF between the

GPUs and the CPUs. PCF values are computed from the data

in Table 3: Divide the average task execution time under a CPU

and non-hybrid configuration by the average task execution

time when executed in one GPU. Table 4 shows the PCF values

for each configuration and application, calculated from Table 3.

The performance of this scheduler is lower than the Dynamic

scheduler. The speedup for the computation period ranges between

20× and 40× depending on the number of CUs. The Static-

pcf only adapts to the difference in compute power of the CUs

but not to the work unbalance generated by the differences

in the zone sizes. The computation period dominates the total

TABLE 3 Average task time (ms) for all NPB-MZ applications with

di�erent CU configurations: B×T, where B stands for the number of CUs

and T stands for the number of threads in each CU, no-hybrid 1-GPU, and

2-GPU configurations (B = 0).

Conf. SP-MZ BT-MZ Conf. LU-MZ

1-GPU 0.83 2.96 1-GPU 38.44

1× 1 8.70 31.11 1× 1 1,653.38

16× 1 9.00 64.75 1× 16 258.94

32× 1 11.25 69.19 1× 32 98.13

48× 1 18.61 87.66 1× 48 88.44

64× 1 36.38 102.50 1× 64 38.44

CU, compute unit; SP, scalar pentadiagonal; BT, block triangular; LU, lower-upper Gauss

Seidel.

TABLE 4 PFC values used per each application and configuration.

Conf. SP-MZ BT-MZ Conf. LU-MZ

1-GPU 1 1 1-GPU 1

16× 1 10.89 21.91 1× 16 6.74

32× 1 13.62 23.41 1× 32 2.55

48× 1 22.52 29.66 1× 48 2.30

64× 1 44.03 34.69 1× 64 2.16

Values are obtained from the relation between task execution times in 1 GPU and B× T CPUs

configurations (B × T, where B stands for the number of CUs and T stands for the number

of threads in each CU). SP, scalar pentadiagonal; BT, block triangular; LU, lower-upper Gauss

Seidel.

execution time over the communication period, in contrast to

the Dynamic scheduling. The Static-pcf does not increase its

execution time (the lower rightmost chart in Figure 10 shows

the observed speedup for the communication period: 1.1×–1.2×

across all hybrid configurations). This effect will be essential for

understanding later the overall performance differences between

Static-pcf and Dynamic. Zone adjacency is only kept with he Static-

pcf schedule, not the Dynamic. Therefore, the scheduler impact
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FIGURE 11

Evolution of the Clustered Guided scheduler for the BT-MZ

application under the 32 × 1 + 2 configuration. The x-axis shows

average execution time of each CPU, while the left y-axis shows

average execution time per GPU. The right y-axis shows the time

step where the average times have been computed.

on the communication period will determine which scheduler

performs better in terms of overall performance.

Guided: Speedups for the computation period range from 14×

to 37× for 1-GPU hybrid configurations, and from 15.5× to 36×

for 2-GPU hybrid configurations. This scheduler is below the

Dynamic performance, mainly for two reasons. First, the resulting

work distribution is limited by the fact that the assigned zones to

CUs have to be consecutive (e.g., adjacent) following the order in

the loop that traverses the set of zones. In contrast, Dynamic is

able to map zones to CUs with no restriction according on the

compute speed of each CU. Second, the schedule starts assigning

zones to first CU (e.g., the one with id = 0, up to NCU-1) and

then continues for all CUs. At some point, zones move from and

to CPU-based and GPU-based CUs. And when this happens, the

scheduler takes the current execution time of the moving zone

as reference for its total contribution to the work scheduling.

Therefore, the scheduler moves the zones not having the actual

execution time for them when run on the selected CU. With the

two mentioned restrictions, the solution found by this scheduler

is not as good as the one of the Dynamic scheduler. To address

this limitation, the Clustered Guided scheduler clusters the zones

per CPU-based and GPU-based CUs and measures the execution

times before changing the zone-CU mapping (whose performance

is analyzed in the next). Regarding the communication period,

the Guided scheduling does not cause any slowdown, in contrast

to the Dynamic scheduler. Therefore, the impact on the overall

performance will be conditioned by the fact the schedulers define

an appropriate trade-off between the two phases.

