
TYPE Original Research

PUBLISHED 18 June 2025

DOI 10.3389/fhpcp.2025.1520151

OPEN ACCESS

EDITED BY

James A. Ang,

Pacific Northwest National Laboratory (DOE),

United States

REVIEWED BY

Peng Chen,

RIKEN, Japan

Tekin Bicer,

Argonne National Laboratory (DOE),

United States

Yudong Yao,

ShanghaiTech University, China

*CORRESPONDENCE

Abhilasha Dave

adave@slac.stanford.edu

RECEIVED 30 October 2024

ACCEPTED 19 May 2025

PUBLISHED 18 June 2025

CITATION

Dave A, Wang C, Russell J, Herbst R and

Thayer J (2025) FPGA-accelerated SpeckleNN

with SNL for real-time X-ray single-particle

imaging.

Front. High Perform. Comput. 3:1520151.

doi: 10.3389/fhpcp.2025.1520151

COPYRIGHT

© 2025 Dave, Wang, Russell, Herbst and

Thayer. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

FPGA-accelerated SpeckleNN
with SNL for real-time X-ray
single-particle imaging

Abhilasha Dave*, Cong Wang, James Russell, Ryan Herbst and

Jana Thayer

SLAC National Accelerator Laboratory, Menlo Park, CA, United States

We present the implementation of a specialized version of our previously

published unified embedding model, SpeckleNN, for real-time speckle pattern

classification in X-ray Single-Particle Imaging (SPI), using the SLAC Neural

Network Library (SNL) on an FPGA platform. This hardware realization transitions

SpeckleNN from a prototypic model into a practical edge solution, optimized

for running inference near the detector in high-throughput X-ray free-electron

laser (XFEL) facilities, such as those found at the Linac Coherent Light Source

(LCLS). To address the resource constraints inherent in FPGAs, we developed a

more specialized version of SpeckleNN. The original model, which was designed

for broader classification across multiple biological samples, comprised ∼5.6

million parameters. The new implementation, while reducing the parameter

count to 64.6K (a 98.8% reduction), focuses on maintaining the model’s essential

functionality for real-time operation, achieving an accuracy of 90%. Furthermore,

we compressed the latent space from128 to 50 dimensions. This implementation

was demonstrated on the KCU1500 FPGA board, utilizing 71% of available DSPs,

75% of LUTs, and 48% of FFs, with an average power consumption of 9.4W

according to the Vivado post-implementation report. The FPGA performed

inference on a single image with a latency of 45.015 microseconds at a 200

MHz clock rate. In comparison, running the same inference on an NVIDIA

A100 GPU resulted in an average power consumption of ∼73W and an

image processing latency of around 400 microseconds. Our FPGA-accelerated

version of SpeckleNNdemonstrated significant improvements, achieving an 8.9×

speedup and a 7.8× reduction in power consumption compared to the GPU

implementation. Key advancements include model specialization and dynamic

weight loading through SNL, which eliminates the need for time-consuming

FPGA design re-synthesis, allowing fast and continuous deployment of models

(re)trained online. These innovations enable real-time adaptive classification

and e�cient vetoing of speckle patterns, making SpeckleNN more suited

for deployment in XFEL facilities. This implementation has the potential to

significantly accelerate SPI experiments and enhance adaptability to evolving

experimental conditions.

KEYWORDS

FPGA, machine learning, XFEL, SPI, SpeckleNN, GPU, LCLS

1 Introduction

The rapid advancement of next-generation detectors in scientific research and

industrial applications has catalyzed an exponential increase in data generation rates.

Ultra-high-rate (UHR) detectors, such as those used in X-ray free-electron laser (XFEL)

facilities like Linac Coherent Light Source (LCLS), now operate at frequencies exceeding

Frontiers inHighPerformanceComputing 01 frontiersin.org

https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://doi.org/10.3389/fhpcp.2025.1520151
http://crossmark.crossref.org/dialog/?doi=10.3389/fhpcp.2025.1520151&domain=pdf&date_stamp=2025-06-18
mailto:adave@slac.stanford.edu
https://doi.org/10.3389/fhpcp.2025.1520151
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fhpcp.2025.1520151/full
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Dave et al. 10.3389/fhpcp.2025.1520151

100 kHz, producing data throughputs that can surpass 1 TB/s.

These cutting-edge technologies have revolutionized the study

of nanoscale particles, particularly through X-ray Single-Particle

Imaging (SPI). In these experiments, intense femtosecond X-ray

pulses generate intricate scattering patterns, commonly referred

to as “speckles,” from individual particles. These speckles are

critical for reconstructing the three-dimensional structures of non-

crystalline particles at room temperature. However, the high data

rates at these facilities present significant challenges for real-time

classification of speckle patterns, which is essential for accurate

and rapid identification of single hits required for subsequent

three-dimensional reconstructions.

Traditional approaches to speckle pattern classification have

relied heavily on either unsupervised learning techniques, which

often necessitate post-experimental human intervention, or

supervised learning models that require extensive labeled datasets.

These datasets are time-consuming to generate and are often

impractical to obtain at the scale required for real-time applications

in high-throughput environments. Consequently, both approaches

are suboptimal for the rapid, on-the-fly analysis needed in

XFEL facilities, where computational complexity and latency can

significantly hinder experimental progress.

