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Introduction: High-speed x-ray imaging experiments at synchrotron radiation

facilities enable the acquisition of spatiotemporal measurements, reaching

millions of frames per second. These high data acquisition rates are often prone

to noisy measurements, or in the case of slower (but less noisy) rates, the loss of

scientifically significant phenomena.

Methods: We develop a Shifted Window (SWIN)-based vision transformer to

reconstruct high-resolution x-ray image sequences with high fidelity and at a

high frame rate and evaluate the underlying algorithmic framework on a high-

performance computing (HPC) system. We characterize model parameters that

could a�ect the training scalability, quality of the reconstruction, and running

time during the model inference stage, such as the batch size, number of input

frames to the model, their composition in terms of low and high-resolution

frames, and the model size and architecture.

Results: With 3 subsequent low resolution (LR) frames and another 2 high

resolution (HR) frames di�ering in the spatial and temporal resolutions by factors

of 4 and 20, respectively, the proposed algorithm achieved an average peak

signal-to-noise ratio of 37.40 dB and 35.60 dB.

Discussion: Further, the model was trained on the Argonne Leadership

Computing Facility’s Polaris HPC system using 40 Nvidia A100 GPUs, speeding

up the end-to-end training time by about ∼10× compared to the training with

beamline-local computing resources.

KEYWORDS

high-speed imaging, spatio-temporal fusion, vision transformer, distributed training,

full-field x-ray radiography

1 Introduction

High-speed (HS) imaging experiments at synchrotron radiation facilities are capable

of capturing millions of frames per second (fps) with exceptional spatial resolutions that

can provide unique and critical scientific insights into rapidly changing phenomena within

imaged samples, such as areas like additive manufacturing, combustion, material fracture,

fluid dynamics, and electric discharges (Miyauchi et al., 2014;Manin et al., 2018; Zhao et al.,

2017; Parab et al., 2018). With ongoing development of detector technologies, the recorded

x-ray images will achieve improvement in either a better spatial resolution or a higher fps,

but usually not in both within a single experiment. For example, in the field of additive

manufacturing, the process of pore formation typically manifests itself at the scale of 10+

meters per second (m/s) (Zhao et al., 2019). With a frame rate of 50 KHz, such a process

could be severely under-sampled. However, by operating the Shimadzu HPV-X2 detector,
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which has just 400 by 250 pixels, at a frame rate of 1MHz and with a

comparable field of view (FOV), there is an increasing risk of losing

important spatial details.

Specific to the HS imaging user program, one fundamental user

need is to simultaneously characterize processes and phenomena

with the highest acquisition frequency, largest FOV, and highest

spatial resolution. However, modern sensor technologies are

generally subject to a trade-off between the spatial and temporal

resolutions, termed the “spatio-temporal contradiction” in the

field of remote-sensing (Gao et al., 2006). In the past, there has

been only a limited number of attempts to integrate multiple

HS cameras to monitor the same process (Luo et al., 2012;

Ramos et al., 2014; Escauriza et al., 2020) in the routine

workflow of HS imaging experiments. More recently, due

to the advancement of deep learning, several unified neural

network architectures have been developed for the task of

video restoration (Wang et al., 2019; Liu et al., 2022). In

areas such as communication networks and remote sensing,

these foundational works have been further extended to fuse

multi-stream input imaging data to aggregate desired imaging

parameters from distinct configurations (Hong et al., 2020; Lu

et al., 2023; Chen et al., 2024; Xiao et al., 2024). In the field

of HS imaging, we have previously developed a data fusion

pipeline (Tang et al., 2025) to improve the quality and efficiency

of visualization. With input image sequences of four times lower

spatial resolution and 20 times lower frame rate, respectively,

an average peak signal-to-noise ratio (PSNR) of more than 35

dB has been demonstrated on representative X-ray videos for

HS imaging.

In our previous study (Tang et al., 2025), the model training

has not been optimized to fit into the normal operations

of a synchrotron radiation facility, such as the Advanced

Photon Source (APS) at the Argonne National Laboratory

(ANL), where the training requires large-scale compute

resources to deliver accurate results due to the variety and

volume of scientific data generated by HS experiments

(Liu et al., 2019; Benmore et al., 2022). Efficient use of

compute resources, such as supercomputers at Argonne

Leadership Computing Facility (ALCF), at scale not only

allows for timely fine-tuning of ML models to accommodate

new experiments, but also provide an infrastructure to

rapidly develop better models with a more comprehensive,

systematic, and streamlined investigation (Benmore et al.,

2022).

In this paper, we present a study to develop and test a

transformer-based DL model, termed the “SWIN-XVR”, to

fuse two image sequences of the same target physical process

that are temporally and spatially under-sampled, respectively,

and reconstruct the same image sequence with high spatial

resolution, high frame rate, and high fidelity. In the selection

of the optimal model hyperparameters, we leveraged the

Polaris system at the ALCF to perform hyperparameter tuning

and the full-fledge model training. The trained model was

transferred to the local server and tested on x-ray image

sequences to verify the model performance. The presented deep

learning-based algorithmic framework can be reproduced in

the routine operations of the synchrotron radiation facility,

such as the APS to improve the overall service utility in the

user communities.