Clustered Guided: Speedups for the computation period range

from 24× to 42× for 1-GPU hybrid configurations, and from

34× to 49× for 2-GPU hybrid configurations. This scheduler

outperforms both the Static-pcf andGuided schedulers and exposes

similar performance levels as the Dynamic scheduler. Also, it

exposes good performance for the communication period, with

speedups that range from 1.10× to 1.45×. Therefore, this scheduler

succeeds in having the best execution time for the computation

period with a very good trade-off between the execution of the

computation period and the communication period. Compared to

Guided, the scheduler overcomes one main observed limitation of

this schedule: Never does the zone assignment moves the zones

between CPU-based and GPU-based CUs. Instead, two clusters

are defined, and the Guided scheduler is applied in each cluster

moving zones between CUs of the same type. One main aspect

of this scheduler is the induced overheads due to the time it

takes to reach a steady work distribution and how this affects the

overall performance. The speedup numbers in Figure 10 refer to the

speedup after the steady state is reached. Before that, the scheduler

traverses several configurations in search of the appropriate zone-

CU mapping. Figure 11 exposes the evolution of the Clustered

Guided scheduler for a configuration of 32×1 + 2 CUs. The x-

axis shows average execution time of each CPU, while the left y-axis

shows average execution time per GPU. The right y-axis shows the

time step where the average times have been computed. It is clear

how after few application time steps, both clusters are balanced

and remain in a configuration where GPUs do about 900ms of

computation and CPUs do about 600ms of computation. For other

configurations (e.g., 16 × 1 + 1, 16 × 1 + 2, . . .) the charts expose

very similar behaviors as what has been described in Figure 11.

In conclusion, the best schedulers for the computation period

are the Dynamic and Clustered Guided. Dynamic exposes speedup

factor between 21× and 48× depending on the number of activated

CUs, while Clustered Guided exposes speedup factors of 24× and

49×. For the communication period, the schedulers that assign

adjacent zones to the same CUs improve the execution time of

this phase. Between the two, only the Clustered Guided maximizes

adjacency, therefore it achieves improvements in both phases

and overcomes the performance of the Dynamic scheduler. The

Dynamic scheduling presents speedup factors of 0.3×–0.5× in

the communication period, while the Clustered Guided scheduling

exposes speedup factors between 1.2×–1.5× in the communication

period. Section 5.2 quantifies this effect on the overall performance.

5.1.2 SP-MZ
As SP-MZ behaves similarly to BT-MZ, we do not show the

performance analysis for SP-MZ. However, in Section 5.2, we

discuss its overall performance.

5.1.3 LU-MZ
Figure 12 shows the performance of the LU-MZ and class

D application under several configurations and Static, Dynamic,

Static-pcf, Guided, and Clustered Guided schedulers. The charts

expose the performance of the computation period and the

communication period (execution time in ms). The leftmost part of

the chart shows the performance respect the CPU-only execution

in terms of speedup. For the computation period, expose a moderate

scalability (speedups range from 6× and 19× with just one single

CPU-based CU, composed of 16, 32, 48, and 64 CPUs). The

performance increments show that the innermost loops in the

computational stages respond moderately well to the increment

of threads.
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FIGURE 12

Benchmark LU-MZ. Computation period (light gray) and communication period (dark gray) execution times (left axis) and speedup (right axis) for

Computation Period with respect to 1-CPU configuration. From left to right, CPU only, 1-GPU and 2-GPU hybrid configurations (for 1 GPU, version

16×1 corresponds to 1 + 16×1 configuration). *For configurations with 1 and 2 GPUs, one CPU thread is dedicated to manage a GPU. Therefore,

configurations with 64 CPU threads actually use 63 and 62 CPU threads for actual computation, respectively.