To address these challenges, we previously introduced

SpeckleNN (Wang et al., 2023), a unified embedding model

specifically designed for the real-time classification of speckle

patterns with limited labeled examples. SpeckleNN employs

a contrastive learning approach using twin neural networks

(Bromley et al., 1993; Chopra et al., 2005), which map speckle

patterns to a unified embedding vector space. Within this space,

classification is performed based on the Euclidean distance between

embedding vectors, enabling robust few-shot classification even

in scenarios with sparse labeling or missing detector areas. This

model is particularly suited for SPI experiments, where rapid and

accurate classification is critical to the success of data collection

and subsequent analysis.

Despite its effectiveness, maintaining ML inference at high data

rate presented significant challenges. While GPUs are powerful

tools for parallel processing, their performance in real-time, edge

deployments can be influenced by various factors, such as data

transfer overhead, memory constraints, and the need for batch

processing to optimize throughput. This is particularly problematic

when data must be continuously streamed from sensors or

detectors, and immediate feedback is required.

To overcome the challenge of real-time inference in high-

throughput environments, there is a growing interest in computing

platforms that can provide low-latency processing at the edge, in

close proximity to the instrumentation. Field-Programmable Gate

Arrays (FPGAs) have emerged as a promising solution, leveraging

their advanced parallelism and configurability. FPGAs can be

optimized for processing individual data points with minimal

latency, making them particularly suitable for applications that

require immediate feedback and real-time analysis. This capability

is particularly advantageous in high data rate XFEL facilities.

The primary motivation of this work is to enable low-latency,

edge-based inference at the point of data acquisition in high-

throughput environments such as LCLS. Real-time identification of

critical patterns (e.g., single-particle hits) is essential for optimizing

data collection, reducing storage demands, and supporting online

decision-making. While demonstrated here for X-ray SPI, the

approach is equally relevant to other data-intensive scientific

domains, including high-energy physics and electron microscopy,

where similar constraints—bandwidth, latency, and compute

limitations—necessitate adaptive, FPGA-based inference solutions.

However, the promise of FPGAs comes with its own set of

challenges, particularly related to its resource constraints. These

devices, while powerful, are typically smaller and offer limited

computational resources compared to platforms like GPUs. This

presents a significant hurdle when deploying neural network

models, which often contain millions of parameters. Our research

confronted this challenge with the original SpeckleNN model,

which comprised nearly 5.5 million parameters. Fitting such a large

model into single FPGA without exceeding its capacity was not

feasible.

To address this, we undertook a rigorous optimization process

that successfully reduced the model size by ∼98.8%. However, this

reduction came at a cost to accuracy. While the original model

achieved around 98% accuracy, the newer, lighter version has an

accuracy of 90%. Trading off model size with accuracy in this case

is appropriate, enabling the SpeckleNN model to run efficiently on

edge devices like FPGAs, thus facilitating real-time data processing

directly at the site of data collection. Despite the challenges posed

by the reduction in model size, the benefits of deploying these

optimized models on FPGAs are profound. By enabling inference

on a per-image basis with substantially reduced latency, FPGAs

eliminate the bottlenecks associated with batch size constraints in

GPUs, allowing for continuous, real-time data analysis without the

burdensome overhead of data transfer and storage.

To deploy this optimized model on FPGAs, we leveraged

the SLAC Neural Network Library (SNL) (Herbst et al., 2022),

a powerful tool designed specifically to address the challenges

of high-throughput, low-latency environments. SNL enables the

seamless translation of machine learning architectures into FPGA-

compatible code, allowing for the construction of data processing

pipelines characterized by ultra-low latency and high throughput.

This capability is particularly crucial for managing the immense

data velocities generated by modern detectors.

One of the most significant advantages of SNL is its ability to

dynamically load weights and biases onto the FPGA. This feature

eliminates the need for resynthesizing the entire neural network

code for FPGA when the model is retrained, enabling immediate

inference runs with updated models. This feature greatly enhances

the flexibility and efficiency of using FPGAs in environments

where models may need to be frequently updated or fine-tuned

to adapt to new data or experimental conditions. As a result,

deploying machine learning models on FPGAs via SNL represents

a significant advancement, offering a robust solution for real-time

data processing across a wide range of scientific domains.

This paper details the implementation of a streamlined version

of SpeckleNN on the KCU1500 FPGA board using Xilinx Vitis

(Kathail, 2020) and the SLAC Neural Network Library (SNL)

(Xilinx, Inc., 2024). This approach demonstrates the board’s

capability to meet the stringent demands of high-throughput, low-

latency environments. Key advancements include extensive model

pruning and the novel application of dynamic weight loading

Frontiers inHighPerformanceComputing 02 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1520151
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Dave et al. 10.3389/fhpcp.2025.1520151

through SNL, eliminating the need for FPGA re-synthesis and

enabling online retraining for continuous model improvement.

These innovations enable real-time adaptive classification and

efficient vetoing of speckle patterns, optimizing SpeckleNN for

deployment in XFEL facilities. Consequently, this implementation

accelerates SPI experiments and enhances system adaptability to

evolving experimental conditions.

The primary objective of this study is to demonstrate the

feasibility and effectiveness of deploying a highly optimized version

of the SpeckleNN model on Field-Programmable Gate Arrays

(FPGAs) for real-time speckle pattern classification in X-ray single-

particle imaging (SPI) at X-ray free-electron laser (XFEL) facilities.

