
TYPE Hypothesis and Theory

PUBLISHED 11 August 2025

DOI 10.3389/fhpcp.2025.1393936

OPEN ACCESS

EDITED BY

Houjun Tang,

Berkeley Lab (DOE), United States

REVIEWED BY

Dimitrios Nikolopoulos,

Virginia Tech, United States

Matthieu Dorier,

Argonne National Laboratory (DOE),

United States

*CORRESPONDENCE

Sebastian Oeste

sebastian.oeste@tu-dresden.de

RECEIVED 29 February 2024

ACCEPTED 18 July 2025

PUBLISHED 11 August 2025

CITATION

Oeste S, Höhn P, Kluge M and Kunkel J (2025)

An analysis of the I/O semantic gaps of HPC

storage stacks.

Front. High Perform. Comput. 3:1393936.

doi: 10.3389/fhpcp.2025.1393936

COPYRIGHT

© 2025 Oeste, Höhn, Kluge and Kunkel. This

is an open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

An analysis of the I/O semantic
gaps of HPC storage stacks

Sebastian Oeste1*, Patrick Höhn2, Michael Kluge1 and

Julian Kunkel2

1Center for Interdisciplinary Digital Sciences (CIDS), Department for Information Services and High

Performance Computing (ZIH), Dresden University of Technology (TUD), Dresden, Germany, 2Institute

for Computer Science, University of Göttingen, Göttingen, Germany

Modern high-performance computing (HPC) Input/Output (I/O) systems consist

of stacked hard- and software layers that provide interfaces for data access.

Depending on application needs, developers usually choose higher layers with

richer semantics for the ease of use or lower layers for performance. Each I/O

interface on a given stack consists of a set of operations and their syntactic

definition, as well as a set of semantic properties. To properly function, high-

level libraries such as Hierarchical Data Format version 5 (HDF5) need to map

their semantics to lower-level Application Programming Interface (API) such

as Portable Operating System Interface (POSIX). Lower-level storage backends

provide di�erent I/O semantics than the layers in the stack above while

sometimes implementing the same interface. However, most I/O interfaces do

not transport semantic information through their APIs. Ideally, no semantics

of an I/O operation should be lost while passing through the I/O stack,

allowing lower layers to optimize performance. Unfortunately, there is a lack

of general definition and unified taxonomy of I/O semantics. Similarly, system-

level APIs o�er little support for passing semantics to underlying layers. Thus,

passing semantic information between layers is currently not feasible. In this

article, we systematically compare I/O interfaces by examining their semantics

across the HPC I/O stack. Our primary goal is to provide a taxonomy and

comparative analysis, not to propose a new I/O interface or implementation.

We propose a general definition of I/O semantics and present a unified

classification of I/O semantics based on the categories of concurrent access,

persistency, consistency, spatiality, temporality, and mutability. This allows us to

compare I/O interfaces in terms of their I/O semantics. We show that semantic

information is lost while traveling through the storage stack, which often prevents

the underlying storage backends from making the proper performance and

consistency decisions. In other words, each layer acts like a semantic filter for

the lower layers. We discuss how higher-level abstractions could propagate their

semantics and assumptions down through the lower-levels of the I/O stack.

As a possible mitigation, we discuss the conceptual design of semantics-aware

interfaces, to illustrate how such interfacesmight address semantic loss—though

we do not propose a concrete new implementation.

KEYWORDS

HPC, I/O, I/O stack, I/O semantics, POSIX, MPIIO

1 Introduction

The current I/O stack in high-performance computing (HPC) consists of several

stacked hardware and software layers that can be highly heterogenous. Data read or

written by the application passes through different interfaces on their journey through the

I/O stack. Each layer attempts to efficiently map the given workload onto lower layers.

Frontiers inHighPerformanceComputing 01 frontiersin.org

https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://doi.org/10.3389/fhpcp.2025.1393936
http://crossmark.crossref.org/dialog/?doi=10.3389/fhpcp.2025.1393936&domain=pdf&date_stamp=2025-08-11
mailto:sebastian.oeste@tu-dresden.de
https://doi.org/10.3389/fhpcp.2025.1393936
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fhpcp.2025.1393936/full
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Oeste et al. 10.3389/fhpcp.2025.1393936

However, information about I/O semantics can be lost during

translation to lower-level interfaces. Therefore, lower layers must

rely on assumptions about application behavior made by higher

layers. The interfaces between the layers can also offer the same API

with different semantics. For example, a file system with a Portable

Operating System Interface (POSIX) interface may have relaxed

semantics regarding consistency for concurrent I/O operations on

the same file region, potentially leading to unintended outcomes

or reduced performance. In general, an interface consists of a set

of operations that can be performed and their syntactic definition,

as well as a set of semantic properties. While tools such as

compilers can guarantee adherence to correct syntax automatically,

the semantics of an operation are an implicit property of its

implementation within the actual environment. The semantic

implications inherent in an operation, or a series of operations,

encapsulate the user’s intentions. However, due to the absence of

explicit semantic expressions in the APIs, this intent often gets

lost. Additionally, some interfaces were historically not designed

for distributed and parallel I/O, thus requiring special handling

to function effectively in HPC workflows. Although the challenges

posed by differing I/O semantics are well-known within the HPC

community (Hildebrand et al., 2009; Devarajan and Mohror,

2023; Kuhn, 2013; Lockwood, 2017), no existing classification

comprehensively describes the semantics across all layers of the

I/O stack. Some existing work already gives a classification for

the consistency semantics of parallel file systems (Wang et al.,

2021). Others look for efficient translation to achieve semantics

of an interface on another layer (Hildebrand et al., 2009). Still

others have explored optimizations in lower layers that relax

semantics to enhance performance (Vef et al., 2020). In this

article, we present a comparative analysis of commonly used I/O

interfaces in HPC, framed around a unified taxonomy of their

I/O semantics.

Therefore, we make the following contributions: (1) A general

baseline definition of I/O semantics and categories to classify these

semantics in terms of concurrent access, persistency, consistency,

spatiality, temporality, andmutability is presented that enables us to

compare different interfaces regarding their I/O semantics. (2) We

compare commonly used interfaces in HPC I/O stacks, analyzing

their ability to transmit semantic information and identifying

where semantics are lost due to layering. (3) We propose a design

for a semantics-aware I/O stack. We emphasize that this work

focuses on comparative classification and identifying gaps in the

semantics of current HPC I/O interfaces.

The remainder of the paper is organized as follows: In Section 2,

we give an overview of the layers of the I/O stack in order to

assign the individual interfaces. Then, we introduce a checkpoint

use case to describe the I/O APIs that function at the various layers

of the I/O stack in Section 3. In Section 4 we provide a baseline

definition of what an I/O semantic is. Furthermore, we propose six

categories to describe the I/O semantics of an interface. Section 5

discusses commonly used I/O APIs for the different layers in the

I/O stack and what semantics- they can communicate through their

interfaces. Section 6 then discusses where the I/O semantics are lost

in the checkpoint use case due to the layering of different interfaces.

Section 7 discusses what other researchers have done regarding

I/O semantics. Section 8 proposes a semantic-aware I/O stack that

would be able to transport the semantics from the upper layers

down to the underlying storage system. Finally, in Section 9 we

conclude our study with a summary.

2 The I/O stack and the semantical
gap

HPC systems offer a multilayer I/O stack on which the

application is placed at the top layer and the physical storage

medium at the bottom layer. Figure 1 illustrates the different layers

in the I/O stack, between application and physical medium are the

middleware, possibly with parallel I/O middleware, system-level,

and storage layers. Higher layers may bypass some intermediate

layers in the I/O stack. For example, an application might directly

use POSIX I/O without involving middleware libraries, or the

middleware could bypass the system layer by directly interacting

with storage interfaces. As operations traverse the different layers of

the I/O stack, the shape of the operations may change. This means

a pattern specified at the application level might differ by the time

it reaches the file system or physical medium. Intermediate layers

may apply optimizations such as data aggregation, reordering,

buffering, and caching (Thakur et al., 1999a; Liao et al., 2007).

However, contextual information may be lost when traversing

the I/O stack, causing lower layers, such as the file system, to

become unaware of the application’s original intent. While higher-

layer interfaces allow to express the users intent more explicitly

in their API for example, collective I/O operations in message

passing interface (MPI)-IO (Corbett et al., 1996) or data layouts and

file formats in Hierarchical Data Format version 5 (HDF5) (Folk

et al., 2011), the deeper the layer, the closer to the hardware, and

the flexibility of the expressible semantics decreases. For example,

POSIX I/O provides an API based to work on an unstructured

stream of bytes through integer handles (file descriptors) with

no notion for parallelism or layout. On the physical medium,

requests would be processed independently through multiple

queues, for example, on modern Non-Volatile Memory Express

(NVME) Solid State Disks (SSDs). The responsibility to ensure a

correct ordering of the request is at higher layers in the operating

system. That is what we call the semantical gap in the I/O stack.

Each layer tries to translate an operation to a more primitive

set of operations from the layer below. The different layers act

like a semantic filter for the lower layers, which can prevent

performance optimizations. We start explaining the stack from

the bottom to top, starting with the physical medium up to the

actual application.

2.1 Physical medium

The physical medium is the lowest level in the I/O stack and

is a piece of hardware that physically stores the data. This includes

volatile media, such as RAM, and non-volatile media such as Non-

Volatile Random-access-memory (NVRAM), disks, or tapes. The

I/O semantics on this layer are largely fixed and defined by the

hardware design or firmware used. The higher software layers in

Frontiers inHighPerformanceComputing 02 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1393936
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Oeste et al. 10.3389/fhpcp.2025.1393936

FIGURE 1

Illustration of the high-performance computing I/O stack with

possible interactions between individual layers.

the I/O stack are not able to modify the semantic properties of that

layer.

2.2 Storage system

The storage system or file system is the software layer above

the physical medium and is responsible to map logical I/O from the

application to physical I/O on the hardware. But file systems do a lot

more than just present a file based interface to persist on a physical

medium. Common tasks performed by file systems include read

caching, write buffering, and generating additional I/O to maintain

on-disk layout metadata (Gregg, 2014). Because HPC systems are

distributed systems, comprising multiple compute nodes executing

applications, the parallel file system is also a distributed and consists

of several components. Figure 2 shows an example for a typical

architecture of a parallel file system. Most parallel file systems

distinguish between metadata and storage servers connected to the

compute nodes over a high-speed interconnect. Clients request file

and layout information from the metadata server upon opening

a file, then directly perform read or write operations to storage

servers. While most parallel file systems used in HPC came with

a POSIX interface for portability reasons, there was a number of

relaxations to its strict semantics. The most common relaxation

is reducing consistency guarantees for overlapping writes to the

same file region. For example, PVFS (Carns et al., 2000) and its

successor OrangeFS (Bonnie et al., 2011) define the result of such

access pattern as undefined. Because HPC applications typically

organize their access pattern at a higher layer they leave the

responsibility at these higher layers to avoid expensive locking.

Furthermore, file systems like Lustre (Braams, 2002) support

features like exclusive strides to give a process exclusive access

to a part of a file. GekkoFS (Vef et al., 2020), designed as a job-

temporal file system, relaxes the semantics of metadata operations,

FIGURE 2

Abstract architecture of a parallel file system, illustrating metadata

and storage servers connected to cluster compute nodes via a

network interconnect.

such as readdir, to eventual consistency while maintaining

strong consistency for data operations. Nevertheless, it is always

a trade-off for file system developers to assume certain access

characteristics that the application is doing or not doing to optimize

for performance. The interface between the file system and higher

layers provides no mechanism to convey the application’s context

beyond basic instructions like reading or writing n bytes at a specific

file offset.