Static: We observe a very poor response to the increment

on the total count of CUs: The speedups for 1-GPU hybrid

configurations range between 30× and 50×, far below from

the speedup value observed for non-hybrid 1-GPU configuration

(speedup of 43×). Similarly, the 2-GPU configuration for 2-GPU

hybrid configurations, speedups range between 25× and 74×, again

far below the 2-GPU configuration with speedup of 85×. The

resulting work distribution fails to balance the assignment between

CPU-based and GPU-based CUs.

Dynamic: For 1-GPU configurations, we observe a maximum

speedup of 57× with 1-GPU and 48 CPU threads. This version

solves the work balance problem. This is not the case for 2-GPU

configurations. The optimal work distribution corresponds to just

assign one task to the CU-based CU. But in 1× 16, 1× 32, and 1×

64 configurations, two or more tasks are assigned to the CPU-based

CU. This explains the poor performance.

Static-pcf : Speedups range from 57× and 61× for 1-

GPU configurations, and between 85× and 97× for 2-GPU

configurations. In this case, the problem observed in the Dynamic

scheduling is solved as for this scheduler, just one task is assigned

to the CPU-based CU.

Guided: For the 1-GPU hybrid configurations, the speedups

for the computation period range between 38× and 55×. This

scheduler only improves the performance with respect the Static

scheduler. It is below the Dynamic and Static-pcf schedulers.

Two factors determine this trend. On one side, the LU-MZ

application operates with a mesh with very few zones, only 16. In

addition, Tables 3, 4 expose that the performance factors between

the execution time for one zone between 1-GPU and CPU-based

configurations are in the range of 2×–6× clearly exposing that one

GPU process one zone much faster than 16, 32, 48, or 64 CPUs. The

Guided scheduler relies on actual measurements of execution time,

but at themoment ofmaking, the zone-CUmapping cannot predict

the impact on the overall execution time of the computation period.

And for the LU-MZ application, moving one zone from GPU

execution to CPU execution has a very significant impact. Thus,

the Static-pcf and Dynamic result in a better work distribution. We

observe the same trends for 2-GPU hybrid configurations, where

FIGURE 13

Evolution of the Clustered Guided scheduler for the LU-MZ

application under the 63 × 1 + 1 configuration. The x-axis shows

the average execution time of each CPU, while the left Y-axis shows

average execution time per GPU. The right y-axis shows the time

step where the average times have been computed. LU,

Upper-lower Gauss-Seidel.

the Guided scheduler exposes speedup factors that range from 43×

to 89× on the computation period.

Clustered Guided: For the 1-GPU hybrid configurations, the

improvement for the computation period ranges between 44×

and 55× speedup factors. This scheduler clearly improves the

performance seen for the Static, Dynamic and Guided schedulers,

but it is below the performance levels exposed by the Static-

pcf scheduler. We observe the same trends for 2-GPU hybrid

configurations, where the computation period exposes speedup

factors that range from 75× to 92×. For these configurations,

this scheduler outperforms Static and Dynamic schedulers but not

the Static-pcf. Respect the communication period, this scheduler

maximizes adjacency when zones are distributed across the CUs.

We observe speedups of the communication period in the range
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of 1.10× and 1.20×. Regarding the overheads of this schedule,

we have observed far below overhead levels as those observed

with the BT-MZ and SP-MZ applications. The main reason is the

number of zones: 16 for LU-MZ. Thus, with very few iterations,

the scheduler captures the appropriate configuration. Figure 13

exposes the evolution of the scheduler for a configuration of 63×1

+ 1 CUs. The x-axis shows average execution time of each CPU,

while the left y-axis shows average execution time per GPU. The

right y-axis shows the time step where the average times have been

computed. It is clear how after very few application time steps,

both clusters are balanced and remain in a configuration where

both CPUs and GPUs do about 400ms of computation. As with

all of the previous schedulers, the computation period experiments

increments of performance as long as the number of active CUs

is also increased but only up to 32 CUs. Then we observe a drop

in performance for 48 and 63 CUs. Again, the reason is related to

the average processing time of one zone. When using different 32,

48, or 64 CPU-based CUs, the zone processing time suffers from a

significant slowdown (see Tables 3, 4).