2 Related work

The transformer is a neural network architecture initially used

to relate input and output sequences, with a main application

domain of natural language processing (Vaswani, 2017). Since

its great success in modeling texts and speeches, it has also

been applied to image classification with minor modification,

termed the “vision transformer” (ViT) and achieved significant

improvement over existing benchmarks (Dosovitskiy, 2020).

Conventionally, the complexity of a ViT scales quadratically with

image size in 2-D, making their applications in dense vision

tasks challenging (Liu Z. et al., 2021). By distributing the self-

attention mechanism of a standard ViT to spatially local and

shifting patch groups, Liu Z. et al. (2021) designed a highly

efficient transformer architecture, termed “SWIN transformer” to

reproduce the high performance of ViT in more general computer

vision tasks.

The use of vision transformers for video frame fusion is a

relatively new application. Zeng et al. (2020) repurposed a ViT to

search for coherent local features at multi-scales, across both spatial

and temporal dimensions among a series of neighboring frames

and a temporally distant frame, termed the “reference frame”.

The resulting model was named “spatial-temporal transformer

network” (STTN) and applied to remove occlusions in videos. Liu

R. et al. (2021) extended the STTN architecture by the use of

“soft composition” and “soft split”, allowing efficient feature fusion

between patches across the spatio-temporal dimensions.

More recently, ViT has also been directly applied to several

types of downstream tasks of image restoration. For example,

Liang et al. (2021) integrated the SWIN ViT components into

a residual block design and achieved competitive performance

in several image restoration tasks, including super resolution,

de-noising, and compression artifact reduction. Zhou et al.

(2023) introduced a permuted self-attention design to trade

off window size and channel size for more efficient SWIN

transformer implementations. In the same spirit, Zhang et al.

(2022) introduced the efficient long-range attention block

(ELAB) in place of the original transformer block in the SWIN

IR model architecture to effectively enlarge the perceptive

field at no to minimal cost in the model complexity. In a

slightly different context of image denoising, Zamir et al. (2022)

utilized depth-wise convolutions to enrich tokens with the

local image context and further reduced the complexity of

the self-attention module by applying it across the channels

instead of the spatial dimensions. Chen et al. (2023) then

combined both the window- and channel-based self-attention

modules into the dual aggregation transformer block and

enhanced the coupling of local and global features through the

use of an adaptive interaction module (AIM) to improve the

performance of image super resolution. Despite the various

motivations behind modeling the super resolution task,

the general model architecture resembles that introduced in

SWIN IR.
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3 Methodology

3.1 Problem statement

The problem we seek to solve is that of fusing two x-ray image

sequences, one from an HS camera and another one from a UHS

camera, both operated at the same time to monitor the same

process with a shared FOVduring anHS imaging experiment. Since

the HS camera has a significantly higher spatial resolution than

the UHS camera, we will refer to the image sequence generated

by the HS camera as the “HR image sequence” and that generated

by the UHS camera as the “LR image sequence”, respectively. To

this end, the objective is to reconstruct with a DL-based algorithm

a new image sequence to monitor the same process within which

each frame will have the same pixel size as that of the HR images

and will correspond in time to each LR image. Correspondingly,

we will refer to the image sequence generated and formed by

the transformer-based DL model as the “reconstructed HR image

sequence”, which effectively consolidates the capabilities of both

cameras for each HS imaging experiment at the light source, such

as the 32-ID beamline at APS.

In the light of the problem formulation given above, the

proposed DL-based algorithm takes NL consecutive LR images and

2 HR images as its input. Similar to Wang et al. (2019), we denote

the LR image ILt in the middle of the input LR images as the

“reference LR image” and other LR images as the “neighboring

images”. The input HR images are chosen as the two nearest HR

images before and after the reference LR image. The algorithm thus

aims to reconstruct the HR image OH
t corresponding (in time) to

the reference LR image. At the training time, the ground-truth is

the HR image IHt at the same time of the reference LR image. At

the inference time, two neighboring input HR images IHt and IHt+δ

are fixed at a time, where δ is the ratio of the (temporal) sampling

periods for the HR to that of the LR image sequences. A moving

sequence of the input LR images, with the reference LR image IL
τ

stepping through the time interval τ ∈ (t, t + δ) is used along

with the two input HR images to reconstruct all HR images OH
τ

in between these two input HR images.

We further make the following assumptions on the HR and LR

image sequences.

Assumption 1: The HR image sequence sufficiently resolves the

smallest spatial details of interest to the HS imaging experiment.

Assumption 2: The LR image sequence sufficiently samples the

temporal dynamics of interest to the HS imaging experiment.