Specifically, the study aims to:

1. Optimize the SpeckleNN model: achieve a significant

reduction in the model size, from 5.6 million parameters to

64.6K parameters (98.8% reduction), while maintaining high

classification accuracy (90%), making it suitable for deployment

on resource-constrained FPGA devices.

2. Implement and evaluate on FPGA: implement the optimized

SpeckleNNmodel on the KCU1500 FPGA board using the SLAC

Neural Network Library (SNL) and evaluate its performance

in terms of resource utilization (DSPs, LUTs, FFs), power

consumption, and inference latency.

3. Compare FPGA performance to GPU: compare the FPGA-

accelerated SpeckleNN’s performance with that of a GPU

(NVIDIA A100), focusing on improvements in speed (latency

reduction) and power efficiency.

4. Consider arithmetic precision: conduct a detailed

consideration of arithmetic precision for each layer of the

FPGA-based implementation, comparing the outcomes of

FPGA-based C-Simulation (CSIM) with those from PyTorch-

based simulations. This ensures that the precision and accuracy

of the model are maintained across different computational

environments, which is crucial for reliable real-time inference.

2 Methodology

The methodology for this study is structured around four key

objectivesmentioned in the introduction section earlier, each aimed

at ensuring the successful deployment of the SpeckleNN model

on FPGA hardware while maintaining performance, efficiency, and

accuracy.

2.1 SpeckleNN model architecture and
optimization

To optimize our neural network for deployment on resource-

constrained devices such as FPGAs, we systematically reduced the

model size while rigorously evaluating its impact on classification

accuracy. The architecture of both the original and optimized

models used in our experiments is illustrated in Figure 1.

• Original model architecture: the original SpeckleNN model

(Figure 1a) featured two convolutional layers followed by

two dense layers, which, while delivering high accuracy, also

resulted in a computationally intensive design. Specifically,

the model’s architecture included 32 filters of size 5×5 in the

first convolutional layer, paired with a 2×2 max-pooling layer.

The second convolutional layer expanded to 64 filters, again

followed by a max-pooling layer. These convolutional layers

fed into a dense layer with 512 units, culminating in a final

dense layer of 128 units. This design achieved a classification

accuracy of 98%, but the model’s ∼5.6 million parameters

posed significant challenges for deployment on FPGAs due to

their constrained computational resources.

• Optimized model architecture: recognizing the necessity for

a more resource-efficient design, we optimized the SpeckleNN

architecture with a focus on minimizing the parameter

count while maintaining high accuracy. The optimized

model (Figure 1b) incorporated several modifications: the first

convolutional layer was reduced to 7 filters of size 5 × 5,

followed by a 2 × 2 max-pooling layer, and the second

convolutional layer was minimized to 3 filters, again with

max-pooling. The dense layers were similarly scaled down

to 100 and 50 units, respectively. Through this process, we

achieved a dramatic reduction of 98.8% in the number of

parameters—from 5.6 million to ∼64.6K—while maintaining

a robust classification accuracy of 90%. This demonstrates

that the original larger model, with its 5.6 million parameters,

had redundancy that wasn’t necessary for effective learning.

By using fewer parameters, the optimized model has become

more efficient, with each parameter contributing effectively

to the network’s final accuracy. This compact architecture

ensures that the model not only retains strong predictive

performance but also operates more efficiently, making it ideal

for deployment on resource-constrained FPGAs where rapid,

real-time processing and resource efficiency are paramount.

• 32-bit inference implementation: we implemented the

inference run using 32-bit floating-point precision to strike

a balance between computational efficiency and maintaining

high accuracy. Although lower-bit precision could further

reduce resource usage and power consumption, it often

introduces quantization errors that can degrade accuracy,

especially in deep neural networks (PyTorch Contributors,

2024; Dave et al., 2023). Given the dramatic reduction in

model size, where we achieved 90% accuracy, our priority

was to preserve this accuracy rather than sacrifice it by

aggressively quantizing the parameters (Hashemi et al., 2017).

Since the 32-bit version fit successfully on the KCU1500 FPGA

board, we opted to keep this precision for now. However, in

future studies, we plan to explore the potential of parameter

quantization to further optimize the model’s performance

without compromising accuracy.

• Trade-off analysis: the optimization process inevitably

involved a trade-off between model size and accuracy.

The reduction in parameters led to a slight decrease in

accuracy from 98% to 90%. However, this trade-off is often

justified in scenarios where deployment constraints, such as

limited computational resources or the necessity for real-

time processing, are paramount. The significant reduction

in model size not only accelerates inference times but also

Frontiers inHighPerformanceComputing 03 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1520151
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Dave et al. 10.3389/fhpcp.2025.1520151

FIGURE 1

SpeckleNN model (a) original model architecture (b) optimized model architecture.

substantially reduces the computational load and memory

footprint, making the optimizedmodel more suitable for high-

throughput environments like those encountered in XFEL

facilities.

In summary, the optimized SpeckleNN model effectively

balances accuracy, efficiency, and precision. By reducing the

parameter count, we enhanced the effective use of each parameter

toward achieving high accuracy, and by implementing a 32-bit

inference run, we ensured that the model operates efficiently while

maintaining its performance integrity. These optimizations make

the model an ideal candidate for deployment in edge computing

environments, where rapid and efficient data processing is essential.