In conclusion, the best schedulers for the Computation Period

are the Static-pcf and Clustered Guided. Static-pcf demonstrates a

speedup factor between 49× and 97×, depending on the number

of activated CUs, while Clustered Guided demonstrates a speedup

factor of 44× and 97×. For the communication period, both

schedulers assign adjacent zones to the same CUs, so both improve

the execution time of this phase, exposing similar speedup factor of

the communication period, in the range of 1.1×−1.2×.

5.2 Overall performance

This section describes the overall performance of each

scheduler. The performance numbers are explained by the effect of

the three main limiting factors observed in the previous sections:

number of zones and differences in their sizes, the zone adjacency,

and whether the scheduler obtains runtime information or not.

Figures 14–16 include the evaluation data for each application in

the NPB-MZ suite.

BT-MZ: This application operates on a mesh with many

zones (1,024) combining small, medium, and big sizes. For 1-GPU

configuration, initial speedup is 10×with respect the serial version.

For Static, as the CU count is increased, the response is very poor:

Speedups range between 8× and 19×. The reason for this trend is

related to two factors: the difference between CUs and the fact that

the zones are not equally sized. Dynamic and Static-pcf schedulers

solve both issues with performance factors from 19× to 33×,

having themaximum values for theDynamic scheduler. In this case,

the Dynamic assignment of zones to CUs, balances the load across

the CUs in a much more effective manner than a profile-based

mapping. Static-pcf is guided by average task time (see Tables 3,

4), while Dynamic is guided by actual execution time of tasks

(e.g., the speed of each CU determines the work assignment). The

work unbalance caused by the differences in the zone sizes has

more impact that the different compute power of GPUs and CPUs.

But one main limitation of the Dynamic scheduler is its effect

on the communication period. If we compare the speedup factors

for the Computation Period, with those achieved in the overall

performance,Dynamic presents much better results than any of the

other schedulers (e.g., 21 × −41× speedup factors; see Figure 10).

But the combination with its effects on the communication period

lowers its overall performance. This explains that when compared

to the Clustered Guided schedule, this one presents better overall

performance factors. The Guided scheduler is led by runtime

information, but it does not have a mechanism to predict what will

be the execution time of a zone when moved from/to a CPU/GPU.

Thus, both Static-pcf and Dynamic outperform this scheduler. In

contrast, Clustered Guided scheduler is the one exposing the best

performance. It collects runtime information and besides observes

what are the actual changes in the zone execution time to guide

the evolution of the work distribution. For 1-GPU configurations,

this scheduler presents speedup factors from 23× to 39×, and

for 2-GPU configurations, 32× to 49×. Notice that although the

overheads related to the search period of this schedule, these do not

hinder to achieve the best performance levels.

SP-MZ: This application operates on a mesh with many zones

(1,024) all of them equally sized and of small sizes. For 1-GPU

executions, speedup is 10×. As more CUs are added, the response

is different in each scheduler. Static fails to adapt the work

distribution according to the different type of CUs. The maximum

speedup is 18× with 32 additional CUs but dropping with 48 and

63 CUs. This drop is explained by data in Table 3, with average zone

execution time comparing 1-GPU executions with CPU executions

(e.g., 16, 32, 48, and 64 CPUs). Basically, the more zones are

computed in parallel, the more CPU cores execute simultaneously

putting more pressure to the cache hierarchy, resulting in an

clear lack of scalability. Dynamic performs better for 32 or fewer

additional CUs, with speedups of 14× and 20× for 16 CUs and

32 CUs configurations, respectively. But, as we have already seen,

this scheduler tends to map adjacent zones to different CUs, thus

causing additional overheads in the communication period. The

Static-pcf scheduler solves this but presents again a similar drop

in performance with more than 32 CUs. The maximum speedup

for 1-GPU hybrid configurations is 25× and 32 additional CUs.