In order to evaluate the model performance at the test time,

we use the same virtual experiment workflow as described in Tang

et al. (2025), to be also briefly reviewed here. As shown in Figure 1A,

the overall goal is to synthesize two x-ray image sequences- one

representing the HR image sequence and the other representing

the LR image sequence- from one single image sequence that has

been well sampled in both time and space, to be referred to as

the “reference HR image sequence”. To synthesize the LR image

sequence, each image from the reference HR image sequence is

binned (Peters et al., 2015) with a window, whereas to synthesize

the HR image sequence, images from the reference HR image

sequence are skipped at a specific rate. Intensity re-normalization

is then applied to both the spatially and temporally down-sampled

image sequences by clipping pixel values at the 0.35th and 99.65th

percentiles according to their histograms, respectively, and the

corresponding minimum and maximum pixel values across frames

are in turn used to scale the pixel values of each individual frame

following the min-max normalization rule. For the LR image

sequences, Poisson noise is simulated following (Wu et al., 2020)

by varying the blank scan factor in a dedicated image degradation

model. The synthesized LR and HR image sequences are input to

the proposed SWIN-XVR model to output the reconstructed HR

image sequence. The model architecture will be given next.

3.2 Model architecture and training

As shown in Figure 1B, our model consists of three distinct

modules, namely, the input feature extraction module, the

attention-based deep feature enhancement module, and the output

image reconstruction module, respectively. The input feature

extraction module transforms the multi-resolution input images

into shallow features. It consists of one branch to extract features

from the input LR images and another one to extract features

from the input HR images. The convolution outputs are directly

used as the tokens (i.e., the tokenization patch size is 1×1)

in the subsequent SWIN transformer module for deep feature

enhancement. Instead of the convolutional spatio-temporal feature

fusion module from Wang et al. (2019) and Tang et al. (2025),

we extend the framework of image restoration using the Shifted

Window (SWIN) transformer (Liang et al., 2021) to model the

correlation among tokens from local spatio-temporal windows

(Liu et al., 2022). Compared with the feature fusion model in

Wang et al. (2019) and Tang et al. (2025), SWIN transformers

provide additional scalability to the problem size. The attention-

based deep feature enhancement module models and utilizes local

correspondences among deep feature maps (Zeng et al., 2020) to

enhance the feature maps of the target frame. More specifically,

it consists of two hierarchies to propagate features across different

time points and spatial scales.

At the bottom level of this hierarchy is the multi-head self-

attention (MSA) layer and feed-forward network (FFN), to be

referred to as a “SWIN transformer block” in the remainder of this

paper. TheMSA aims to jointly attend tomultiple feature subspaces

and aggregate features within each spatio-temporal window, i.e.,

within each local spatial window and from all feature maps.

The two-layer FFN is cascaded with the MSA for feature fine

adjustment. Prior to each MSA and FFN, layer normalization is

performed to regularize the features generated throughout the

deep network. Within each MSA layer and each feature subspace,

a learnable relative position bias (RPB) is added to the self-

attention maps computed from all local spatio-temporal windows

to better model the spatial relationships among features (Hu et al.,

2019). Next, several SWIN transformer blocks are stacked and

grouped into multiple stages to allow the feature enhancement

module to scale up according to the complexity of the task.

Following each MSA and FFN, stochastic depth (Huang et al.,

2016) is applied to randomly drop out samples within each training

batch for better regularization and training performances. Window

shift is applied alternately to the SWIN transformer blocks to

expand the effective receptive field. Residual connection is further

added between subsequent transformer stages to enhance feature

propagation across different SWIN transformer stages. The output
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image reconstruction module then selects the target feature map

from the collection of enhanced deep feature maps and upscales

the spatial dimensions by a factor of 4 with the pixel shuffle

up-sampling layers (Lim et al., 2017).

Training data consist of 1,358 videos recorded with a Photron

FastCam SA-Z camera (Photron Inc., Japan) and a Shimadzu HPV-

X2 camera (Shimadzu corporation, Japan) with frame rates 1–140

KHz and 1–5MHz, respectively, covering a wide range of advanced

manufacturing processes, during multiple high-speed synchrotron

x-ray imaging experiments performed at the 32-ID beamline of the

APS. Videos recorded with the Photron camera contain 101–8,901

frames and videos recorded with the Shimadzu camera contain 128

frames. For each video recordedwith the Shimadzu camera, the first

frame was not included for model training.

Low-resolution images were created by binning the high-

resolution images with a 4 × 4 window (Peters et al., 2015). Four

videos each containing 500 frames with 400 × 1,024 pixels per

frame, were randomly sampled from all the videos and held out

as validation data and the remaining were used as the training

data. For the training data, random crops of 96 × 96 and 24 ×

24 pixels were made on the corresponding HR and LR images to

cover a spatially consistent region in each frame. Details of the data

augmentation can be found in our previous work (Tang et al., 2025).

The model was then trained to minimize the L1 loss, defined as:

l(x, y) =
1

N

N∑

n=1

|xn − yn|, (1)

where xn, yn are the model output and ground-truth corresponding

to the n-th sample in a batch (with a total of N samples), for a

fixed number of iterations with the Adam optimizer and an initial

learning rate of 0.0002. The learning rate was updated following the

cosine annealing scheduler, with a small number of iterations in the

beginning of training used for warmup (i.e., the initial learning rate

was additionally scaled by the fractional iteration number in this

warmup window). The drop rate in the stochastic depth was scaled

uniformly to a maximum of 0.2.