2.3 System-level-API

We define the system-level storage API as the software layer

interfacing with the storage system. System-level APIs provide

a set of primitives for managing system resources. For storage

systems, these resources are the available storage space and the

data stored within it. In HPC, most storage systems use the

POSIX interface for this purpose. POSIX provides a hierarchical

structure of files and directories and defines functions like open,

read, write, and close or opendir, readdir,

closedir, and mkdir to work with them. Resources are

addressed using paths that map the directory structure up to

the file.

2.4 Middleware

A middleware library is a software layer that translates

abstractions from high-level, domain-specific APIs to lower level

APIs. At the middleware layer, libraries that combine data layout

abstraction with I/O abstractions are used for example, HDF5 (Folk

et al., 2011), netCDF (Rew and Davis, 1990), or ADIOS (Lofstead

et al., 2009). In addition to providing data layout and formats, a

common task is to improve the use of the low-level API for a given

platform. For example, the MPI-IO ADIO, (Thakur et al., 1996)

Frontiers inHighPerformanceComputing 03 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1393936
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Oeste et al. 10.3389/fhpcp.2025.1393936

interface allows specific implementations depending on which file

system is used. Middleware APIs can perform such optimizations

because they possess richer contextual information about execution

than lower-level APIs.

2.5 Application

The application layer is the highest layer in the I/O stack

that has the most semantic information. An application, is

the data producer or data consumer that initiates the I/O.

For example, these are interactive tools, scientific simulations,

AI applications or benchmarks. The application level has the

highest degree of abstraction and most flexibility in expressing

the user’s intent. At this level, it is known whether it is I/O

for a snapshot, a log file, a result file or reading of input

data. Here, it is also known if a file would be accessed

by only one process or a group of processes, just once or

repeatedly. Typically, applications select libraries aligned with

their scientific domain to represent data layout and access

patterns. Examples include the Flexible Image Transport System

(FITS) (Pence et al., 2010), commonly used in astronomy, or

General Regulary-distributed Information in Binary form (GRIB)

for meteorological data. These libraries provide different sections

for images, ASCII tables or binary tables and a sequence of

header data units to store metadata of these sections. The goal

at this layer is to express operations as close as possible to the

scientific domain. However, predicting application performance

is challenging without considering the underlying layers within

the actual execution environment. Significant complexity resides

within the lower software and hardware layers, substantially

influencing I/O performance.

3 Example of a checkpoint use case

In this section, we illustrate our motivation using a

checkpointing use case. Checkpointing is a common technique for

storing intermediate results of an application. The goal is to be able

to recover from that checkpoint in the event of an error. Many

traditional HPC simulations, as well as newer artificial intelligence

applications use checkpointing. Typically triggered by application,

state changes or specific time intervals, an application writes

its current internal state to persistent storage. Because there are

various types of potential failures, we assume that the checkpoint

will be created to recover from a node failure. The primary focus

of this section is to describe the I/O APIs that function at various

levels of the I/O stack.

Figure 3 illustrates three possible storage stacks suitable for

a checkpointing application. The first I/O stack in Figure 3a

includes HDF5, MPI-IO, POSIX, and Lustre, utilizing high-level

I/O libraries. The second stack (Figure 3b) uses only POSIX and

Lustre. Finally, the third stack (Figure 3c) depicts an application

using POSIX atop the GekkoFS file system.

A primary objective is to write checkpoints as quickly as

possible, minimizing the interruption of application computation.

In the following, how these layers work together for the different

FIGURE 3

Examples I/O stacks to discuss the transport of I/O semantics. (a)

Example I/O stack (Stack 1) using HDF5 and MPIIO as middleware

on top of POSIX and Lustre. (b) Example I/O stack (Stack 2), where

the application directly uses POSIX on Lustre. (c) Example I/O stack

(Stack 3), where the application uses POSIX on GekkoFS.

Frontiers inHighPerformanceComputing 04 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1393936
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Oeste et al. 10.3389/fhpcp.2025.1393936

stacks, what their tasks are, and what kind of information they need

are explained.

In all three stacks (Figure 3), the user selects the storage

location at program start-up, typically by specifying a file system

path. The persistency of the storage defines, from which types

of failures the checkpoint can be recovered from. In the first

stack (Figure 3a), the application uses HDF5 for data management

and storage. HDF5 is responsible for the data format and layout.

HDF5 manages the data format and layout, organizing in-memory

data structures and their storage layout within files. This involves

defining the data structures, metadata, and layout of the checkpoint

file. HDF5 employs MPI-IO as middleware for parallel I/O

operations. MPI-IO uses MPI to communicate across processes

during I/O operations, this enables for collective I/O by multiple

processes.MPI-IO can optimize data access patterns by aggregating,

deferring, or re-ordering I/O operations. Further, MPI-IO is

responsible for synchronizing the parallel processes to ensure that

they operate on valid data. At this layer, MPI-IO is also capable

of configuring a proper data placement strategy, for example,

stripe settings and pools, via a Lustre API within its abstract

device interface (ADIO) (Thakur et al., 1996). To transport this

information, MPI-IO skips the system-level and targets the storage

system directly. Middleware layers will transport information about

data sizes and layout and organize data dependencies between

different processes. Depending on the checkpoint data volume

and the number of processes, MPI-IO gathers data into dedicated

I/O processes.

In the I/O stacks shown in Figures 3b, c, no middleware

libraries are used; the application directly utilizes a POSIX I/O.

Therefore, the application is responsible for managing the

translation of its data structures to system-level I/O operations. The

application is also responsible for synchronizing multiple processes

and ensuring an appropriate file structure and layout.

Because MPI-IO also uses a POSIX I/O for file operations

on Lustre, all three stacks use POSIX at the system-level. At

this level, data are represented as an unstructured stream of

bytes; both the volume of data and how they are divided in

into individual requests are important. Grouping contiguous I/O

operations into larger requests can increase I/O bandwidth and

reduce the overhead of processing numerous small requests. If

the data are written in fixed-size requests, optimizations such as

direct I/O, which bypasses the page cache, might be appropriate.

Information regarding overlapping accesses or read–modify–write

patterns is also important. The absence of such accesses can

improve performance, as it allows for less synchronization between

different processes.

When an application performs I/O operations, requests are

ultimately handled by the file system. The I/O stacks in Figures 3a,

b use the Lustre parallel file system. Lustre provides a POSIX

interface along with file system-specific options for controlling

data distribution across storage servers. The parallel file system

will distribute data across different storage devices. Lustre ensures

that the data written or read by the checkpoint application

are distributed across multiple servers to maximize the available

bandwidth for parallel applications. By comparison, for small I/O

requests, using a single disk reduces the overhead of maintaining

multiple network connections.

The third stack in Figure 3c uses GekkoFS as a node-local, job-

temporal file system. GekkoFS provides a shared namespace over

node-local storage resources, such as local disk. Similar to Lustre, it

provides a POSIX interface but relaxes the consistency guarantees

for directory operations. The file data will be distributed over all

nodes within the job. To ensure persistency beyond the job runtime,

an explicit stage-out of data to more persistent storage is necessary.

GekkoFS itself just provides persistency for the runtime of the job.

This section explained the role of individual layers for three

different I/O stacks in a checkpointing application. In the next

section, we introduce a taxonomy for I/O semantics that groups the

necessary information for different layers into separate categories.

After that, Section 5 explains what the different interfaces can

express in terms of our semantic taxonomy. Finally, in Section 6,

we revisit our example and explain what semantics are lost through

layering because interfaces cannot transport them.

4 A definition and taxonomy of
I/O-semantics

This section provides a definition of I/O semantics. We

distinguish between a general definition and the specific features

provided by an interface. The semantics are categorized to describe

common I/O APIs.

4.1 I/O semantic

In literature, I/O semantics is mostly abstracted to consistency

semantics of I/O operations (Wang et al., 2021, 2024; Thakur

et al., 1999b; Hildebrand et al., 2009). We define I/O semantics

more universally.

I/O semantics describe the meaning of I/O operations in

the current execution context and their consequences for

subsequent I/O operations.

I/O Semantics Definition:

An I/O interface consists of a set of operations, defines their

syntax (API), specifies how a valid operation are expressed, and

includes a set of semantic properties. I/O semantics describe the

meaning and behavior of an I/O operation within its execution

context. This includes how data is accessed, what transformations

are applied, and the guarantees provided by successful I/O

operations. In contrast, an API specifies how an interface must

be used in an implementation. One could say that an API

represents the operational view, while I/O semantics represent the

behavioral view. A well-written API definition includes semantics

to ensure the user correctly understands the API. Execution

context refers to the surrounding system in which an operation

executes. This includes both hardware and software components,

such as storage servers, networks, disks, file system software, and

operating systems. It also includes I/O operations interacting with

the same resources. Different components within the execution

context might implement the same API for portability but provide

differing semantics.

Frontiers inHighPerformanceComputing 05 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1393936
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Oeste et al. 10.3389/fhpcp.2025.1393936

TABLE 1 Overview of the semantic categories defined for parallel I/O and

their characteristics.

Semantic
category

Characteristic Meaning

Concurrency Exclusive/Shared Are resources exclusively used by

one process

or thread or shared by many?

Persistency Application/Job/System Where should data be placed, and

how persistent

should it be against failures?

Consistency Sequential/Session/ When should updates be visible

/Commit/Eventual to subsequent operations?

Spatiality Contiguous/Strided/

Random

How data are expected to be

accessed?

Temporality Once/Periodic/Random When will data be reused?

Mutability Read-only/Read-write/

Overwrite/Append

Will the data change, and if so,

how?

Additionally, distinguishing between the semantics and

features of an interface is important. Semantics describe what

an interface allows users to accomplish. Thus, semantics

help clarify the purpose and behavior of the interface

and its operations. Interface features describe the technical

implementation details.

4.2 Semantic categories

To compare interfaces in terms of their I/O semantics, a

taxonomy is needed. We define six semantic categories to describe

storage system requirements and parallel I/O access behavior.

Furthermore, each category has a number of relevant characteristics

in the HPC context. In the following, we describe the semantic

categories into which we subdivide I/O semantics, as well as their

characteristics, and we describe how storage systems can benefit

from this information. Table 1 summarizes the categories and

their characteristics.

Concurrent access:Concurrent access semantic define whether

I/O accesses on a resource are executed exclusive or shared.

Exclusive means that only one process or thread executes I/O

operations. By comparison, shared access means that multiple

processes or threads execute I/O operations concurrently. We

subdivide the characteristics of concurrent access into

• Exclusive—the I/O access is executed by exactly one process or

thread, and

• Shared—the I/O access is executed by multiple processes or

threads concurrently.

If an underlying storage system knows that a resource is

accessed exclusively, it might avoid expensive locking to protect

the resource from concurrent access or cache the resource in

memory or storage locations closer to the requesting thread

or process.

Persistency: Persistency describes the durability of stored data

across different failure scenarios and time scales. It characterizes

how long data remain accessible and under what condition they

may be lost. Persistence storages guarantee modifications are

retained and are power-fail safe, whereas volatile storage keeps

data only during the application’s lifetime (Scargall, 2020). In terms

of I/O semantics within a distributed environment, persistency

defines how resistant data must be against failures. Therefor, we

define persistency characteristics based on the data lifetime and

failure conditions:

• Application Level—Data are stored volatilely (e.g., in memory)

and persist only during the application’s execution. They are

lost if the application crashes.