For 2-GPU configurations, we observe speedup factors in the from

18× to 30×, maximum factor of speedup. The Guided scheduler

is below the Static-pcf mainly because its inability to predict what

is the effect when moving one zone from/to CPU/GPU-based CUs.

Clustered Guided solves this and clearly exposes much higher levels

of performance, as similar to Static-pcf.

LU-MZ: For 1-GPU non-hybrid executions, speedup is 42×.

With additional CUs, speedups range between 44× and 48×

showing a drop for the 1 GPU and 63 CPUs. Both the Dynamic

and Static-pcf schedulers outperform with 55× − 59× factors,

having a maximum value for the Static-pcf scheduler with 1-

GPU and 63 CPUs. For 2-GPU executions, the base speedup is

83× and the trends are similar to those observed previously. In

this case, maximum speedup is 92× and corresponds to Static-

pcf with 62 additional CUs. The Guided and Clustered Guided

schedulers perform similarly but below the Static-pcf performance.

In this case, we have seen that the small number of zones

and the fact that zones a large enough so that the effects on

the communication period are almost negligible, Static-pcf is

sufficient to capture an effective work distribution with no need

of tracking execution times at runtime. However, needing the a

precomputed value obtained through the profiling of non-hybrid

CPU executions.
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FIGURE 14

Overall performance of the BT-MZ application under the Static, Dynamic, Static-pcf, Guided, and Clustered Guided schedulers. The x-axis describes

the CU configuration: from left to right, only CPU execution, 1-GPU execution, hybrid 1-GPU executions, 2-GPU executions, and hybrid 2-GPU

executions. The y-axis shows the speedup with respect the 1-CPU execution. BT, block triangular.

FIGURE 15

Overall performance of the SP-MZ application under the Static, Dynamic, Static-pcf, Guided, and Clustered Guided schedulers. The x-axis describes

the CU configuration: from left to right, only CPU execution, 1-GPU execution, hybrid 1-GPU executions, 2-GPU executions, and hybrid 2-GPU

executions. The y-axis shows the speedup with respect the 1-CPU execution. *For configurations with 1 and 2 GPUs, one CPU thread is dedicated to

manage a GPU. Therefore, configurations with 64 CPU threads actually use 63 and 62 CPU threads for actual computation, respectively.

FIGURE 16

Overall performance of the LU-MZ application under the Static, Dynamic, Static-pcf, Guided, and Clustered Guided schedulers. The x-axis describes

the CU configuration: from left to right, only CPU execution, 1-GPU execution, hybrid 1-GPU executions, 2-GPU executions, and hybrid 2-GPU

executions. The y-axis shows the speedup with respect the 1-CPU execution. *For configurations with 1 and 2 GPUs, one CPU thread is dedicated to

manage a GPU. Therefore, configurations with 64 CPU threads actually use 63 and 62 CPU threads for actual computation, respectively.

6 Related works

6.1 NPB-MZ studies

Dümmler (2013) and Dümmler and Rünger (2013) evaluated

NPB-MZ benchmarks on hybrid CPU+GPU architectures. They

decompose the workloads and, using a static scheduling, distribute

them among the CPUs or the GPU. Their evaluations show a

significant performance improvement with respect to both pure

GPU and pure CPU implementations. González and Morancho

(2021a) develop a multi-GPU CUDA version of the NPB-MZ suite,

including a study of basic state-of-the-art schedulings but without

combining GPUs and CPUs in the evaluation study. Pennycook

et al. (2011) detail their implementation of the LU-NPB application

on CUDA. Moreover, they develop an analytical model to estimate

the execution time of the benchmark on a range of architectures.