Model training was performed using the PyTorch framework

on the Polaris HPC system at the ALCF. Data parallelization was

implemented by initiating multiple processes across 4 Nvidia A-

100 SXM4 GPUs (40GBmemory each) on a single computing node

and also across multiple nodes. During training, one distinct GPU

was selected for a process and all processes were synchronized

at the end of each training iteration using the distributed data

parallelization (DDP) library of PyTorch. The Nvidia collective

communications library (NCCL) and the message passing interface

(MPI) were used to communicate all GPU devices across multiple

nodes. Model inference was performed on 4 Nvidia A100 SXM4

GPUs (40 GB memory each). For each video in the testing

data, the reconstruction of the entire HR image sequence was

equally distributed to 4 processes, with each process utilizing

one GPU.

4 Experimental evaluation

Training experiments aim to characterize the model

performance as a function of the computing environment

and the model hyperparameters. More specifically, in this study,

we investigated the model performance in terms of (1) its scaling

capability when the number of GPUs in the data-parallelized

training increases, and (2) the fidelity of the target HR image

reconstruction when its spatio-temporal window size, the amount

of training data, and the model size and architecture varied. The

model scaling effect was benchmarked on the wall time of the

model training algorithm running on a fixed number of training

images distributed to a varying number of GPUs increasing from

4 to 256 by powers of 2. In addition, the scaling efficiency (Sarma

et al., 2024) was also used to quantify the ability of the training job

to utilize increased GPU resources, as defined below:

e(r, g) =
s(r, g)

s∗(r, g)
× 100%, (2)

where

s(r, g) =
t̄e(r)

t̄∗e (g)
, (3)

t̄e(r) is the reference standard of training time with r GPUs,

t̄∗e (g) is the actual training time with g GPUs, and s∗(r, g) is the

ideal speed up when the number of GPUs increases from r to g.

The reconstruction fidelity was measured as the PSNR between

the reconstructed HR image and the corresponding ground truth

averaged from 4 independent x-ray image sequences (500 LR/HR

frame pairs, with the model input consisting of a chunk of LR

images of the prescribed frame number and another twoHR images

from the same times of the LR images immediately before and

after the target image) after the model had been trained for a fixed

number of iterations and convergence was confirmed. Formally, the

average PSNR is defined as:

PSNRval =
1

4
6

4
j=1PSNRj, (4)

where

PSNRj =
1

500
6

500
i=1PSNRij, (5)

and ¯PSNRij is the PSNR of the ith image from the jth video. The

baseline model consisted of 24 SWIN transformer blocks grouped

into 4 stages (each with 2, 2, 18, and 2 blocks, respectively), used

3 input LR images and 2 input HR images with the transformer

blocks operating, via 3 concurrent attention heads, at spatial

windows of size 8 × 8 and with tokens of 192 channels. For the

spatio-temporal window, the number of LR frames was varied

among 3, 5, 7, and 9 (in addition to another 2 HR frames), and the

spatial window size was varied among 1× 1, 2× 2, 4× 4, and 8× 8.

The initial training data set was randomly under-sampled to 0.07%,

0.1%, 0.5%, 1%, 10%, 40%, 70%, and 100% (i.e., no under-sampling)

of its original size to train the model. To explore the influence of

the model size on its performance, the following conditions were

explored on top of the baseline setting.

1. The number of attention heads was reduced to 1,

2. The number of token channels was increased to 384,

3. The number of token channels was increased to 384, and the

number of attention heads was increased to 6, and

4. The number of SWIN transformer blocks was increased to 48.
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FIGURE 1

Illustration of (A) the spatio-temporal fusion numerical experiment workflow and (B) the architecture of the proposed model to reconstruct HR

image sequences based on the SWIN vision transformer. The model inputs are consecutive LR and HR images that can be acquired from the

corresponding UHS and HS cameras. The model output is configured as a single HR image at the time when the reference LR image is acquired.

Model testing aims to evaluate the utility of the selected

model on real-world applications. To achieve this, the optimal

model hyperparameters were determined based on the validation

results, and the selected model was trained for more iterations.

Two independent x-ray videos for applications of additive

manufacturing (Ren et al., 2023) and friction stir welding (Agiwal

et al., 2022) were used to test the performance of the proposed

image reconstruction algorithm. These two datasets have been

previously uploaded to the tomobank repository (De Carlo et al.,

2018) where meta data such as the sampling rate, number of

frames, and number of pixels were made available1. By applying a

re-simulation technique similar to Tang et al. (2025), also briefly

reviewed in Figure 1A, the original HR image frame separation was

varied among 2, 10, 20, and 450, and the blank scan factor b0 in the

input LR images was varied to result in PSNRs of approximately 20

dB to 60 dB (in increments of 10 dB) plus infinity (corresponding

to no Poisson noise simulated). The LR image frame separation was

1 https://tomobank.readthedocs.io/en/latest/source/data/docs.data.

radio.html#xradfusion

fixed at 1. These conditions were used to cover general settings

of a high-speed imaging experiment and demonstrate method

viability. The same performancemetrics as in Tang et al. (2025), i.e.,

PSNR, average absolute difference (AAD), and structural similarity

(SSIM), along with the corresponding wall time to reconstruct each

single HR image were used to quantify the fidelity and efficiency of

the HR image reconstruction.