2.2 Implementation and Evaluation on
FPGA using SNL

After optimizing the SpeckleNN model, as shown in

Figure 1b, we moved forward with its implementation on

the FPGA platform using the SLAC Neural Network Library

(SNL). As illustrated in Figure 2, we began by defining

the architecture of the SpeckleNN neural network using

PyTorch (Paszke et al., 2016), a widely-used machine learning

framework. The PyTorch model, which provides a high-

level and flexible environment for neural network design,

was translated into a C++ parameter template within the

Xilinx Vitis platform (Kathail, 2020; AMD, 2024) to facilitate

its deployment using the SLAC Neural Network Library

(SNL). SNL, designed specifically for FPGA-based machine

learning implementations, operates using a C++ template model

where weights, and biases are represented as memory-mapped

interfaces. This allows for the precise mapping of neural network

parameters to FPGA hardware, ensuring that the network

structure is preserved while optimizing for performance in

resource-constrained environments.

In SNL, the memory-based interface manages the storage and

retrieval of weights and biases, allowing the FPGA to access

these parameters efficiently during inference. The communication

between different layers of the neural network is handled through a

streaming interface, where data flows sequentially from one layer to

the next without the need for intermediate storage. This streaming

interface is particularly advantageous for real-time processing as it

minimizes latency and maximizes throughput, both of which are

critical for high-performance edge applications like those found in

XFEL facilities.

Frontiers inHighPerformanceComputing 04 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1520151
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Dave et al. 10.3389/fhpcp.2025.1520151

FIGURE 2

SNL high level design flow. “TensorFlow logo” by svgrepo.com, licensed under CC BY 4.0, via Wikimedia Commons. “PyTorch logo” by PyTorch,

licensed under CC BY-SA 4.0, via Wikimedia Commons. “Keras logo” by François Chollet, re-created by Modelizame, is in the public domain, via

Wikimedia Commons.

The use of a C++ parameter template in SNL also supports

a modular and re-configurable design, which is crucial when

implementing complex neural networks such as SpeckleNN on

hardware. By directly mapping the PyTorch model into this

C++ structure, we ensured that the translation from software to

hardware was seamless, preserving the integrity of the model’s

architecture while making it compatible with FPGA constraints.

Furthermore, SNL’s design allows for a clear separation between

the computational elements (such as matrix multiplications

and convolutions) and the memory management for storing

weights and biases. This separation ensures that the FPGA’s

computational resources are used efficiently, with minimal

contention for memory access during the inference process.

The streaming interface between layers further reduces

bottlenecks, allowing data to flow continuously through

the pipeline, thus achieving low-latency performance. This

structure enables real-time inference on large datasets without

sacrificing accuracy or speed, making it ideal for high-throughput,

low-latency environments.

Overall, by leveraging SNL’s C++ parameter template

and streaming architecture, we successfully implemented

the optimized SpeckleNN model on FPGA hardware.

This approach allowed us to maintain the integrity of the

PyTorch-based design with a reasonable 90% accuracy,

while ensuring that the model was adapted to meet the

performance demands of FPGA deployment, specifically in

scientific applications requiring real-time SPI data processing in

XFEL facilities.

2.2.1 Evaluation of each layer type Outcomes
Between SNL-Csim and PyTorch

In this section, we conducted a comprehensive evaluation by

comparing the output of various layers in the SpeckleNN model

across two platforms: SNL’s C-simulation (Csim) and PyTorch.

The comparison includes a single layer of each type—convolution,

ReLU activation, MaxPool, and the final two dense layers to

examine the behavior of these layers in both frameworks. While

both Csim and PyTorch are designed for deep learning model

implementation, they can differ in how they handle numerical

precision and arithmetic operations, potentially leading to slight

discrepancies in results. These differences primarily stem from

variations in floating-point arithmetic, internal optimizations, and

the way each framework manages edge cases such as overflow,

underflow, and rounding.

Machine learning frameworks like PyTorch and Keras

(Northcutt, 2019; Viso, 2024; PyTorch Forum, 2017; Oudad,

2021) are known to produce slightly different results even when

performing the same operations. These differences stem from how

they manage floating-point precision and internal optimizations

(Johnson, 2018; Galal et al., 2013; Pietrołaj and Blok, 2022).

While such discrepancies may seem minor in the early layers of

a neural network, they can accumulate and propagate through

subsequent layers (Dave et al., 2023), potentially affecting the final

model output. Therefore, a layer-by-layer comparison is crucial to

understand how these numerical differences affect the SpeckleNN

model’s behavior when deployed on an FPGA using SNL compared

to the PyTorch reference.

Frontiers inHighPerformanceComputing 05 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1520151
https://creativecommons.org/licenses/by/4.0/
https://commons.wikimedia.org/wiki/File:Tensorflow-svgrepo-com.svg
https://commons.wikimedia.org/wiki/File:Keras_logo.svg
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Dave et al. 10.3389/fhpcp.2025.1520151

FIGURE 3

Convolutional Layer 0 outcome of all 7 output featuremap of SNL Csim, PyTotch, and di�erence between SNL Csim and PyTorch.

2.2.1.1 Layer 0 convolutional feature maps analysis

(Pre-ReLU activation)

As shown in Figure 3 we compared the outputs from Csim and

PyTorch for Layer 0 across seven channels, immediately following

the convolution operation. The key observations were:

• High consistency: both frameworks produced nearly identical

feature maps across all channels. Minor differences were

observed, most notably in Channel 3, where the difference

between the two frameworks was slightly larger but still within

a minimal range (around−0.0004 to +0.0004).