• Job Level—Data persist throughout an HPC job’s execution

(e.g., on node-level resources) but may be lost when the jobs

ends or if a node fails.

• System Level—Data are stored on dedicated storage servers

(e.g., a parallel file system). Once written, data are persistent,

surviving job termination and system reboots.

Describing persistency semantics at different layers of the I/O

stack is important for understanding data durability, optimizing

performance, and ensuring fault tolerance. Applications need to

know how long data will persist and under what conditions it

may be lost. For example, a checkpointing system may store data

on node-local storage (job-level persistency) but must stage it

out to a parallel file system (system-level persistency) to enable

recovery after node failures. Applications and middleware can

select storage on persistency needs. For example, MPI-IO may

optimize data placement by buffering writes in volatile memory

before committing data to persistent storage. Consequently,

persistency semantics aid applications, middleware, and storage

systems in optimizing data placement, caching strategies, and

fault tolerance.

Consistency: Consistency defines when updates to shared data

become visible to subsequent operations.

For the consistency characteristics, we follow the categorization

of Wang et al. (2021).

• Sequential Consistency—We define strong consistency with

the condition that a read from a byte returns the value written

by a write to the byte if the write happens before the read.

• Commit Consistency—Commit consistency is defined as

updates to a byte or a region of bytes are visible to other

processes after an explicit commit operation, for example,

a flush.

• Session Consistency—Session consistency defines updates are

consistent outside of session boundaries, for example the time

when a file is closed until it is opened by an process.

• Eventual Consistency—Eventual consistency does not define

an explicit point in time when data become consistency;

instead, it is expected that after a long enough period all

subsequent reads to shared data will return the same value.

Knowing the consistency requirements of operations on shared

data likely holds the greatest potential for optimizing parallel file

systems. Most parallel file systems provide a POSIX interface for

portability, which requires sequential consistency. However, strict

Frontiers inHighPerformanceComputing 06 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1393936
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Oeste et al. 10.3389/fhpcp.2025.1393936

consistency is not required for most HPC applications (Wang et al.,

2021). By relaxing the consistency semantics, parallel file systems

could eliminate costly consistency protocols and distributed

locking. A number of commonly used parallel file systems in HPC

employ relaxed consistency semantics. For example, the Network

File System (NFS) uses a close-to-open, session consistency. While

file systems like PVFS and OrangeFS relax sequential consistency

for updates to the same file offset (Carns et al., 2000; Bonnie et al.,

2011).

Spatiality: Spatial access patterns describe how an application

intends to structure and access data. However, the actual storage

layout may be reorganized by lower layers. Therefore, spatiality

consists of two aspects: the expressed layout, how applications

and middleware structure I/O, and the realized layout, how file

systems and storage hardware store the data. Because actual data

placement is ultimately determined by lower layers in the I/O stack

and cannot be directly controlled by the application, we define

spatiality characteristics based on the application’s intended data

access pattern:

• Contiguous—Data are accessed contiguously, and offsets

increase monotonically, where offsetstart < offsetend and

IOP1offsetend == IOP2offsetstart − 1, and IOP1 and IOP2 refer

to two consecutive I/O operations of one process.

• Strided—Data are accessed non-contiguously, with offsets

increasing by a fixed stride between the end offset of an

operation and the start offset of the next operation, where

IOP2offsetstart == IOP1offsetend + stride.

• Random—Data are accessed at random offsets that do not

follow an obvious pattern.

Layers in the I/O stack can leverage spatiality semantics

to optimize data placement, buffering, caching, and retrieval.

The application layer can express expected spatial patterns for

optimized data structures (e.g., column-major vs. row-major

layouts) to improve memory locality. Middleware layers can

aggregate and reorganize I/O requests to better align with

underlying storage structures. For example, MPI-IO can aggregate

small, scattered writes into larger, more efficient requests before

passing them to the storage system. Data access with a non-

contiguous, strided pattern could enable optimization techniques

like two phase-IO (del Rosario et al., 1993; Kang et al., 2020),

where the data distribution on compute resources is decoupled

from the storage distribution. On the system-level, spatiality hints

can optimize buffering, prefetching, and caching strategies. The

POSIX posix_fadvise call can inform the operating system

about anticipated access patterns, improving read-ahead efficiency.

This can be used to improve sequential access performance.

Underlying storage systems are responsible for the actual data

placement. If they support explicit data placement, system and

middleware libraries can use spatiality hints to tune stripe

patterns according to expected access pattern (e.g., aligning stripe

sizes with strided access). Consequently, we differentiate storage

systems based on their support for explicit data placement,

allowing higher layers to optimize data layout based on access

pattern hints.

Temporality: In the context of HPC I/O, temporality semantics

describe how frequently and in which temporal patterns data

resources are accessed during a programs execution. It essentially

measures temporal locality, quantified by reuse distance. A reuse

distance describes the number of distinct data accesses that occur

between two consecutive accesses to the same data item (Ahmadian

et al., 2021; Lee et al., 2011). Unlike spatial access patterns, which

concern where data is accessed in storage, temporality focuses on

when or how often data are reused. Therefore, temporality can

be described as the number of distinct data accesses that have

happened between two accesses to the same file. No particular

ordering of operations is assumed; instead, temporality captures

how often a resource is utilized by a process over time. BecauseHPC

applications often exhibit bursty I/O patterns (Yu et al., 2020; Tang

et al., 2017), expressing such information could be beneficial. We

group the number of accesses into three categories:

• Once—The data are accessed only once during the program’s

runtime and not reused thereafter,

• Periodic—The accessed data will be used multiple times,

following a periodic pattern, and

• Random—Access occurs multiple times at irregular intervals

without an obvious pattern during the program’s runtime.

By integrating these categories into the semantics of the

I/O stack, the system can make informed decisions regarding

caching layers, buffer management, and pre-fetching strategies.

If a dataset is known to be accessed only once, the storage

system can avoid unnecessary caching and optimize for data

streaming. For a periodic reuse pattern, if the reuse period is

short compared to the cache retention time, the data can be

retained in the cache. Even if the period is longer, knowing the

pattern allows caches or burst buffers to be sized or tuned to

hold the data until the next use. Furthermore, a known periodic

pattern can be used for pre-fetching data before it’s needed by

the application, thereby reducing I/O latency (Byna et al., 2008).

With this information available within the layers of the I/O stack,

middleware libraries can avoid unnecessary buffering for one-

time accesses. For periodic patterns, datasets could be retained in

memory between phases, or periodic writes could be batched and

flushed in the background. At the system-level, this information

could enable write-through policies such as O_DIRECT or

posix_fadvise(..., POSIX_FADV_NOREUSE) to reduce

cache pollution from one-time accesses and facilitate sequential

read-ahead for periodic access. Multi-tiered storage systems

can discard data used only once from faster storage tiers,

keeping space available for data with higher reuse frequency.

For periodic accesses, parallel file systems can pin files or cache

stripes accordingly.

Mutability: Mutability semantics describe if and how data

are expected to change after being created. Within the HPC I/O

stack, mutability can be expressed in multiple ways. A common

expression ofmutability are openmodes such as the POSIX orMPI-

IO flags (O_RDONLY, MPI_MODE_RDONLY) to open a file in read-

only mode. Another form includes file access permissions in the file

system’s metadata, which restrict read and write access for specific

users or processes. Finally, the file system’s implementation itself

affects mutability; for instance, copy-on-write file systems never

overwrite existing blocks but instead store references to new blocks

containing updated data.

Frontiers inHighPerformanceComputing 07 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1393936
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Oeste et al. 10.3389/fhpcp.2025.1393936

For HPC I/O semantics, we separate access permissions from

semantic intent, defining mutability based on whether and how

data changes during the file’s access period:

• Read-Only—Data do not change during access.

• Read-Write—Data will be read and written during the access.

• Overwrite—Data are written, potentially overwriting

existing data.

• Append—Writes are appended only at the end of the file.

A given mutability semantics over the I/O stack offer

optimization potential in the following cases. Middleware

libraries, such as MPI-IO, can pre-compute offsets to reduce

coordination overhead for append semantics. For overwrite

semantics, optimizations such as data sieving or two-phase I/O

could be applied. Read-only accesses can enable caching or

pre-fetching (Dinh et al., 2017) optimizations. Storage systems

might employ sequential striping in append mode to reduce seek

times, and journaling or copy-on-write in overwrite mode to

coalesce writes.

5 Semantics of I/O-interfaces

This section supports our goal of comparing interfaces, using

the semantic taxonomy introduced in Section 4. Our intent is not to

develop or propose new interfaces, but to map existing ones to the

defined semantic categories. We choose interfaces that are widely

adopted within HPC applications. At the end of the section, we

compare the semantics of the APIs and discuss where information

gets lost.

5.1 Middleware I/O interfaces

MPI-IO: The MPI is a standardized communication protocol

used for managing and coordinating highly parallel scientific

workloads. MPI-IO, as the standard for I/O within MPI, was

first defined in the second version of the MPI standard (Message

Passing Interface Forum, 1996). In addition to standard data

types, derived data types can be employed in data partitioning to

accommodate custom data structures. There are different MPI-IO

implementations; the standard only defines the required API and

semantics.

Concurrent access in MPI-IO is possible by using explicit

offsets, individual file pointers, and shared file pointers. It is

synchronized through blocking, non-blocking, and split collective

mechanisms. Coordination between different execution units can

be either non-collective or collective. Therefore, accessing a file

collectively is possible by defining the group of processes that open

the file through a communicator passed to MPI_File_open.

MPI-IO cannot provide any guarantees in terms of persistency.

Persistency in the scope of MPI-IO is solely governed by the

execution context, for example the file system underlying the

currently accessed data.

For parallel I/O with conflicting concurrent access between

processes, having a deterministic sequence, particularly in the case

of write operations, is essential. Otherwise, the final result cannot

be predicted beforehand. By default, MPI-IO does not guarantee

any ordering of individual calls (Message Passing Interface Forum,

2023).

Two types of consistency can be distinguished. First, sequential

consistency can be guaranteed (Padua et al., 2011) if the concurrent

processes open the file collectively and enable atomic mode.

However, this setting significantly degrades performance when

used with HDF5. Atomic mode ensures that changes to a file are

immediately visible to other processes in the group that opened

the file collectively (Padua et al., 2011). Additionally, sequential

consistency can be guaranteed for concurrent processes when

accessing the file using a single file handle (Message Passing

Interface Forum, 2023).

Second, a sync/barrier/sync session can be used to achieve

consistency. In this approach, user-managed synchronization

of the processes is required (Message Passing Interface Forum,

2023). With the sync/barrier/sync construct, data become

visible only after both the writer and the reader have executed

a sync operation to flush the data. A sync operation may be

MPI_File_sync, MPI_File_open, or MPI_File_close,

thakur_implementing_1999. To enforce ordering

between the two sync operations, a barrier operation is

necessary. The sync/barrier/sync semantics resemble session

consistency, with synchronization boundaries akin to session start

and end.

Additionally, hints regarding file access can be provided

through the MPI_Info object and passed to functions

such as MPI_File_open, MPI_File_set_view, or

MPI_File_set_info. Temporality can be expressed by

using the access styles “read_once” and “write_once,” although no

standard hint exists specifically for temporal reuse. Spatiality can

be influenced by enabling collective buffering and defining the

“cb_nodes” and, more generally, the “io_node_list” variables,

as well as file layout parameters such as “striping_unit”

and “striping_factor” via MPI_Info. Non-contiguous data

accesses can be described using MPI-derived data types, such as

MPI_Type_create_subarray or MPI_Type_vector.