5 Results

In this section, we report the performance of the proposed

SWIN-XVR model at training time and at inference time to

reconstruct HR x-ray videos. By leveraging the Polaris HPC system

as the platform to train deep learning models, we first present a

strong scalability analysis to characterize the wall time of a fixed

training job when it is run by an increasing number of GPUs and

with other appropriate hardware configurations. We then extend

the training jobs to study a number of model parameters that

are relevant to the runtime performance and scientific impact of

the proposed algorithm when the model is trained and deployed
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FIGURE 2

Illustration of the GPU time composition as the idle time (A), non-idle time (B), and the GPU utilization (C) each as a function of the underlying

training sample batch size. At each specific batch size, the distributed training experiment was performed with 40 GPU devices for a fixed period of

10 consecutive iterations. The GPU time performance was profiled using the Pytorch profiler package and analyzed using the holistic trace analysis

(HTA) package.

on a typical operating environment in the high-speed imaging

community. With the validated model parameters and training

configurations, we scale up the model training, apply the trained

model to the two testing datasets, and compare the resulting

HR x-ray video reconstruction accuracy with that of another

four independent algorithms, namely, the bicubic interpolation,

Bayesian fusion (Xue et al., 2017), EDVR (Wang et al., 2019) and

EDVR-STF (Tang et al., 2025), the latter two based on convolution-

based deep neural network architecture.

Figure 2 illustrates the influence of the training batch size on

two types of the GPU times, namely, the idle time and the non-

idle time, and the GPU utilization. Overall, the idle time decreases

consistently as the batch size increases from 1 to 5 and plateaus for

larger batch sizes (e.g., 5, 10, and 20). For the non-idle time, it shows

an increasing trend when the batch size increases. As a result, the

GPU utilization increases with the batch size and exceeds 90% with

more than 5 samples in a batch. In the remainder of the scalability

analysis, the batch size will be fixed at 10.

Figure 3 illustrates the scalability of the model training to the

number of GPUs allocated. To demonstrate the strong scaling

efficiency, the total number of images was fixed at 1,206,240

(upsampled from the original dataset with data augmentation).

In Figures 3A, B, it is clear that with the specific size of

training data, the job converges at iteration 30,000 with 4

GPUs utilized. According to Figure 3C, overall, the wall time

decreases with an increasing number of GPUs. As the total

training data were equally divided to be used by each GPU

device, an increase in the number of GPUs effectively reduced

the initial problem size, leading to shorter wall times. The

computation results also indicate that, as the number of GPUs

increases, the wall time eventually converges to a positive value

(hence the deflection of the actual wall times from the fitting

line toward the positive side), which may be attributed to the

communication among GPUs during the distributed training.

Figure 3D confirms that when up to 32 GPUs are utilized for the

training job, good scalability (above 90%) is observed. Utilizing

more than 32 GPUs for the training job starts to reduce the

scaling efficiency.

Figure 4 further shows the distributions of different kernel

times when the training jobs were executed with varying numbers

of GPUs. More specifically, the communication kernels denote

those intended for the NCCL-enabled algorithms such as the

AllReduce algorithms with various topologies and the broadcast

algorithm, in addition to the copy operations between the host and

device memories. Whereas the computation and memory kernels

denote those used for tensor operations, and initialization/copy

operations within the device memory, respectively. For a given

number of GPUs allocated to the distributed training, the

computation, communication, and memory kernel times were

averaged across all the GPU devices and organized in a pie chart

to showcase their relative contributions to the total kernel time.

According to the results, the percentage of the computation kernel

time generally decreases with the number of GPUs, with the

opposite trend visible in the percentage of the communication

kernel time. The percentage of the memory kernel time remains

approximately constant.

Figure 5 shows the accuracy of the model for various training

configurations on the validation dataset. Given each configuration,

the model was trained for 30,000 iterations (warmup applied

to the first 500 iterations) with the highest PSNR reported. In

Figure 5A, the effect of different number of input LR frames on

the reconstructed HR image PSNR is investigated. According to

the results, no clear trend is observed, which is also consistent

with the two testing datasets (Supplementary Figures S1A, S2A). In

Supplementary Figures S3, S4, the number of input LR frames are

further analyzed using the testing data with the input LR images

subjected to various degrees of Poisson noise, and both when the

input HR frames are close (i.e., with a frame separation of 2) and

are temporally distant (i.e., with a frame separation of 20). When

the HR frames are close, no significant improvement is observed

in increasing the number of input LR frames at each given input

LR image PSNR. When the HR frames are distant, increasing

the number of input LR frames shows a slight improvement

in all 3 performance metrics, consistently with the two cases

and across all input LR image PNSR levels. Figure 5B shows the

same PSNR metrics with varying window sizes configured for
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FIGURE 3

Illustration of the distributed training strong scalability analysis. (A) Training loss and (B) validation accuracy over the number of training iterations at

baseline with 4 GPUs. (C, D) Wall time and scaling e�ciency of the end-to-end training jobs over the number of GPUs utilized in each job. Validation

in (B) was performed once after every 5,000 training iterations. Both the x- and y- axes in (C) are in the log space (base-10) and the x-axis in (D) is in

the log space (base-2). The solid curve in (C) indicates a linear fit in the log-log space (base-10) of the type log10(y) = b+ alog10(x), where a = −0.72

and b = 4.34.