They validate the model using evaluation environments that range

from a single GPU to a cluster of GPUs. Xu et al. (2014) focused on

directive-based parallelization of NPB benchmarks. After analyzing

and profiling the OpenMP version of NPB, they annotated the

source code with OpenACC directives to automatically generate

GPU versions of the benchmarks.

Heterogeneous Work Scheduling: The porting of applications

to heterogeneous architectures has generated previous proposal

for work scheduling. Works from different domains describe

the adaptation of specific frameworks to execute on multi-GPU

systems, where CPUs take the role of orchestrating the parallelism

execution and GPUs act as accelerators (Hermann et al., 2010;
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Nere et al., 2013; Toharia et al., 2012; Chen et al., 2012; Yang

et al., 2013). Other works describe a cooperative heterogeneous

computing frameworks that enable the efficient utilization of

available computing resources of host CPU cores for CUDA

kernels (Scogland et al., 2012, 2014; Yang et al., 2010). For

work distribution, performance models have been proposed guide

the schedulers (Choi et al., 2013; Zhong et al., 2012). Ogata

et al. (2008) present a library for 2D fast Fourier transform

(FFT) that automatically uses both CPUs and GPUs to achieve

optimal performance. Using a performance model, it evaluates the

respective contributions of each computing unit and then makes an

estimation of total execution times. Other recent works introduce

application specific work distributions between CPUs and GPUs.

Zhang et al. (2021) describe a cooperative framework to acces a

database, showing the benefits of the hybrid execution in terms

of total throughput. Similarly, Gowanlock (2021) implements a

hybrid knn-joins algorithm with a CPU/GPU approach for low-

dimensional KNN-joins, where the GPU is not yielding substantial

performance gains over parallel CPU algorithms. The paper

introduces priority work queues that enable the computation over

data points in high-density regions on the GPU, and low-density

regions on the CPU.

With respect the schedulers described in this article, the

static-pcf corresponds to a variant of the scheduler strategies

described in Beaumont et al. (2019), Augonnet et al. (2011), and

Khaleghzadeh et al. (2018). We have adapted this scheduler so that

the zones in the input mesh get assigned maximizing adjacency,

not only the work balance. Similarly, the guide and clustered

guided schedulers correspond to strategies that originate from

the schedulers described in Duran et al. (2005). But the work

in Duran et al. (2005) only studied CPU-based shared memory

architecture, not heterogeneous. In Gautier et al. (2013), similar

work is presented by focusing on linear algebra kernels like matrix

product and Cholesky factorization.

7 Conclusion

In this article, we have described and evaluated variants of

state-of-the-art work distribution schemes adapted for scientific

applications running on hybrid systems. We have implemented

a hybrid (multi-GPU and multi-CPU) version of the NPB-

MZ benchmarks to study the different elements that condition

the execution of this suite of applications when parallelism is

spread over a set of computational units of different nature

(GPUs and CPUs). We have shown that the combination of the

GPUs and CPUs results in an effective parallel implementation

that speeds up the execution of a strict non-hybrid multi-GPU

implementation. We have evaluated how the work distribution

schemes determine the data placement across the devices

and the host, which in turn has a direct impact over the

communications between the host/devices. Only the schedules

that expose a good trade-off between the work balance and

the communication overheads succeed in effectively using all

available compute resources. In particular, the state-of-the-art

Static and Dynamic schedulers are not effective and need variants

based on precomputed performance-modeling parameters (Static-

pcf scheduler) or runtime collected execution times to guide the

work distribution (Guided and Clustered Guided schedulers). For

these variants and on a system composed by an AMD EPYC

7742 at 2.250GHz (64 cores, 2 threads per core, 128 threads)

and two AMD Radeon Instinct MI50 GPUs with 32GB, hybrid

executions speedup from 1.1× to 3.5×with respect to a non-hybrid

GPU implementation, depending on the number of activated

CPUs/GPUs.
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