Mutability can be defined while opening the file using the

MPI_MODE_RDONLY mode. The semantics of this mode

are identical to the POSIX counterpart, as discussed in a

subsequent section.

• Concurrent access:MPI-IO has a notation for both

shared or exclusive access.

• Persistency: No notion, depends on lower layers.

• Consistency: Sequential or sync/barrier/sync

session consistency semantics.

• Spatiality: Via hints to MPI_Info and MPI-

derived data types.

• Temporality:Hints can be given via MPI_Info.

• Mutability: During file open via flags.

Characteristics for semantic categories:

HDF5: The HDF5 is a widely used file format in scientific

codes. As a hierarchical data format, HDF5 internally consists

of groups and datasets. Compared to POSIX terminology, these

Frontiers inHighPerformanceComputing 08 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1393936
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Oeste et al. 10.3389/fhpcp.2025.1393936

can be seen as directories and files, respectively. The access

of files on disk is realized through specific virtual object

layers (VOLs) and virtual file drivers (VFDs). In terms of

backends, HDF5 uses MPI-IO for parallel I/O and POSIX I/O for

sequential I/O. An asynchronous volume connector is also available

(Tang et al., 2019, 2022).

Standard HDF5 was designed for single-core use, where

no concurrent access occurs, and thus resources remain truly

exclusive. HDF5 supports parallel concurrent access either through

parallel data access using parallel HDF5 (pHDF5) or the single

writer multiple reader (SWMR) pattern. We focus on parallel

HDF5 with MPI-IO, as it is more widely adopted within HPC.

For pHDF5, exclusive access is permitted only for operations that

do not modify structural metadata. All other operations must be

performed using shared access. MPI communicators are used to

define groups of processes.

HDF5 cannot provide any guarantee in terms of persistency.

Similar to MPI-IO, it depends on the lower layers of the I/O stack.

However, the choice of VOL can have limited influence in this

context, for example, when the HDF5 Cache VOL storage type is

set to memory (Zheng et al., 2022).

Consistency semantics are governed by the selected VFD, as

HDF5 files are usually located on an underlying file system. pHDF5

uses MPI-IO as its standard VFD, and therefore, its consistency

model is generally identical to that of MPI-IO (The HDF Group

et al., 2012). To achieve consistency among parallel processes,

many operations (e.g., H5Fcreate, H5Fopen) must be called

collectively.1 Collective calls require all participating parallel

processes to follow the same execution order of function calls.

These collective API calls have specific requirements regarding

data type, data space, access properties, and creation properties

for participating processes in the MPI communicator (cf. see

footnote 1).

Similar to MPI-IO, pHDF5 supports atomicity using the sync–

barrier–sync mechanism. It can be enabled through the function

H5Fset_mpio_atomicity (Koziol and Breitenfeld, 2015). The

major drawback of atomic mode is a significant drop in read and

write performance (The HDF Group et al., 2012).

HDF5 allows spatial access patterns to be described using

hyperslabs to define non-contiguous selections within a dataset.

Additionally, HDF5 datasets support chunking, which enables

efficient caching and compression for non-contiguous access.

Further access hints can be conveyed through MPI-IO when used

in combination with MPI.

For temporality, HDF5 offers indirect support via APIs

to control cache sizes and flushing—for example, H5Dflush

or the chunk cache configuration, which can be aligned with

temporal reuse.

Mutability can be defined when opening the file by using

the H5F_ACC_RDONLY or H5F_ACC_SWMR_READ modes. The

semantics of the H5F_ACC_RDONLY mode are identical to those

of the POSIX counterpart, as discussed in a subsequent section.

1 Collective Calling Requirements in Parallel HDF5 Applications. https://

docs.hdfgroup.org/archive/support/HDF5/doc/RM/CollectiveCalls.html

(Accessed September 18, 2023).

• Concurrent access: Via MPI-IO for parallel access.

• Persistency: No notion, depends on lower layers.

• Consistency: Sequential consistency.

• Spatiality: Via hyperslab, chunking, and MPI-IO.

• Temporality: Only indirect support.

• Mutability: During file open via flags.

Characteristics for semantic categories:

5.2 System-level I/O interfaces

POSIX I/O: POSIX is the Portable Operating System Interface

standard (posix, 2018), originally developed by the IEEE Computer

Society and the Open Group in the late 1980s. The main

objective was to maintain compatibility between operating systems.

POSIX I/O, as the I/O component, defines both synchronous

and asynchronous interfaces. It is widely available and the most

commonly used system-level API for I/O. However, POSIX was

designed for local file systems, not with parallelism in mind, and

it has not changed significantly in many years. Its widespread

use in HPC environments is primarily due to its portability.

There was an effort to extend POSIX I/O for HPC and parallel

file systems with features such as shared file descriptors, group

open, lazy metadata, non-contiguous read/write interfaces, and

bulk metadata operations (Vilayannur et al., 2008). Unfortunately,

these extensions were not included in future revisions of the POSIX

standard. Consequently, POSIX lacks support for the execution

of collective operations. It is not possible to express that an

operation is executed by a group of multiple processes or threads.

Nevertheless, ideas such as lazy metadata queries made it into the

Linux system call interface (e.g., with functions like statx).

POSIX requires sequential consistency for data and metadata.

This means that a write operation issued by a process blocks

until the system can guarantee that any subsequent read will

retrieve the data that were just written. In a distributed system,

where remote processes are unaware of what local processes

are modifying, supporting sequential consistency comes at a

cost. Parallel file systems require synchronization and often

distributed locking to enforce sequential consistency, which

impacts performance. For this reason, some parallel file systems

already relax these consistency requirements.

In POSIX, data are stored in regular files and directories. Files

and directories are organized in a hierarchical, treelike structure.

Each file can be addressed by its path name, which may be

absolute or relative to the current working directory. Whether the

data are persistent or volatile depends on the physical medium

of the file system that underlies the path. The actual underlying

physical medium is defined by the execution context, for example,

by the block device behind the mount point where the file path

ends. An update is persistent when the data are successfully

transferred, where the term “successfully transferred” is defined

as follows:

For a write operation to a regular file, when the system

ensures that all data written is readable on any subsequent open

of the file (even those that follow a system or power failure), in the

Frontiers inHighPerformanceComputing 09 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1393936
https://docs.hdfgroup.org/archive/support/HDF5/doc/RM/CollectiveCalls.html
https://docs.hdfgroup.org/archive/support/HDF5/doc/RM/CollectiveCalls.html
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Oeste et al. 10.3389/fhpcp.2025.1393936

absence of a failure of the physical medium. For a read operation,

when an image of the data on the physical storage medium is

available to the requesting process.

This means that, when a POSIX I/O function has “successfully

transferred” its data, it is guaranteed that the data are written

consistently to the underlying file system. According to our

definition from Section 4, persistency is defined by lower layers in

the I/O stack, such as the underlying file system. POSIX I/O itself

has no notion of a required level of persistency.

Because POSIX exposes I/O as an unstructured stream of bytes,

the API has little support for expressing spatiality or temporality

of data accesses. The posix_fadvise function can provide

hints to the kernel about the access pattern for a region of a file,

supporting the choice of suitable caching or pre-fetching behavior.

These hints can convey information such as whether the data

will be accessed sequentially or randomly, but neither strided

access patterns nor explicit data placement is supported. Regarding

temporality, the posix_fadvise function supports flags such

as POSIX_FADV_NOREUSE and POSIX_FADV_WILLNEED,

which correspond to one-time and periodic semantics.

Mutability can be expressed using flags passed to the open

call. For example, the flags O_RDONLY, O_RDWR, and O_WRONLY

define whether a file should be opened for read-only access, read-

write access, or write-only access, respectively. Append semantics

can be expressed with O_WRONLY | O_APPEND, which

guarantees that every write() appends to the end of the file. The

O_APPEND flag guarantees atomicity for individual writes but not

for coordination among multiple processes. If a file is opened in

read-only mode, any write operation to that file descriptor will fail.

• Concurrent access: POSIX has not notation for

shared or exclusive access.

• Persistency: No notion; depends on lower layers.

• Consistency: Sequential consistency.

• Spatiality: Via posix_fadvise for contiguous

and random accesses.

• Temporality: Via posix_fadvise.

• Mutability: During file open via flags.

Characteristics for semantic categories:

5.3 Storage-level I/O interfaces

NFS: NFS is a common protocol for sharing files between Unix

systems over a network. Nevertheless, it is not considered a parallel

file system, as it does not support concurrent write access to the

same file (Pawlowski et al., 2000). NFS, in versions prior to 4.1, only

allowed exclusive access to files. Version 4.1 introduced byte-range

locks, which allowed concurrent access to the same file.

By default, NFS relies on a client-side caching mechanism.

Delayed writes may be lost if the client crashes before syncing.

In such cases, NFS can only guarantee job-level persistency. After

synchronization (e.g., a successful call to close or fsync), NFS

can also provide system-level persistency. With the sync mount

option, NFS is forced to commit writes immediately to the server,

thereby providing system-level persistency.

Using default settings, NFS guarantees close-to-open

consistency, that is, changes are written back to the server

only when the client closes the file. Therefore, changes on the client

are not immediately reflected on the server, and different clients

might see inconsistent states at any point in time (Kuhn, 2013).

This allows for higher performance compared to strict POSIX I/O

semantics. NFS Version 4.1 removed the previously required

exclusive file access in favor of byte-range access within a file. The

NFS extension, parallel NFS (pNFS), also resolved the single-server

bottleneck by decoupling state and data servers (Fridella et al.,

2010). The physical location of the data is retrieved as a “layout”

from the state servers and used by the layout client to access the

data (Hildebrand et al., 2009).

NFS does not support explicit data placement or distribution of

data in terms of spatiality. Similarly, there is no explicit support for

temporality in the NFS protocol.

• Concurrent access: No notion.

• Persistency: Default Job level; after successful

system-level synchronization.

• Consistency: Session; close-to-open consistency.

• Spatiality: No notion.

• Temporality: No notion.

• Mutability: Via POSIX open flags.

Characteristics for semantic categories:

DAOS: Distributed Asynchronous Object Storage

(DAOS) is a modern storage system designed for flash-based

architectures (Liang et al., 2020). DAOS provides its own I/O API

and does not rely on POSIX. The DAOS API includes functions for

manipulating pools, containers, and objects. User content is stored

exclusively in objects. In this section, we focus on functions that

handle user data, not administrative functions.

Pools group storage devices together. Within each pool,

containers—similar to S3 buckets—are created to store objects.

These objects hold user data in various layouts. Unlike user

interfaces such as POSIX, DAOS provides a broader range of data

accessors, e.g., arrays and key-value stores.

DAOS includes an abstraction layer called DFS, which serves

as a POSIX replacement for applications that cannot directly use

the DAOS API. One of DAOS’s core design principles is to process

all types of write requests as quickly as possible. Consistency is

enforced when data are read (Barton, 2015).

DAOS offers a transactional interface for container versions.

This is feasible because DAOS is primarily designed for

non-volatile memory DIMMs (Dual in-line memory modules)

such as storage class memory or NVRAM. NVRAM can

store metadata for ongoing I/O operations very efficiently

and provide fast read access for fine-grained retrieval. Newer

versions of DAOS will utilize standard dynamic random-access-

memory (DRAM) and implement a flash-based, log-structured

persistence layer.

To provide persistence across nodes, DAOS can replicate data

and write them to NVMe SSDs. For users and library developers,

the main storage interfaces are a key-value store and an array

interface (SODA Foundation, 2023).