the SWIN transformer blocks (results on the two testing datasets

are presented in Supplementary Figures S1B, S2B). Compared with

the baseline setting of an 8 × 8 attention window, the choice of

smaller window sizes appears more plausible. In Figure 5C, the

training data are reduced to different fractions of its original size

to train the baseline model. As can be seen from the results,

there is an overall monotonic increasing pattern in the resulting

PSNR when the training dataset grows in size. In addition, the

PSNR increase becomes less pronounced when the model is

trained on the subset of the training data of larger than 0.5%–

1% of its original size. When the same models are applied to the

testing data, similar trends can be observed from both datasets

(Supplementary Figures S1C, S2C). In comparison, the welding

dataset shows a relatively lower sensitivity to the training data

size. Last, Figure 5D compares the model performances when

incremental changes in its size and architecture are introduced.

More specifically, compared to the baseline model, a decrease

in the number of attention heads to 1 in the transformer block

results in a slight decrease in the PSNR, doubling the model

depth results in a slight increase in the PSNR, and doubling

the hidden size (token channel number) significantly improves

the PSNR, consistently with the validation data and testing data

(Supplementary Figures S1D, S2D). Compared to the configuration

with doubling the hidden size, further doubling the number of

attention heads (to 6) leads to inconsistent changes in the PSNR

across the validation and testing datasets.

When each model as compared in Figure 5 is applied to the

two testing datasets, the corresponding wall time averaged over

each reconstructed HR image sequence is reported in Figure 6.

In particular, the wall time shows an increasing trend along with

both the increasing number of frames (Figure 6A) and increasing

window size (Figure 6B), consistently with both datasets. Increasing

the number of attention heads slightly increases the wall time also.

Last, the wall time shows a significant increase with either double
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FIGURE 4

Illustration of the GPU’s kernel time due to computation,

communication, and memory operations and their changes with the

number of GPUs utilized in the distributed training. A fixed number

of 3 iterations were concentrated on to profile and analyze the

kernel times.

the hidden channels or double the model depth, by a factor of 2.15

and 1.93 in case 1 and 2.18 and 1.94 in case 2. Based on the results

from Figures 5, 6, the number of input LR frames of the model was

determined to be 3, with a window size 4 × 4, hidden size of the

token embedding 384, and 6 attention heads in each transformer

block to balance the accuracy and inference speed.

With the validated model hyperparameters, the model

was trained for 75,000 iterations (warmup applied to the

first 2,000 iterations). Figure 7 compares selected reconstructed

HR images (column C) with the corresponding LR (column

A) and HR (column B) images qualitatively for both the

additive manufacturing (row 1) and friction stir welding (row

2) applications. Fine-scale spatial details in both cases are

demonstrated to be restored with great clarity. Figure 8 compares

the PSNR, AAD, and SSIM of bicubic interpolation, Bayesian

fusion, EDVR, EDVR-STF, and SWIN-XVR on the 2 testing

datasets with varying LR image PSNRs due to Poisson noise.

Overall, all 3 metrics improve with higher PSNR in the input

LR images, consistent with the two testing datasets. When the

5 algorithms are compared, performance of SWIN-XVR is close

to and significantly better than that of EDVR-STF on cases 1

and 2, respectively. With lower PSNR in the input LR images,

the performance in terms of PSNR and AAD of SWIN-XVR

drops slightly faster than EDVR-STF (while drops in SSIM remain

similar). With reduced noise in the LR images (i.e., LR image

PSNR 50 dB or above), the Bayesian fusion starts to demonstrate

higher accuracy (i.e., the maximum PSNR and SSIM, and the

minimum AAD) than other methods in the reconstructed HR

images for case 1, in the absence of the underlying scene motion.

However, in general, its performance in the presence of complex

motion dynamics drops significantly. The deep learning-based

algorithms consistently outperforms the bicubic interpolation.

Figure 9 compares the same with varying down-sampling factors

to temporally down-sample the HR image sequence and with the

original frame separation of the LR image sequence. SWIN-XVR

and EDVR-STF both show an overall performance drop in terms of

the 3 performance metrics with larger separations in the input HR

images (bicubic interpolation and EDVR are not affected as they do

not rely on any HR images). Similar to the trend in Figure 8, the

performance of SWIN-XVR is close to and mostly no better than

EDVR-STF on case 1, whereas it significantly outperforms the latter

on case 2. SWIN-XVR again shows additional performance drops

with increasing HR frame separations compared with its EDVR-

STF counterpart, most prominently when only the first and last

HR frames in the entire image sequence is used to reconstruct

the intermediate frames. In such a situation, the median PSNR

of SWIN-XVR is lower and the median AAD of SWIN-XVR is

larger than those of EDVR for case 2. Bayesian fusion is not

evaluated because the testing condition violates its configuration.

The deep learning-based algorithms perform generally better than

the bicubic interpolation, with the exception of on case 2 when the

HR frames are temporally down-sampled by a factor of 450. In such

a situation, the median AAD of SWIN-XVR is smaller than that of

the bicubic interpolation, but the peak AAD is larger than that of

bicubic interpolation. Details in the configurations of the selected

baseline methods can be found in Tang et al. (2025).