• Minor numerical differences: the pixel wise differences were

very small, mostly due to floating-point precision differences,

with the majority of the differences falling within the range

of −0.0005 to 0.0005, indicating that the two frameworks are

well-aligned in their convolution computation.

2.2.1.2 Layer 0 ReLU activation applied to the

convolutional feature maps

Figure 4 presents the comparison of the resulting feature maps

from both frameworks after applying the ReLU activation function

to the convolutional outputs. The key findings are as follows:

• Sparse activations: as expected, ReLU zeroed out all negative

values in the feature maps, resulting in sparse activations,

where only positive values remained.

• Consistency maintained: the ReLU-activated feature maps

remained highly consistent between Csim and PyTorch across

all channels. The visual similarity between the frameworks was

nearly identical, reflecting the same activation patterns.

• Channel 3 differences: while differences remained minimal,

Channel 3 again showed slightly larger deviations compared

to the other channels. These differences, in the range of

−4 × 10−5 to 4 × 10−5, were more noticeable than in other

channels but still very small and insignificant in terms of

model performance.

2.2.1.3 Connecting the two observations for layer 0

Pre-ReLU and Post-ReLU

• ReLU’s impact on differences: the differences we observed

in the convolutional outputs (particularly in Channel 3)

persisted post-ReLU, though they remained very small.

ReLU did not amplify these differences, which suggests

that the inconsistencies seen in Channel 3 are inherent

to the convolutional computation itself, rather than being

introduced by the ReLU activation.

• Consistency across layers: the high consistency between Csim

and PyTorch in both the convolutional output and post-ReLU

activation maps indicates that both frameworks handle the

convolution and activation operations similarly, with only

minor numerical variations. These variations are within an

acceptable range and do not suggest any significant divergence

in the implementation of these operations.

• The convolutional outputs from Csim and PyTorch are highly

consistent, with only minor numerical differences that carry

through after the application of ReLU. These small differences,

particularly in Channel 3, suggest that some channels may be

more sensitive to precision, but these deviations are unlikely

to affect the overall model performance.

2.2.1.4 Analysis and connection between convolutional

and dense layer outputs

• In our previous analysis of layer 0, we first observed the

convolutional output feature maps, which revealed that the

Frontiers inHighPerformanceComputing 06 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1520151
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Dave et al. 10.3389/fhpcp.2025.1520151

FIGURE 4

Convolutional Layer 0 outcome after passing through ReLU activation for all 7 output featuremap of SNL Csim, PyTotch, and di�erence between SNL

Csim and PyTorch.

FIGURE 5

Dense layer 4 output SNL Csim and PyTorch.

major activity or significant patterns were concentrated in the

central regions of the feature maps across multiple channels.

This indicates that the convolutional layers are capturing

prominent features, particularly in the middle of the input

space, where activations are more pronounced.

• When these activations are propagated through the network,

they have a direct influence on the dense layer outputs, as

observed in the subsequent analysis. As shown in Figure 5 the

comparison of dense layer (Layer 4) before ReLU activation

outputs from SNL Csim and PyTorch shows that both

Frontiers inHighPerformanceComputing 07 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1520151
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Dave et al. 10.3389/fhpcp.2025.1520151

FIGURE 6

Dense layer 4 output di�erence between SNL Csim and PyTorch.

frameworks exhibit similar neuron activation patterns, with

the most significant spikes in neuron values occurring around

neurons 60 to 70. These spikes can be attributed to the

convolutional layer’s feature extraction process, where the

highly active regions in the middle of the feature maps are

likely contributing to stronger connections to specific neurons

in the dense layer. The dense layer is designed to aggregate

the most relevant information from the convolutional layers,

and the prominent spikes observed in neurons 60 to 70 are

a direct reflection of the amplified signals derived from the

high-activation areas in the convolutional outputs.

• Further comparison between SNL Csim and PyTorch reveals

high consistency between the two frameworks, as shown in

Figure 5 by the overlapping plots in the pre-activation outputs.

However, the small numerical differences, particularly the

localized spikes in differences around neurons 10, 30, and

60 shown in the difference plot Figure 6, likely coming from

floating-point precision variations or minor differences in

internal precision handling between the two frameworks.

These discrepancies, while noticeable in certain neurons,

remain relatively small compared to the overall magnitude

of the neuron outcomes, which range from ∼−20,000 to

+20,000.

• The analysis demonstrates that the dense layer’s significant

spikes in neuron activations are a direct consequence of

the prominent features extracted by the convolutional layers,

particularly from the middle part of the feature maps. These

high-activation regions are captured and amplified by the

dense layer neurons, leading to larger spikes in output. Despite

small numerical differences between SNL Csim and PyTorch,

both frameworks perform consistently, and the minor

deviations observed are not expected to significantly impact

overall model performance. This consistency reinforces the

robustness of both frameworks in implementing deep learning

models with comparable behavior.

2.2.1.5 Implications and key takeaways

1. High framework consistency: the comparison between SNL

Csim and PyTorch reveals strong consistency, with only

minor numerical differences. These differences, observed

around specific neurons (10, 30, and 60), are likely due

to floating-point precision variations and framework-

specific optimizations. However, these discrepancies are

minimal and do not significantly affect the overall model

behavior, ensuring reliability in implementation across

both platforms.