Locality for all operations is defined via O(1) algorithms that

determine metadata and data placement across storage devices

Frontiers inHighPerformanceComputing 10 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1393936
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Oeste et al. 10.3389/fhpcp.2025.1393936

participating in a pool. Metadata is always stored on NVRAM

devices. Small writes are stored in NVRAM, while larger writes are

directed to NVMe.

To ensure atomicity, all I/O requests can be wrapped in

transactions that may be committed or canceled in batches.

To support this and provide commit consistency, DAOS

internally relies on a versioning object store (VOS). The VOS

ensures that read requests return consistent data. For this

purpose—and to support snapshots—objects are versioned

using epoch numbers. Objects transition from one epoch

to the next by combining all open transactions into a new

consistent state.

The primary motivation for this approach is to avoid the worst-

case assumptions of POSIX. This shift enables an optimistic model,

where the I/O layer assumes that applications manage concurrent

and overlapping I/O requests effectively.

Distributed Asynchronous Object Storage (DAOS) does not

support immutable data directly; instead, a container or object

can be opened in an immutable view of a previous epoch to

represent a specific state. Data overwriting is supported through its

transactional object store interface.

Node-local persistency is effectively achieved the moment data

is stored. The use of NVRAM, combined with an appropriate

redundancy scheme, makes it highly unlikely that transactions will

be lost.

• Concurrent access: DAOS has no notation for

shared or exclusive access.

• Persistency: System level; dependent on the usage

of storage class memory (SCM) or DRAM.

• Consistency: Commit; uses transactions for

consistency.

• Spatiality: Location are defined by pool settings.

• Temporality: No notion of temporality.

• Mutability: Via transactions and epoch-based

views.

Characteristics for semantic categories:

Lustre: The Lustre parallel file system is widely used in HPC

centers around the world. It has a long development history and

provides a classical POSIX interface, and therefore, POSIX interface

semantics. The challenges of POSIX semantics and scalability are

well-known in the HPC community and among Lustre developers.

Consequently, many features aimed at optimizing limitations

imposed by POSIX semantics are present in current releases

of Lustre.

Consistency is semantically sequential, and as with POSIX,

there is no mechanism to explicitly express concurrent access.

Lustre distributes data across multiple physical devices; files

stored on these object storage targets (OSTs) are typically striped

across multiple OSTs. This allows for higher bandwidth when

reading or writing in parallel. Striping in Lustre also enables

allocation of a file on specific storage pools. Pools group OSTs

using the same storage technology and therefore exhibit similar

performance characteristics. This provides a notion of spatiality,

as the application or middleware can choose, for example, to store

data on an NVMe- or disk-based pool.

With persistent client caches, Lustre can also cache data on local

storage resources of a compute client, such as local SSDs (Qian

et al., 2019). Additionally, features like DOM (Data on Metadata)

help accelerate small file access by storing the contents of small

files directly on the MDT (Metadata Target) instead of using

OSTs (Fragalla et al., 2020).

The size and number of OSTs used to store stripes are

configurable via a separate tool (lfs) or through the llapi interface.

Besides stripe configuration, the Lustre llapi provides functions to

create or open a file with a specific stripe configuration. Using

llapi_ladvise, applications can provide I/O hints on a Lustre

file to the server. In this way, applications can express temporality

to the server and specify whether data should be pre-fetched

into the server cache. This is the server-side equivalent of the

posix_fadvise function, which operates on the client side.

• Concurrent access: Lustre uses POSIX interface

(no notation). But, through striping the

distribution of the file can be adjusted to support

parallel access.

• Persistency: System level.

• Consistency: Sequential consistency.

• Spatiality: Supports explicit data placement,

striping data accross multiple OSTs, different

storages are addressable via pools.

• Temporality: Via posix_fadvise on the client

and llapi_ladvise on the server.

• Mutability: Via POSIX open flags.

Characteristics for semantic categories:

GekkoFS: GekkoFS is a job-temporal ad-hoc file system that

utilizes node-local storage resources and runs in user space (Vef

et al., 2020). It is designed to boost HPC applications by leveraging

local storage resources such as NVMe or SSDs and benefiting

from lower latencies. GekkoFS provides a POSIX interface with

sequential consistency semantics for any file system operation that

accesses a specific file or data region within a file. This includes

read and write operations, as well as metadata operations

that target a single file—e.g., file creation—which are sequentially

consistent. However, consistency for directory operations or those

involving an unknown number of files beforehand (e.g., readdir)

is relaxed to eventual consistency.

Moreover, studies on HPC application behavior have shown

that certain file system operations, such as move and rename, are

rarely used (Wang et al., 2021; Lensing et al., 2016). As GekkoFS

is designed to implement only the essential POSIX operations

commonly used in HPC, it either does not support these operations

or makes them optionally supported, such as rename.

Data are stored in stripes across the node-local storage devices,

and metadata is distributed across all file system clients in a

key-value store. This design enables fast metadata operations

and good scalability (Vef et al., 2020). In contrast to Lustre,

GekkoFS does not support explicit data placement, and stripe

settings cannot be adjusted at runtime. Consequently, system

and middleware libraries are unable to utilize spatiality hints for

optimizing data placement.

Frontiers inHighPerformanceComputing 11 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1393936
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Oeste et al. 10.3389/fhpcp.2025.1393936

GekkoFS provides job-level persistency but does not guarantee

data survival beyond the job’s execution unless explicitly staged

out. It does not expose runtime APIs for declaring reuse intent in

any form.

GekkoFS, with its job-temporal lifetime and relaxed semantics,

is often used as an I/O accelerator before accessing other storage

systems. Because its configuration is done explicitly per job,

GekkoFS does not support many customization options tailored to

specific workloads.

• Concurrent access: GekkoFS uses a POSIX

interface; no explicit notion.

• Persistency: Job level.

• Consistency: sequential consistency for direct

operations and eventual consistency for directory

operations.

• Spatiality: Support for striping data but no explicit

data placement.

• Temporality: No notion.

• Mutability: Via POSIX open flags.

Characteristics for semantic categories:

5.4 Physical medium I/O interfaces

Storage hardware interface protocols include Small Computer

System Interface (SCSI), Serial Advanced Technology Attachement

(SATA), NVMe (NVM Express), and the DRAM interface for non-

volatile DRAM. These can be grouped into two categories: the

DRAM interface and all other storage interfaces.

DRAM is directly accessed by the central processing unit (CPU)

via load/store commands and is byte-addressable. The memory

controller of the CPU, if implemented, is capable of ordering and

batching requests. In HPC scenarios, it will always load and store

complete cache lines. Conflicting commands to the same memory

address issued from different threads are managed by the cache

coherence protocol.

The operating system kernel manages the remaining interfaces

by issuing commands that typically target a specific device

and storage block, usually with a fixed granularity. These

commands are primarily Advanced Technology Attachement

(ATA) commands or their derivatives. Modern storage

devices allow the transmission of many commands through

parallel queues. Historically, rotating disks could only reorder

commands to optimize physical access patterns. Modern

NVMe devices, however, may execute commands in any order.

According to Section 2.1.2 of the NVM Express command set

specifications (NVM Express, Inc., 2021), a write to position X

and a read from position X issued in parallel may be executed in

any order.

Any enforcement of request ordering in storage must be

handled by the operating system or higher software layers,

typically by flushing the relevant queues. In terms of consistency

semantics, modern hardware essentially operates under eventual

consistency. There is no inherent atomicity in storage hardware—

each command is treated independently by the device, without

regard to other commands in flight. While some devices may

support WORM (write once, read many) functionality, this is

generally not the case in HPC environments.

• Concurrent access: No notion of concurrent

access.

• Persistency: Provides persistency.

• Consistency: Eventual consistency; requests

are processed simultaneously in several queues,

the operating system/file system has to ensure

consistency and ordering requirements of the

requests.

• Spatiality: Data are stored on the device.

• Temporality: No notion of temporality.

• Mutability: No notion of mutability; this is usually

a feature of the firmware.

Characteristics for semantic categories:

5.5 Comparison of interface I/O semantics

Table 2 compares the different interfaces at each layer for their

ability to express the characteristics of our semantic categories from

Section 4.

We can conclude that middleware libraries provide the most

flexibility in expressing I/O semantics. A common design pattern is

to provide an interface within the middleware to implement I/O

operations for different I/O backends, e.g., POSIX, object stores,

databases, or in-memory storage systems. This way, themiddleware

can map its semantics to different underlying layers in the storage

stack and possibly skip the system layer.

MPI-IO is the only interface that can explicitly express parallel

access to a resource and provide coordination of I/O operations

that are collectively applied to a file. HDF5 can use MPI-IO for

its I/O operations if it is layered on top of MPI-IO. At lower

layers, information about parallel access is lost, because neither the

system-level nor the storage system interfaces are able to convey

this information.

Persistency semantics are solely defined by the storage layer;

higher-layer interfaces provide no notion for specifying their

persistency requirements. However, especially for distributed

storage systems, it would be beneficial to propagate persistency

requirements to guide data placement and ensure data safety.

Consistency semantics are mostly sequential at the upper

layers. MPI-IO provides a mode in which sequential consistency

can be relaxed to sync/barrier/sync semantics, which resemble

session consistency. In the storage layer, consistency appears to

be the main target for optimization regarding I/O semantics.

Different file systems implement various consistency models

and rely on applications or middleware to be aware of

them. It has been shown that HPC applications can run

under relaxed consistency semantics (Wang et al., 2021;

Oeste et al., 2023). Moreover, storage systems with relaxed

consistency models can deliver better performance for I/O

(Vef et al., 2020; Wang et al., 2024).

For spatiality semantics, we distinguish between the

intended access pattern and the ability to express explicit

Frontiers inHighPerformanceComputing 12 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1393936
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Oeste et al. 10.3389/fhpcp.2025.1393936

TABLE 2 Comparison of the semantics of I/O interfaces.

Interface Concurrent Access Persistency Consistency Spatiality Temporality Mutability

MPIIO X × Sequential/Session X X X

HDF5 X × Sequential X X X

POSIX I/O × × Sequential × X X

NFS × Job level Session × × X

DAOS × System level Commit X × X

Lustre × System level Sequential X X X

GekkoFS × Job level Sequential/Eventual × × X

NVME SSD × X Eventual × × ×

Xindicates the transport of this semantic category is supported by the interface.× indicates that there is no support for this semantic category in the interface.

data placement at the storage layer. Our study shows that

middleware libraries such as HDF5 and MPI-IO can provide

spatiality-related hints to the lower layers. However, if they are

layered on top of POSIX, this information might get lost. Storage

systems, by comparison, can support spatiality by grouping

storage devices into pools and defining stripe patterns to guide

data distribution.

Temporality, expressed as hints to guide caching, is supported

by all middleware libraries and by POSIX I/O, but not all storage

systems are capable of utilizing this information.

All interfaces, except NVMe SSDs, can express mutability

semantics to specify whether they merely read or also modify

a resource.

We conclude with the following summary:

1. Middleware libraries are able to express most semantics through

their APIs and can be extended to support additional semantics.

2. Persistency is defined solely by the storage layer; higher layers do

not support expressing persistency requirements.

3. MPI-IO is the only interface that allows the expression of parallel

access to a file.

4. Consistency semantics are defined individually by each

interface. There is no standardized way to express required

consistency guarantees.

5. System-level interfaces offer limited support for expressing I/O

semantics; they are primarily designed for single-node use.

6. Storage systems focus primarily on persistency and consistency

semantics but offer a wide range of features in these areas.

In this section, each interface was discussed independently.