6 Discussion

In this paper, we present a full computation pipeline for a vision

transformer (ViT)-based deep learning model, termed the “SWIN-

XVR” to reconstruct high resolution and high frame rate x-ray

videos with high fidelity that can be utilized by the synchrotron

radiation facilities. For one thing, compared to the CNN which

has been well studied for various computer vision applications,

the use of ViT in similar applications is still nascent. For the

specific problem of spatio-temporal video fusion, no existing ViT-

based models can be directly applied. As a result, a comprehensive

analysis of the hyperparameters of the SWIN-XVR model can

provide useful information on the optimal model configuration

and its implications to an actual x-ray imaging experiment to

establish it as a new benchmark solution. For another, training

of the SWIN-XVR model using the HPC resources can effectively

emulate the realistic workflow of new model development,

which can be reproduced in prospective development efforts.

Powered by the distributed computing capability of the Polaris

HPC system at the ALCF, model training and hyperparameter
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FIGURE 5

Average PSNR (dB) on the validation dataset as a function of the number of input LR frames (A), the attention head spatial window size (B), the

number of videos used for training relative to the total number of training videos (C), and the model size and architecture parameters (D).

FIGURE 6

Inference wall time of the testing dataset as a function of the number of input LR frames (A), the attention head spatial window size (B), the number

of videos used for training relative to the total number of training videos (C), and the model size and architecture parameters (D).
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FIGURE 7

Selected LR images of 4 times larger pixel size (column A), HR images of 20 times larger frame separation (column B), reconstructed HR images

(column C) for applications of additive manufacturing (row 1) and friction stir welding (row 2), respectively.

tuning can be performed with an efficiency several orders higher

than a single-GPU system to allow rapid development of deep

learning algorithms. This computation pipeline is intended to be

reproducible during the routine operations of a UHS imaging

beamline, such as the 32-ID at the APS.

The deployment of a dual camera-based optical assembly and

the image reconstruction software at the beamline can significantly

increase the scientific value of the HS experiments. In addition,

because the UHS and HS cameras are configured to operate in

parallel, the user experience will also be improved by avoiding

frequent switching of cameras, which could take a prohibitive

amount of time during the experiments. Currently, the total

average experiment duration (set-up, acquisition, and sample

change) is in the range of ∼10 min to 1 h, and the use of

the proposed image acquisition/reconstruction framework will

thus double the data throughput within the same time budget.

With techniques such as domain adaptation (Ganin et al., 2016),

the proposed method could be further generalized to image

sequences generated by other detectors or other modalities, such

as computerized tomography (CT) (Wu et al., 2020; Liu et al.,

2020) and magnetic resonance imaging (MRI) (Georgescu et al.,

2023) to perform similar tasks at other beamlines and, in general,

in other application domains. The algorithm is implemented in

Python and publicly available at https://github.com/xray-imaging/

XFusion. Currently, the algorithm takes about 115 seconds to

finish the reconstruction of 500 HR images of dimension 400×

1,024 with 4 Nvidia A-100 SXM4 GPUs. In the future, imaging

data accumulated at the beamline could be transferred to the
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FIGURE 8

Reconstructed HR frame PSNR (dB) (row 1), AAD (row 2), and SSIM (row 3) each as a function of the LR image PSNR that was used to generate the

Poisson noise in the input LR frames, based on bicubic interpolation, Bayesian fusion, EDVR, EDVR-STF, and SWIN-XVR. Results were evaluated on

case 1 (column A) and case 2 (column B) and presented as box plots. Under each testing condition, the same samples as used for SWIN-XVR were

used to test all other 4 algorithms.

HPC systems to train highly performant deep learning models

at scale employing a foundational training approach (Ma et al.,

2024). These foundation models can generalize to unseen novel

imaging data with exceptional generalizability, and can be deployed

back to the local application servers at the beamlines and fine-

tuned to perform specific tasks, support the ongoing user services

with improved accuracy, automation, and robustness, and offer

extended scientific value.

During the execution of training jobs of deep learning models,

the GPU utilization and the wall time are two critical indices to

characterize the computation performance. To characterize the

GPU utilization, the compute usage, i.e., the percentage of time a

GPU spends running a kernel (as compared to staying idle) was

considered in this study and monitored when the underlying batch

size of the training samples was increased. More specifically, with

the aid of the HTA software package, we monitored the starting

time and the time duration associated with each GPU kernel when

it was active during a fixed time period of 10 training iterations.

We then computed the non-idle time as the total time duration

when at least one GPU kernel was active and the idle time as

the complement to the non-idle time in the monitoring period.