2. Convolutional features driving dense layer activations: the

spikes observed in the dense layer outputs, particularly around

neurons 60 to 70, align with the high-activation regions in the

convolutional feature maps. This shows that the convolutional

layers effectively extract important features, which are then

amplified by the dense layers. This insight reinforces the

importance of optimizing the feature extraction process in

convolutional layers to improve downstream activations in

dense layers.

3. Framework interoperability and model robustness: the high

degree of similarity between the two frameworks demonstrates

their interoperability, allowing models to be trained in one and

deployed in the other without significant performance loss. This

flexibility is crucial for model development and deployment

across different platforms. Furthermore, the model’s robustness

to small numerical variations indicates that it can produce

stable results across frameworks, enhancing its applicability in

real-world scenarios.

Frontiers inHighPerformanceComputing 08 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1520151
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Dave et al. 10.3389/fhpcp.2025.1520151

FIGURE 7

KCU1500 FPGA board resource utilization.

4. Handling arithmetic discrepancies across platforms: despite

these differences, the error introduced by the arithmetic

handling between SNL-Csim and PyTorch remains within

acceptable limits, allowing the model to maintain comparable

accuracy between FPGA-based inference and PyTorch

simulations. For the SpeckleNN model, the accumulated error

is still small enough that it does not significantly impact final

accuracy, as demonstrated by the near-identical results between

the two platforms. However, this evaluation raises an important

question: as models transition between different frameworks

and hardware platforms, how can we ensure consistent handling

of arithmetic operations? Small discrepancies, especially in

deeper networks, could accumulate and affect the reliability

of models across platforms. Addressing these concerns is

critical for ensuring robustness and consistency when moving

from software environments like PyTorch to hardware-based

implementations, such as FPGAs via SNL-Csim.

5. Need for further exploration of numerical precision: this

analysis highlights the need for further exploration into

how numerical precision and arithmetic operations are

handled across platforms. In edge applications, where

minor discrepancies could have significant impact on model

performance, ensuring consistency becomes even more crucial.

Future research should focus on addressing these precision-

related issues to improve the reliability and robustness of

machine learning models when transitioning between software

and hardware platforms.

2.3 Resource Utilization and Performance
Analysis of SpeckleNN on KCU1500 FPGA

2.3.1 Resource utilization and performance
evaluation on the KCU1500 FPGA board

After successfully implementing the SpeckleNN network on the

KCU1500 FPGA board (Xilinx, Inc., 2024), we conducted a detailed

evaluation of the resource utilization and inference performance.

The results, as depicted in Figure 7, demonstrate the efficient use

of FPGA resources. Specifically, the implementation utilized 75%

of the available Look-Up Tables (LUTs), 48% of Flip-Flops (FFs),

25% of Block RAM (BRAM), and 71% of Digital Signal Processors

(DSPs). This balanced utilization indicates that the network design

was well-optimized to fit within the resource constraints of the

KCU1500 board.

For the inference run of the neural network on the FPGA, we

employed the Integrated Logic Analyzer (ILA) for debugging and

performance monitoring. The ILA captured the complete frame of

the inference process, tracking the time from the arrival of the first

pixel to the generation of the final 50th dimensional latent space

output. The total time for this operation was ∼9,003 FPGA clock

cycles. Given the clock cycle rate of 5 nanoseconds, the total latency

for the inference run was measured at∼45.05 microseconds (µs).

This low-latency performance is critical for real-time

applications in high-throughput environments, such as those

found in XFEL facilities. The ability to process incoming data with

such minimal delay ensures that the system can keep pace with the

Frontiers inHighPerformanceComputing 09 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1520151
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Dave et al. 10.3389/fhpcp.2025.1520151

TABLE 1 Resource Utilization Analysis: SNL and HLS4ML for FPGA

Inference Runs.

Inference run
framework

Latency/image (us) Power (W)

SNL-based FPGA SpackleNN 45.05 (5ns clock period) 9.4

GPU A100 400 73

rapid data generation rates typically associated with these scientific

experiments.

2.3.2 Comparative analysis with GPU
As highlighted in Table 1, the FPGA-based implementation

of SpeckleNN provided significant improvements in both speed

and power efficiency compared to the GPU-based inference

run on the NVIDIA A100. Specifically, the FPGA achieved a

remarkable 8.9x improvement in inference speed over the GPU,

thanks to its lower latency and more efficient parallelism

in handling the data. Additionally, the FPGA consumed

7.8× less power than the GPU, underscoring its suitability

for edge computing environments where energy efficiency

is critical.

These improvements demonstrate the effectiveness

of deploying the optimized SpeckleNN model on FPGA

hardware, not only in terms of computational speed but

also in significantly reducing the power overhead, which is

a key consideration for continuous, real-time processing in

high-data-rate applications.

3 Conclusion

In this study, we successfully optimized and implemented

the SpeckleNN neural network on the KCU1500 FPGA platform

using the SLAC Neural Network Library (SNL) to meet the

high-throughput, low-latency demands of real-time X-ray single-

particle imaging (SPI) at X-ray free-electron laser (XFEL) facilities.

The original SpeckleNN model, which initially consisted of 5.6

million parameters, was reduced by ∼98.8% to 64.6K parameters.

This reduction, achieved through architectural modifications and

parameter compression, allowed the model to fit efficiently

on FPGA hardware while maintaining an impressive 90%

classification accuracy.