In the next section, we will explore how I/O semantics are lost

when interfaces are layered together, as they are in real-world

I/O stacks.

6 Semantic losses through the I/O
stack

When data move through the different layers of the I/O

stack, relevant I/O semantics attached to them can become less

apparent or be lost. This section takes the checkpoint example from

Section 3 and discusses which I/O semantics might be lost through

the layers of the different interfaces in our three stacks from

Figure 3.

At the application level, information about I/O semantics can

be assumed to be complete. The user’s intent should be directly

expressed in the source code. For all three stacks in Figure 3,

the application must define the storage path for the checkpoint

data. The persistency semantics are defined by the storage system

associated with that path. As shown in Section 5, none of the

system or middleware interfaces can express this information.

Consequently, the underlying file system cannot report whether

it guarantees the required persistency semantics. The persistency

semantics of that data are lost at the application level, and the user

must know which file system meets their persistency requirements.

In Section 3, we described that the checkpoint should be used

to recover from potential node failures. The I/O stack from

Figure 3c cannot satisfy this requirement without additional data

transfers because GekkoFS is a job-temporal file system that uses

node-local storage. Consequently, data cannot be recovered after

a node failure unless they are transferred to a storage location

with stronger persistency semantics. If persistency semantics had

been transported through the stack, at least a warning could have

been issued.

For the I/O stack in Figure 3a, the middleware layer translates

the HDF5 memory layout into a layout expressible by lower-

layer primitives. HDF5 on top of MPI-IO can coordinate

multiple processes accessing shared files. MPI-IO can transport

the concurrent access semantics of the application by defining

the number of processes participating in I/O operations within

a corresponding MPI communicator for collective calls. HDF5

provides additional functions to configure the collective behavior

of MPI-IO. Spatiality semantics can be expressed through

information about data access structure using MPI-derived data

types and MPI file views. Features like HDF5 dataset and

dataspace allow defining a view of the data to be written.

Further, MPI-IO can use posix_fadvise to inform lower

layers about intended temporal and spatial access patterns.

Additionally, MPI-IO can invoke Lustre-specific API calls (e.g.,

to create a file with an optimized stripe pattern) to guide explicit

data placement.

For the I/O stack in Figure 3c, spatiality semantics are lost at the

application level. POSIX I/O has no mechanism to transport data

placement information to the underlying file system. Furthermore,

Frontiers inHighPerformanceComputing 13 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1393936
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Oeste et al. 10.3389/fhpcp.2025.1393936

GekkoFS neither implements posix_fadvise nor provides a

public interface for controlling data distribution. In contrast, the

I/O stack in Figure 3b uses Lustre, which supports explicit data

placement and posix_fadvise, but the application must use

them correctly.

The translation to the system layer happens when MPI-

IO converts I/O operations into POSIX I/O calls. Because

POSIX I/O has no concept of parallel file access, the upper

layer must coordinate I/O operations across processes. At this

point, concurrent access semantics are lost. Processes perform

I/O independently as unstructured byte streams. For the first

I/O stack in Figure 3a, MPI-IO handles this coordination. In

the stacks from Figures 3b, c, the application is responsible for

coordinating concurrent access, and the semantics are already

lost at the application level. Information such as temporality and

spatiality becomes less apparent. Although POSIX I/O includes the

fadvise call to provide access hints to the underlying storage

system, not all file systems support it.

For the two I/O stacks using Lustre (Figures 3a, b), temporality

hints can be conveyed through MPI_Info, posix_fadvise,

and llapi_ladvise. Thus, client caches can be disabled, as

checkpoint data are not reused after being written. In contrast, the

I/O stack in Figure 3c uses GekkoFS, which does not implement

posix_fadvise, causing temporality semantics to be lost at

this layer.

The sequential consistency semantics of POSIX I/O prohibit

unsynchronized updates to the same file region. Because

synchronization is expensive in lower I/O layers, most parallel

file systems relax POSIX consistency semantics (see Section 5).

MPI-IO can also relax consistency using a sync/barrier/sync session

consistency model. Thus, multiple interfaces in an I/O stack

may define different consistency models, but none can propagate

requirements to lower layers. This can result in inconsistent

data if a higher layer assumes a stronger model than the lower

layer can provide, or in degraded performance if unnecessary

synchronizations are enforced for weaker models. For example,

writing to the same file with multiple processes over NFS (which

offers close-to-open session consistency) may lead to undefined

behavior. However, with MPI-IO as middleware, it can handle the

necessary synchronizations and flushes, albeit at a performance

cost. Relaxed consistency at the file system layer is based on the

assumption that applications synchronize their I/O correctly.

Without this, distributed file systems would require locking on

every update, which would significantly degrade performance.

When I/O reaches the hardware layer, most semantics are no

longer present. Requests wait in one of possibly many queues to

be processed by the device firmware, with no indication of the

number of processes they originated from. There is no concept

of a file anymore, and the processing order of requests is not

guaranteed. The hardware layer assumes all semantic requirements

have been satisfied by higher layers. Semantics such as spatiality

are irrelevant at this point, as the I/O has already reached its

destination. The hardware layer is optimized for throughput and

persistence, offering high-performance predictability but the least

semantic awareness.

To summarize, persistency semantics are solely defined by

the storage system and cannot be expressed by higher layers,

making them effectively lost at the application level. In the first

I/O stack (Figure 3a), concurrent access can be expressed by MPI-

IO but is lost at the middleware layer. Spatiality, temporality, and

mutability semantics can be propagated through the I/O stack using

MPI_Info,posix_fadvise, andllapi_ladvise. In stacks

that do not useMPI-IO (Figures 3b, c), concurrent access semantics

are lost at the application level. In the third stack (Figure 3c),

spatiality and temporality semantics are lost at the system-level.

Mutability semantics are preserved across all three stacks down

to the hardware. Consistency semantics are individually defined

by each interface but are not propagated through the I/O stack.

As a result, neither signaling unmet consistency requirements nor

optimizing based on relaxed assumptions is possible. The user must

know what guarantees can be assumed for a given I/O stack.

In the next section, Section 7, we discuss existing approaches

the I/O community has taken to address the semantic gap.

Following that, in Section 8, we present our proposal for a

semantics-aware I/O stack.

7 Related work

In this section, we discuss some of the research on I/O

semantics. We examine how I/O semantics can be analyzed and

what has been done to address the challenges posed by the

semantic gap.

Primarily, two papers have analyzed the I/O semantics of

HPC applications. Wang et al. (2021) examined the consistency

semantics requirements of 17 HPC applications on parallel file

systems. They found that 16 out of 17 applications can utilize

parallel file systems (PFSs) with weaker semantics than the

strong consistency guarantees of POSIX. Moreover, they provide

a categorization of the consistency guarantees offered by PFSs.

In further work (Wang et al., 2024), they proposed a formal

framework for storage consistency models and showed that weaker

consistency models can improve I/O performance. We follow their

categorization in our discussion of consistency semantics.

We extended Wang’s investigation by developing a tool that

groups I/O operations that could be executed in parallel and

analyzes the semantics of both data andmetadata operations (Oeste

et al., 2023). Both studies concluded that most of the strong

consistency semantics required by POSIX are not necessary for

HPC applications. In particular, for data operations such as strict

write consistency, enforcement at this layer appears unnecessary.

However, we showed that parallel metadata operations, such

as concurrent file creations in the same directory, are a

common pattern in HPC applications that affects performance

and scalability.

Regarding the challenges posed by the semantic gap between

applications and storage systems, several approaches have been

explored. We group them into three basic categories: (1)

optimization of middleware libraries, (2) tuning of storage

systems, and (3) development of automatic characterization and

optimization systems.

The development and optimization of middleware libraries

is an ongoing research topic—libraries such as HDF5 are

continuously being extended. For example, to utilize the

Frontiers inHighPerformanceComputing 14 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1393936
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Oeste et al. 10.3389/fhpcp.2025.1393936

DAOS storage system directly via the DAOS API (bypassing

POSIX I/O), an HDF5 VOL connector was developed. This

enables more features such as asynchronous I/O and better

performance (Soumagne et al., 2022).

A second major area of effort is the optimization of

storage systems, particularly file systems. A number of file

systems relax POSIX semantics for performance or introduce

specialized features to better support certain workloads. Content

Addressable Parallel File System (CAPFS) is a file system with

a tunable consistency framework that can be adapted to specific

applications. The authors argue that a single consistency policy

across the entire file system is suboptimal, as it cannot meet

all application requirements simultaneously. CAPFS uses an

optimistic concurrency control mechanism, assuming that conflicts

are rare. However, the paper only considers semantics for file

content and not metadata. Notably, CAPFS allows manipulation of

semantics at runtime at various granularities, e.g., sub file, file, or

partition-wide (Vilayannur et al., 2005).

The widely used Lustre file system is continually integrating

new features to improve performance and mitigate the semantic

gap in the I/O stack. Examples include writeback metadata

caching (Qian et al., 2022), where a lightweight in-memory file

system is used as a metadata write-back cache instead of the

traditional write-through caching model. Another example is

the enhancement of directory tree walks in Lustre (Qian et al.,

2023) by prefetching metadata and using eventually consistent

(lazy) updates to avoid additional RPCs and limitations from

serialized system-level interfaces. Lustre’s persistent client caching

(LPCC) (Qian et al., 2019) is another feature that speeds up

workloads by leveraging local SSDs. However, such features require

interaction with the parallel file system through separate interfaces

such as configuration options or additional tools like lctl and

lfs. While meaningful defaults are possible with experienced

administrators, dynamically optimizing I/O parameters

and configurations based on the workload remains an open

research problem.

The third area of active research involves autotuning strategies

for storage systems based on the requirements and characteristics

of different applications. The motivation comes from the

complexity of selecting optimal parameters for heterogeneous

storage systems.

Mimir is an approach for configuring layers in the I/O stack

to align with user intent and enhance performance. In this model,

user intent is interpreted and handled by Mimir as a proxy, rather

than modifying each individual layer. The authors demonstrate

use cases spanning high-level I/O libraries (e.g., MPI-IO, HDF5),

POSIX-level interfaces, and middleware I/O libraries (Devarajan

and Mohror, 2023).

LabStor is a modular platform for developing and deploying

customizable high-performance I/O stacks in user space. As

Logan et al. argue, current I/O stacks are too rigid to allow

easy modification. Their solution involves a modular system,

mostly running in user space, with a minimal kernel module

for OS integration. This module can replace the internal kernel

VFS (Logan et al., 2022).

LABIOS (Kougkas et al., 2019, 2020) is another approach

aimed at supporting multiple I/O workloads with conflicting

requirements under a single storage system. It provides a

label-based architecture to promote flexibility, versatility, agility,

and malleability in storage. While the authors demonstrate

improved I/O performance and overall execution time, the

architecture introduces a parallel system to the current I/O stack

to overcome existing interface limitations.

8 Toward a semantic aware I/O stack

Our analysis shows that semantic information—such as

consistency, temporality, and concurrency intent—is often lost

as I/O operations traverse the layers of an HPC storage stack.

This limits the ability of lower layers to make informed decisions

that could optimize performance, enforce correctness, or provide

user-level guarantees.

It becomes apparent that higher layers such as the application

and middleware layers are able to express more I/O semantics

through their APIs than the system layer. Storage systems

like parallel file systems could perform several optimizations

based on I/O semantics if they had information about the

application’s needs. For example, some locking could be disabled

when weaker consistency is sufficient for a workload, or more

extensive caching could be enabled when a process accesses a

file exclusively.

Transporting such information through the I/O stack is

challenging, especially when middleware libraries need to utilize

system-level interfaces to interact with the storage system. This

forces storage systems to make assumptions about access patterns

and application behavior. Because storage systems are primarily

designed to reliably store data in a consistent manner, they often

have to make more pessimistic assumptions than necessary, which

negatively impacts performance. We call this the semantic gap in

the I/O stack.

To address this, we conceptually outline what a semantics-

aware I/O stack could look like. Figure 4 illustrates where we would

place such an semantics-aware interface in the I/O stack.

This is not intended as a concrete implementation proposal,

but rather as a design-oriented thought experiment that builds

on our comparative analysis and semantic taxonomy. Such a

stack would allow I/O interfaces at higher levels (e.g., application

or middleware) to annotate operations with explicit semantic

descriptors—using the six categories defined in Section 4.

These descriptors would then be propagated through the stack,

allowing lower layers to adapt behavior based on declared intent.

For example:

• A parallel file system might skip costly locking if it knows an

application guarantees exclusive access (concurrency).

• A caching layer could adjust pre-fetching and eviction

strategies based on reuse expectations (temporality).

• A job-temporal file system might trigger a warning or

stage-out policy if system-level persistency is required but

not supported.

Semantics-aware interfaces could adopt a declarative model,

where intent is conveyed alongside operations via metadata,

Frontiers inHighPerformanceComputing 15 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1393936
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Oeste et al. 10.3389/fhpcp.2025.1393936

FIGURE 4

Illustration of a semantic-aware I/O stack where the middleware

directly interfaces with the storage system.

configuration hints, or API extensions. Crucially, we emphasize

that our goal is not to propose a new interface, but to motivate

the need for semantic transparency based on the gaps identified

in existing interfaces. The taxonomy we introduced can serve as

a foundation for evaluating and guiding enhancements to current

APIs, middleware, or file systems.

By better surfacing and transporting semantic intent, future

I/O stacks could close the gap between user behavior and

system behavior—improving both performance and correctness in

HPC workflows.

9 Summary and conclusions

In this article, we presented a comparison of I/O interfaces used

in HPC storage stacks, focusing on how these interfaces express and

handle I/O semantics. To support this analysis, we introduced a

taxonomy that categorizes I/O semantics into six key dimensions:

concurrency, persistency, consistency, spatiality, temporality, and

mutability. By applying this taxonomy to widely used interfaces

such as POSIX, MPI-IO, HDF5, and others, we demonstrated how

semantic information is often lost as data flow through the layers

of the I/O stack. Our comparison revealed that while middleware

layers can express rich semantic intent, lower layers—particularly

system and hardware interfaces—typically lack mechanisms to

receive or act on this information.

We aimed to clarify and compare the semantic capabilities

of existing interfaces through a structured framework. This

comparative approach provides a foundation for future work

on improving semantic propagation across I/O stacks and for

designing tools or extensions that make semantic intent more

transparent and actionable.

By exposing where and how semantic loss occurs, our work

supports the broader effort to build more performant and

predictable I/O systems in HPC by better understanding and

classifying the interfaces we use.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

SO: Conceptualization, Investigation, Methodology, Writing

– original draft, Writing – review & editing. PH: Investigation,

Writing – original draft, Writing – review & editing. MK:

Methodology, Writing – original draft, Writing – review & editing.

JK: Conceptualization, Methodology, Writing – original draft,

Writing – review & editing.

Funding

The author(s) declare that financial support was received for

the research and/or publication of this article. The research in this

paper was conducted as part of the MCSE project (Funding code:

16ME0663K) which was funded by BMFTR (Federal Ministry of

Research, Technology and Space) as part of the SCALEXA funding

guideline, which in turn was funded by the European Union -

NextGenerationEU. This work was supported by the NHR Center

of TU Dresden, which is jointly financed by the BMFTR and the

free state of Saxony.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers inHighPerformanceComputing 16 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1393936
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Oeste et al. 10.3389/fhpcp.2025.1393936

References

Ahmadian, S., Salkhordeh, R., Mutlu, O., and Asadi, H. (2021). ETICA: efficient
two-level I/O caching architecture for virtualized platforms. CoRR, abs/2106.07423.
doi: 10.1109/TPDS.2021.3066308

Barton, E. (2015). DAOS–An Architecture for Extreme Scale Storage. SNIA
(Storage Networking Industry Association). Available online at: https://www.snia.org/
sites/default/files/SDC15_presentations/dist_sys/EricBarton_DAOS_Architecture_
Extreme_Scale.pdf

Bonnie, M. M. D., Ligon, B., Marshall, M., Ligon, W., Mills, N., Sampson, E. Q. S.,
et al. (2011). “Orangefs: advancing pvfs,” in USENIX Conference on File and Storage
Technologies (FAST).

Braam, P. J., and Zahir, R. (2002). Lustre: a scalable, high performance file system.
Cluster File Syst. 8, 3429–3441.

Byna, S., Chen, Y., Sun, X.-H., Thakur, R., and Gropp, W. (2008). “Parallel
I/O prefetching using MPI file caching and I/O signatures,” in Proceedings
of the 2008 ACM/IEEE conference on Supercomputing (IEEE Press), 44.
doi: 10.1109/SC.2008.5213604

Carns, P. H., Ligon, W. B., Ross, R. B., and Thakur, R. (2000). “Pvfs: a parallel file
system for linux clusters,” in Proceedings of the 4th Annual Linux Showcase Conference
- Volume 4, ALS’00 (USA: USENIX Association), 28.

Corbett, P., Feitelson, D., Fineberg, S., Hsu, Y., Nitzberg, B., Prost, J.-P., et al.
(1996). “Overview of the mpi-io parallel I/O interface,” in Input/Output in Parallel and
Distributed Computer Systems, 127–146. doi: 10.1007/978-1-4613-1401-1_5

del Rosario, J. M., Bordawekar, R., and Choudhary, A. (1993). Improved parallel I/O
via a two-phase run-time access strategy. SIGARCH Comput. Archit. News 21, 31–38.
doi: 10.1145/165660.165667

Devarajan, H., and Mohror, K. (2023). “Mimir: extending I/O interfaces
to express user intent for complex workloads in HPC,” in 2023 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), 178–188.
doi: 10.1109/IPDPS54959.2023.00027

Dinh, A., Wang, J., Wang, S., Chen, G., Chin, W.-N., Lin, Q., et al. (2017). UStore: a
distributed storage with rich semantics. arXiv preprint arXiv:1702.02799.

Folk, M., Heber, G., Koziol, Q., Pourmal, E., and Robinson, D. (2011). “An overview
of the hdf5 technology suite and its applications,” in Proceedings of the EDBT/ICDT
2011 Workshop on Array Databases, 36–47. doi: 10.1145/1966895.1966900

Fragalla, J., Loewe, B., and Kling Petersen, T. (2020). New lustre features to
improve lustre metadata and small-file performance. Concurr. Comput. 32:e5649.
doi: 10.1002/cpe.5649

Fridella, S., Black, D. L., and Glasgow, J. (2010). Parallel NFS (pNFS) Block/Volume
Layout. Request for Comments RFC 5663, Internet Engineering Task Force.

Gregg, B. (2014). Systems Performance: Enterprise and the Cloud. London: Pearson
Education.

Hildebrand, D., Nisar, A., and Haskin, R. (2009). “pNFS, POSIX, and MPI-IO: a
tale of three semantics,” in Proceedings of the 4th Annual Workshop on Petascale Data
Storage (Portland Oregon: ACM), 32–36. doi: 10.1145/1713072.1713082

Kang, Q., Ross, R., Latham, R., Lee, S., Agrawal, A., Choudhary, A., et al. (2020).
“Improving all-to-many personalized communication in two-phase I/O,” in SC20:
International Conference for High Performance Computing, Networking, Storage and
Analysis, 1–13. doi: 10.1109/SC41405.2020.00014

Kougkas, A., Devarajan, H., Lofstead, J., and Sun, X.-H. (2019). “Labios: a
distributed label-based I/O system,” in Proceedings of the 28th International Symposium
on High-Performance Parallel and Distributed Computing, HPDC’19 (New York, NY,
USA: Association for Computing Machinery), 13–24. doi: 10.1145/3307681.3325405

Kougkas, A., Devarajan, H., and Sun, X.-H. (2020). Bridging storage semantics using
data labels and asynchronous I/O. ACM Trans. Storage 16, 1–34. doi: 10.1145/3415579

Koziol, Q., and Breitenfeld, S. (2015). A Brief Introduction to Parallel HDF5. The
HDF Group. Available online at: https://www.alcf.anl.gov/files/Parallel_HDF5_1.pdf

Kuhn, M. (2013). “A semantics-aware I/O interface for high performance
computing,” in Supercomputing, eds. J. M. Kunkel, T. Ludwig, andH.W.Meuer (Berlin,
Heidelberg: Springer Berlin Heidelberg), 408–421. doi: 10.1007/978-3-642-38750-0_31

Lee, W., Park, S., Sung, B., and Park, C. (2011). Improving Adaptive Replacement
Cache (arc) by reuse distance. Technical report.

Lensing, P. H., Cortes, T., Hughes, J., and Brinkmann, A. (2016). “File system
scalability with highly decentralized metadata on independent storage devices,” in
2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), 366–375. doi: 10.1109/CCGrid.2016.28

Liang, Z., Lombardi, J., Chaarawi, M., and Hennecke, M. (2020). “Daos: a scale-
out high performance storage stack for storage class memory,” in Supercomputing
Frontiers, eds. D. K. Panda (Cham: Springer International Publishing), 40–54.
doi: 10.1007/978-3-030-48842-0_3

Liao, W., k., Ching, A., Coloma, K., Choudhary, A., and Ward, L. (2007).
“An implementation and evaluation of client-side file caching for MPI-IO,” in

2007 IEEE International Parallel and Distributed Processing Symposium, 1–10.
doi: 10.1109/IPDPS.2007.370239

Lockwood, G. K. (2017). What’s So Bad About POSIX I/O? The Next Platform.
Available online at: https://www.nextplatform.com/2017/09/11/whats-bad-posix-io/
(Accessed July 29, 2025).

Lofstead, J., Zheng, F., Klasky, S., and Schwan, K. (2009). “Adaptable,
metadata rich IO methods for portable high performance IO,” in 2009 IEEE
International Symposium on Parallel Distributed Processing (Rome, Italy: IEEE), 1–10.
doi: 10.1109/IPDPS.2009.5161052

Logan, L., Garcia, J. C., Lofstead, J., Sun, X., and Kougkas, A. (2022). “LabStor:
a modular and extensible platform for developing high-performance, customized
I/O stacks in userspace,” in SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis (Dallas, TX, USA: IEEE), 1–15.
doi: 10.1109/SC41404.2022.00028

Message Passing Interface Forum (1996). MPI-2: Extensions to the message-passing
interface. Technical report. University of Tennessee, Knoxville.

Message Passing Interface Forum (2023).MPI: A message-passing interface standard
- version 4.1. MPI-Forum.