We chose to implement the network using 32-bit

floating-point precision to balance computational efficiency

and accuracy. While lower-bit precision could potentially

reduce resource consumption further, the 32-bit precision

provided a level of reliability and compatibility with

industry-standard frameworks such as PyTorch. This

decision also ensured that the FPGA implementation closely

matched the performance and behavior of the original

PyTorch model, minimizing discrepancies due to arithmetic

handling differences.

Our evaluation of resource utilization showed that the

SpeckleNN model efficiently utilized 75% of LUTs, 48% of Flip-

Flops, 25% of BRAM, and 71% of DSPs on the KCU1500 board,

confirming that the design was well-optimized for the FPGA’s

resource constraints. The inference latency was measured at 45.05

microseconds, with a total of 9,003 clock cycles, meeting the

real-time processing requirements essential for high-throughput

environments.

A layer-by-layer comparison of the SNL C-simulation (Csim)

results with PyTorch revealed small but manageable numerical

discrepancies between the two platforms. While the error

propagated through the deeper layers of the network, the difference

remained within acceptable limits, ensuring that the FPGA’s

performance closely mirrored the results obtained from the

PyTorch simulations.

Finally, the comparative analysis between FPGA and GPU

performance demonstrated significant advantages for FPGA-based

deployment. The FPGA achieved a 8.9× speed improvement and

consumed 7.8× less power compared to the NVIDIA A100 GPU,

making it a highly efficient alternative for real-time, edge-based

machine learning tasks.

In conclusion, our implementation of SpeckleNN on the

KCU1500 FPGA, supported by SNL, proved to be a powerful

and efficient solution for real-time speckle pattern classification in

XFEL facilities. While we achieved substantial speed and power

improvements, future work will explore further optimization

techniques such as quantization to reduce resource usage while

maintaining accuracy. This study underscores the potential of

FPGA-based machine learning models for high-performance

scientific applications, offering a compelling path forward for the

deployment of neural networks in resource-constrained, real-time

environments.

Data availability statement

The datasets presented in this study can be found in

online repositories. The names of the repository/repositories and

accession number(s) can be found below: https://www.cxidb.org/

id-156.html.

Author contributions

AD: Conceptualization, Formal analysis, Investigation,

Methodology, Validation, Visualization, Writing – original draft.

CW: Data curation, Formal analysis, Software, Writing – review

& editing. JR: Formal analysis, Writing – review & editing. JT:

Funding acquisition, Supervision, Writing – review & editing.

RH: Resources, Supervision, Writing – review & editing, Funding

acquisition.

Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This material is based

upon work supported by the U.S. Department of Energy, Office

of Science, Office of Basic Energy Sciences under Award Number

FWP-100643. Use of the Linac Coherent Light Source (LCLS),

SLAC National Accelerator Laboratory, is supported by the US

Frontiers inHighPerformanceComputing 10 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1520151
https://www.cxidb.org/id-156.html
https://www.cxidb.org/id-156.html
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Dave et al. 10.3389/fhpcp.2025.1520151

DOE, Office of Science, Office of Basic Energy Sciences (contract

No. DE-AC02-76SF00515).

Acknowledgments

We acknowledge the assistance of the large language model

ChatGPT by OpenAI in refining the language and enhancing the

readability of this paper.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that Gen AI was used in the creation

of this manuscript. We acknowledge the assistance of the large

language model ChatGPT by OpenAI in refining the language and

enhancing the readability of this paper.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

AMD (2024). Vitis High-Level Synthesis (HLS) Tool Documentation: Templates.
Available online at: https://docs.amd.com/r/en-US/ug1399-vitis-hls (accessed October
28, 2024).

Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., and Shah, R. (1993). Signature
verification using a “siamese” time delay neural network. Adv. Neural Inf. Process. Syst.
6:25. doi: 10.1142/S0218001493000339

Chopra, S., Hadsell, R., and LeCun, Y. (2005). “Learning a similarity metric
discriminatively, with application to face verification,” in Proceedings of the 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)
(Los Alamitos, CA: IEEE Computer Society), 539–546. doi: 10.1109/CVPR.2005.202

Dave, A., Frustaci, F., Spagnolo, F., Yayla, M., Chen, J.-J., and Amrouch,
H. (2023). Hw/sw codesign for approximation-aware binary neural networks.
IEEE J. Emerg. Sel. Top. Circuits Syst. 13, 33–47. doi: 10.1109/JETCAS.2023.
3243267

Galal, S., Shacham, O., Brunhaver, J. S., Pu, J., Vassiliev, A., and Horowitz, M.
(2013). “FPU generator for design space exploration,” in 2013 IEEE 21st Symposium
on Computer Arithmetic (Los Alamitos, CA: IEEE Computer Society), 25–34.
doi: 10.1109/ARITH.2013.27

Hashemi, S., Anthony, N., Tann, H., Bahar, R. I., and Reda, S. (2017).
Understanding the impact of precision quantization on the accuracy and energy
of neural networks. Des. Autom. Test Eur. Conf. Exhib. 2017, 1474–1479.
doi: 10.23919/DATE.2017.7927224

Herbst, R., Coffee, R., Fronk, N., Kim, K., Kim, K., Ruckman, L., et al. (2022).
“Implementation of a framework for deploying ai inference engines in FPGAS,” in
Smoky Mountains Computational Sciences and Engineering Conference (Springer: New
York), 120–134. doi: 10.1007/978-3-031-23606-8_8