NVM Express, Inc. (2021). NVM Command Set Specification, Revision 1.0a. NVM
Express, Inc. Available online at: https://nvmexpress.org/wp-content/uploads/NVMe-
NVM-Command-Set-Specification-1.0a-2021.07.26-Ratified.pdf

Oeste, S., Kluge, M., Tschüter, R., and Nagel, W. E. (2023). “Analyzing parallel
applications for unnecessary I/O semantics that inhibit file system performance,” in
High Performance Computing, eds. A. Bienz, M. Weiland, M. Baboulin, and C. Kruse
(Cham: Springer Nature Switzerland), 161–176. doi: 10.1007/978-3-031-40843-4_13

Padua, D., Ghoting, A., Gunnels, J. A., Squillante, M. S., Meseguer, J., Cownie, J. H.,
et al. (2011). “MPI-IO,” in Encyclopedia of Parallel Computing, eds. D. Padua (Boston,
MA: Springer US), 1191–1199. doi: 10.1007/978-0-387-09766-4

Pawlowski, B., Shepler, S., Beame, C., Callaghan, B., Eisler, M., Noveck, D., et al.
(2000). “The NFS Version 4 Protocol,” in Proceedings of the 2nd International System
Administration and Networking Conference (SANE 2000) (Amsterdam, NL: NLUUG).

Pence, W. D., Chiappetti, L., Page, C. G., Shaw, R. A., and Stobie, E. (2010).
Definition of the flexible image transport system (fits), version 3.0. Astron. Astrophys.
524:A42. doi: 10.1051/0004-6361/201015362

posix (2018). IEEE Standard for Information Technology-Portable Operating System
Interface (POSIX(R)) Base Specifications, Issue 7. IEEE Std 1003.1-2017 (Revision of
IEEE Std 1003.1-2008), 1–3951.

Qian, Y., Cheng, W., Zeng, L., Li, X., Vef, M.-A., Dilger, A., et al. (2023).
“Xfast: extreme file attribute stat acceleration for lustre,” in Proceedings of the
International Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’23 (New York, NY, USA: Association for Computing Machinery).
doi: 10.1145/3581784.3607080

Qian, Y., Cheng, W., Zeng, L., Vef, M.-A., Drokin, O., Dilger, A., et al. (2022).
“Metawbc: posix-compliant metadata write-back caching for distributed file systems,”
in SC22: International Conference for High Performance Computing, Networking,
Storage and Analysis, 1–20. doi: 10.1109/SC41404.2022.00061

Qian, Y., Li, X., Ihara, S., Dilger, A., Thomaz, C., Wang, S., et al. (2019).
“Lpcc: hierarchical persistent client caching for lustre,” in Proceedings of the
International Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’19 (New York, NY, USA: Association for Computing Machinery).
doi: 10.1145/3295500.3356139

Rew, R., and Davis, G. (1990). Netcdf: an interface for scientific data access. IEEE
Comput. Graph. Applic. 10, 76–82. doi: 10.1109/38.56302

Scargall, S. (2020). Programming Persistent Memory: A Comprehensive Guide for
Developers. Berkeley, CA: Apress. doi: 10.1007/978-1-4842-4932-1

SODA Foundation. (2023). DAOS source code. GitHub. Available online at: https://
github.com/daos-stack/daos/tree/master/src (Accessed October 2, 2023).

Soumagne, J., Henderson, J., Chaarawi, M., Fortner, N., Breitenfeld, S., Lu, S., et al.
(2022). Accelerating hdf5 I/O for exascale using daos. IEEE Trans. Paral. Distr. Syst. 33,
903–914. doi: 10.1109/TPDS.2021.3097884

Tang, H., Koziol, Q., Byna, S., Mainzer, J., and Li, T. (2019). “Enabling transparent
asynchronous I/O using background threads,” in 2019 IEEE/ACM Fourth International
Parallel Data Systems Workshop (PDSW), 11–19. doi: 10.1109/PDSW49588.2019.0
0006

Tang, H., Koziol, Q., Ravi, J., and Byna, S. (2022). Transparent asynchronous
parallel I/O using background threads. IEEE Trans. Paral. Distr. Syst. 33, 891–902.
doi: 10.1109/TPDS.2021.3090322

Tang, K., Huang, P., He, X., Lu, T., Vazhkudai, S., and Tiwari, D. (2017). “Toward
managing HPC burst buffers effectively: draining strategy to regulate bursty I/O
behavior,” in 2017 IEEE 25th International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS) (IEEE), 87–98.
doi: 10.1109/MASCOTS.2017.35

Frontiers inHighPerformanceComputing 17 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1393936
https://doi.org/10.1109/TPDS.2021.3066308
https://www.snia.org/sites/default/files/SDC15_presentations/dist_sys/EricBarton_DAOS_Architecture_Extreme_Scale.pdf
https://www.snia.org/sites/default/files/SDC15_presentations/dist_sys/EricBarton_DAOS_Architecture_Extreme_Scale.pdf
https://www.snia.org/sites/default/files/SDC15_presentations/dist_sys/EricBarton_DAOS_Architecture_Extreme_Scale.pdf
https://doi.org/10.1109/SC.2008.5213604
https://doi.org/10.1007/978-1-4613-1401-1_5
https://doi.org/10.1145/165660.165667
https://doi.org/10.1109/IPDPS54959.2023.00027
https://doi.org/10.1145/1966895.1966900
https://doi.org/10.1002/cpe.5649
https://doi.org/10.1145/1713072.1713082
https://doi.org/10.1109/SC41405.2020.00014
https://doi.org/10.1145/3307681.3325405
https://doi.org/10.1145/3415579
https://www.alcf.anl.gov/files/Parallel_HDF5_1.pdf
https://doi.org/10.1007/978-3-642-38750-0_31
https://doi.org/10.1109/CCGrid.2016.28
https://doi.org/10.1007/978-3-030-48842-0_3
https://doi.org/10.1109/IPDPS.2007.370239
https://www.nextplatform.com/2017/09/11/whats-bad-posix-io/
https://doi.org/10.1109/IPDPS.2009.5161052
https://doi.org/10.1109/SC41404.2022.00028
https://nvmexpress.org/wp-content/uploads/NVMe-NVM-Command-Set-Specification-1.0a-2021.07.26-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVMe-NVM-Command-Set-Specification-1.0a-2021.07.26-Ratified.pdf
https://doi.org/10.1007/978-3-031-40843-4_13
https://doi.org/10.1007/978-0-387-09766-4
https://doi.org/10.1051/0004-6361/201015362
https://doi.org/10.1145/3581784.3607080
https://doi.org/10.1109/SC41404.2022.00061
https://doi.org/10.1145/3295500.3356139
https://doi.org/10.1109/38.56302
https://doi.org/10.1007/978-1-4842-4932-1
https://github.com/daos-stack/daos/tree/master/src
https://github.com/daos-stack/daos/tree/master/src
https://doi.org/10.1109/TPDS.2021.3097884
https://doi.org/10.1109/PDSW49588.2019.00006
https://doi.org/10.1109/TPDS.2021.3090322
https://doi.org/10.1109/MASCOTS.2017.35
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Oeste et al. 10.3389/fhpcp.2025.1393936

Thakur, R., Gropp, W., and Lusk, E. (1996). “An abstract-device interface for
implementing portable parallel-I/O interfaces,” in Proceedings of 6th Symposium on the
Frontiers of Massively Parallel Computation (Frontiers ’96) (Annapolis, MA, USA: IEEE
Comput. Soc. Press), 180–187. doi: 10.1109/FMPC.1996.558080

Thakur, R., Gropp, W., and Lusk, E. (1999a). “Data sieving and collective
I/O in ROMIO,” in Proceedings. Frontiers ’99. Seventh Symposium on the
Frontiers of Massively Parallel Computation (Annapolis, MD, USA: IEEE), 182–189.
doi: 10.1109/FMPC.1999.750599

Thakur, R., Gropp, W., and Lusk, E. (1999b). “On implementing MPI-IO portably
and with high performance,” in Proceedings of the SixthWorkshop on I/O in Parallel and
Distributed Systems (Atlanta Georgia USA: ACM), 23–32. doi: 10.1145/301816.301826

The HDF Group (2012). Enabling a Strict Consistency Semantics Model in Parallel
HDF5. The HDF Group. Available online at: https://support.hdfgroup.org/HDF5/doc/
Advanced/PHDF5FileConsistencySemantics/PHDF5FileConsistencySemantics.pdf

Vef, M.-A., Moti, N., Süß, T., Tacke, M., Tocci, T., Nou, R., et al. (2020). Gekkofs—
a temporary burst buffer file system for hpc applications. J. Comput. Sci. Technol. 35,
72–91. doi: 10.1007/s11390-020-9797-6

Vilayannur, M., Lang, S., Ross, R., Klundt, R., Ward, L., and Snl (2008). Extending
the POSIX I/O interface: A parallel file system perspective. Technical Report ANL/MCS-
TM-302,946036. doi: 10.2172/946036

Vilayannur, M., Nath, P., and Sivasubramaniam, A. (2005). “Providing tunable
consistency for a parallel file store,” in FAST. USENIX Association.

Wang, C., Mohror, K., and Snir, M. (2021). “File system semantics requirements
of hpc applications,” in Proceedings of the 30th International Symposium on
High-Performance Parallel and Distributed Computing, HPDC ’21 (New York,
NY, USA: Association for Computing Machinery), 19–30. doi: 10.1145/3431379.34
60637

Wang, C., Mohror, K., and Snir, M. (2024). Formal definitions and performance
comparison of consistency models for parallel file systems. IEEE Trans. Paral. Distr.
Syst. 35, 1092–1106. doi: 10.1109/TPDS.2024.3391058

Yu, J., Yang, W., Wang, F., Dong, D., Feng, J., and Li, Y. (2020).
Spatially bursty I/O on supercomputers: causes, impacts and solutions.
IEEE Trans. Paral. Distr. Syst. 31, 2908–2922. doi: 10.1109/TPDS.2020.300
5572

Zheng, H., Vishwanath, V., Koziol, Q., Tang, H., Ravi, J., Mainzer,
J., et al. (2022). “HDF5 Cache VOL: efficient and scalable parallel
I/O through caching data on node-local storage,” in 2022 22nd IEEE
International Symposium on Cluster, Cloud and Internet Computing
(CCGrid) (Taormina, Italy: IEEE), 61–70. doi: 10.1109/CCGrid54584.2022.0
0015

Frontiers inHighPerformanceComputing 18 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1393936
https://doi.org/10.1109/FMPC.1996.558080
https://doi.org/10.1109/FMPC.1999.750599
https://doi.org/10.1145/301816.301826
https://support.hdfgroup.org/HDF5/doc/Advanced/PHDF5FileConsistencySemantics/PHDF5FileConsistencySemantics.pdf
https://support.hdfgroup.org/HDF5/doc/Advanced/PHDF5FileConsistencySemantics/PHDF5FileConsistencySemantics.pdf
https://doi.org/10.1007/s11390-020-9797-6
https://doi.org/10.2172/946036
https://doi.org/10.1145/3431379.3460637
https://doi.org/10.1109/TPDS.2024.3391058
https://doi.org/10.1109/TPDS.2020.3005572
https://doi.org/10.1109/CCGrid54584.2022.00015
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

	An analysis of the I/O semantic gaps of HPC storage stacks
	1 Introduction
	2 The I/O stack and the semantical gap
	2.1 Physical medium
	2.2 Storage system
	2.3 System-level-API
	2.4 Middleware
	2.5 Application

	3 Example of a checkpoint use case
	4 A definition and taxonomy of I/O-semantics
	4.1 I/O semantic
	4.2 Semantic categories

	5 Semantics of I/O-interfaces
	5.1 Middleware I/O interfaces
	5.2 System-level I/O interfaces
	5.3 Storage-level I/O interfaces
	5.4 Physical medium I/O interfaces
	5.5 Comparison of interface I/O semantics

	6 Semantic losses through the I/O stack
	7 Related work
	8 Toward a semantic aware I/O stack
	9 Summary and conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References