Johnson, J. (2018). Rethinking floating point for deep learning. arXiv preprint
arXiv:1811.01721. doi: 10.48550/arXiv.1811.01721

Kathail, V. (2020). “Xilinx Vitis unified software platform,” in Proceedings
of the 2020 ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays (New York, NY: Association for Computing Machinery), 173–174.
doi: 10.1145/3373087.3375887

Northcutt, C. G. (2019). Towards Reproducibility: Benchmarking Keras and
PyTorch. Cambridge, MA: L7. Retrieved from: https://l7.curtisnorthcutt.com/towards-
reproducibility-benchmarking-keras-pytorch

Oudad, A. (2021). Comparing Keras and PyTorch on Sentiment Classification.
Retrieved from: https://adamoudad.github.io/posts/keras_torch_comparison/
sentiment_classification/

Paszke, A., Gross, S., Chintala, S., and Chanan, G. (2016). PyTorch: Tensors and
Dynamic Neural Networks in Python With Strong GPU Acceleration. Menlo Park, CA:
Facebook AI Research. Retrieved from: https://pytorch.org

Pietrołaj, M., and Blok, M. (2022). Neural network training with limited precision
and asymmetric exponent. J. Big Data 9:63. doi: 10.1186/s40537-022-00606-2

PyTorch Contributors (2024). PyTorch Documentation: Numerical Accuracy.
Available online at: https://docs.pytorch.org/docs/stable/notes/numerical_accuracy.
html (accessed October 28, 2024).

PyTorch Forum (2017). The Same Model Produces Worse Results on PyTorch than
on TensorFlow. Available online at: https://discuss.pytorch.org/t/the-same-model-
produces-worse-results-on-pytorch-than-on-tensorflow/5380/2 (accessed October
28, 2024).

Viso, A. I. (2024). PyTorch vs TensorFlow: A Comprehensive Comparison. Available
online at: https://viso.ai/deep-learning/pytorch-vs-tensorflow/ (accessed October 28,
2024)

Wang, C., Florin, E., Chang, H.-Y., Thayer, J., and Yoon, C. H. (2023).
Specklenn: a unified embedding for real-time speckle pattern classification in x-
ray single-particle imaging with limited labeled examples. IUCrJ 10, 568–578.
doi: 10.1107/S2052252523006115

Xilinx Inc. (2024). Xilinx KCU1500 Acceleration Development Kit. Available
online at: https://www.amd.com/en/products/adaptive-socs-and-fpgas/evaluation-
boards/dk-u1-kcu1500-g.html (accessed September 9, 2024).

Frontiers inHighPerformanceComputing 11 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1520151
https://docs.amd.com/r/en-US/ug1399-vitis-hls
https://doi.org/10.1142/S0218001493000339
https://doi.org/10.1109/CVPR.2005.202
https://doi.org/10.1109/JETCAS.2023.3243267
https://doi.org/10.1109/ARITH.2013.27
https://doi.org/10.23919/DATE.2017.7927224
https://doi.org/10.1007/978-3-031-23606-8_8
https://doi.org/10.48550/arXiv.1811.01721
https://doi.org/10.1145/3373087.3375887
https://l7.curtisnorthcutt.com/towards-reproducibility-benchmarking-keras-pytorch
https://l7.curtisnorthcutt.com/towards-reproducibility-benchmarking-keras-pytorch
https://adamoudad.github.io/posts/keras_torch_comparison/sentiment_classification/
https://adamoudad.github.io/posts/keras_torch_comparison/sentiment_classification/
https://pytorch.org
https://doi.org/10.1186/s40537-022-00606-2
https://docs.pytorch.org/docs/stable/notes/numerical_accuracy.html
https://docs.pytorch.org/docs/stable/notes/numerical_accuracy.html
https://discuss.pytorch.org/t/the-same-model-produces-worse-results-on-pytorch-than-on-tensorflow/5380/2
https://discuss.pytorch.org/t/the-same-model-produces-worse-results-on-pytorch-than-on-tensorflow/5380/2
https://viso.ai/deep-learning/pytorch-vs-tensorflow/
https://doi.org/10.1107/S2052252523006115
https://www.amd.com/en/products/adaptive-socs-and-fpgas/evaluation-boards/dk-u1-kcu1500-g.html
https://www.amd.com/en/products/adaptive-socs-and-fpgas/evaluation-boards/dk-u1-kcu1500-g.html
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

	FPGA-accelerated SpeckleNN with SNL for real-time X-ray single-particle imaging
	1 Introduction
	2 Methodology
	2.1 SpeckleNN model architecture and optimization
	2.2 Implementation and Evaluation on FPGA using SNL
	2.2.1 Evaluation of each layer type Outcomes Between SNL-Csim and PyTorch
	2.2.1.1 Layer 0 convolutional feature maps analysis (Pre-ReLU activation)
	2.2.1.2 Layer 0 ReLU activation applied to the convolutional feature maps
	2.2.1.3 Connecting the two observations for layer 0 Pre-ReLU and Post-ReLU
	2.2.1.4 Analysis and connection between convolutional and dense layer outputs
	2.2.1.5 Implications and key takeaways


	2.3 Resource Utilization and Performance Analysis of SpeckleNN on KCU1500 FPGA
	2.3.1 Resource utilization and performance evaluation on the KCU1500 FPGA board
	2.3.2 Comparative analysis with GPU


	3 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