The GPU utilization was then derived as the percentage of the

non-idle time in the same period. According to the results, there

was a positive correlation between the batch size and the GPU
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FIGURE 9

Reconstructed HR frame PSNR (dB) (row 1), AAD (row 2), and SSIM (row 3) each as a function of the HR frame sequence down-sampling factor,

based on bicubic interpolation, EDVR, EDVR-STF, and SWIN-XVR. Results were evaluated on case 1 (column A) and case 2 (column B) and presented

as box plots. LR separation was 1 across all plots. Under each testing condition, the same samples as used for SWIN-XVR were used to test all other 3

algorithms. No Poisson noise was generated for the testing data.

utilization, confirming the role of larger batches in improving

parallelism of model training. We then fixed the batch size at

10 (corresponding to a GPU utilization of more than 93%) to

train the baseline SWIN-XVR model with the same amount of

data for repeated times, differing in the number of GPUs each

time to characterize the strong scaling effect. The results on

the scaling efficiency reveals a trend in the wall time with the

number of GPUs that roughly follows an inverse proportional

curve (a line in the log-log space) especially when the number of

GPUs utilized is below 32. This in turn indicates a good scaling

performance of the Polaris system within the number of GPUs

of choice, i.e., the wall time is commensurate to the time to

effectively update the model weights for up to 32 GPUs. Whereas

utilizing more GPUs (32 to 256) starts to show decrease in the

scaling efficiency given our specific training configuration. Due to

the relatively small problem size, we did not further investigate

the scaling effect with more GPUs. Repeating the same GPU

configurations as in the scalability analysis for extra training

experiments each with a fixed time period of 3 training iterations,

we also compared the participation of different types of GPU

kernels. The increasing duration of the communication kernels

reflects the increasing overhead of the training jobs. As a result,
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the training time will face a lower bound as the number of GPUs

continues to increase. In addition, upscaling the training jobs in

practice also needs to consider model accuracy along with the

increasing number of GPUs. With the specific job size to study

training scaliability, we observed good convergence when 4 GPUs

were used. More training data/iterations may be required to keep

up with the target model accuracy when a larger number of GPUs

is utilized.

When the model hyperparameters were validated, we studied

the effect of the number of input LR frames, the size of the spatial

window for the local attention operations, the fraction of the total

training data, and variations in the model architecture and size.

From a computation point of view, a smaller number of input LR

frames leads to faster HR image reconstructions during the high-

speed imaging experiments. According to the results, the choice

of 3 input LR frames not only results in a shorter inference time,

but also maintains a comparable accuracy in the reconstructions

among various configurations. In terms of the window size, in

the light of Liu Z. et al. (2021), it is positively correlated with the

computational complexity, hence the reconstruction time. As the

results suggest, the choice of a size of 4 × 4 provides a plausible

trade-off between the computation complexity and reconstruction

errors. As for the fraction of the training data, it is meant to provide

recommendations for prospective efforts on the training dataset

construction. Since the nature of a high-speed imaging experiment

is invariably diversity-starved, i.e., under each type of experiments,

the same imaging parameters could be repeated for multiple times,

a small amount of training videos of distinct types would suffice to

yield an accurate model for the spatio-temporal fusion task. From

the results, we observed the performance growth to gradually slow

down when the dataset was more than 0.5%–1% of its original size.

This would imply that the desired training dataset only requires

a very marginal amount of additional acquisitions during each

new experiment. Last, among different model architectures and

sizes, the model with 2 times of the hidden dimension results

in a significant improvement (up to 0.8 dB for case 1) in the

reconstruction error at the necessary cost on the inference time that

scales up proportionally. While doubling the number of attention

heads to 6 adds only a moderate computation cost (12.10% for

case 1 and 11.30% for case 2) for extra flexibility in modeling

more complex spatio-temporal dynamics in the data. With 2 times

of the model depth, the inference time increases by a similar

factor, but with only a slight improvement (up to 0.12 dB for

case 1) in the reconstruction accuracy. As a result, we doubled

the model hidden size and used 6 attention heads for the final

model architecture.

Two testing conditions were created to evaluate the model

as applied to a real high-speed imaging experiment to monitor

different physical phenomena in operando. Among them, the

variation in the input LR image PSNR was used to emulate

changes in the shutter speed of a UHS camera, and the HR

image sequence was assumed to be in a noise-free condition. On

the other hand, the variation in the HR image sequence down-

sampling rate was used to cover scenarios where the temporal

dynamics of the physical phenomena was under-sampled to

different extents, which can happen in practice as the underlying

dynamics often manifest at distinct time scales. These testing

conditions have been used in our previous paper to evaluate

the convolution-based model (Tang et al., 2025). Overall, the

SWIN-XVR model demonstrated a comparable performance

to the EDVR-STF with an improved generalization capability,

except for extreme conditions in the HR frame separation. In

Supplementary Figures S3, S4, when the number of the input

LR frames was increased, we observed a slight improvement in

the reconstruction quality under different noise conditions in

the input LR images only when there was a large separation

(e.g., 20 frames) in the input HR images. When the HR frames

are distant, their correlations with the time of the target frame

decrease, and the importance of the LR frames in the reconstruction

could in turn increase. In such a situation, a larger number

of LR frames may help aggregate more information about the

underlying physical process at the target time point and reduce

the uncertainty due to noise, particularly in spatial regions

with relatively insignificant motion. However, as the number of

LR frames continues to increase, the complexity in the spatio-

temporal distribution of coherent features also increases, which

could confound the denoising effect in the accuracy metrics. In

the future, more dedicated studies will be performed to verify

this effect, with authentic image sequences from the HS and

UHS cameras.

7 Conclusions and outlook

In this paper, we present the use of the HPC system for

the training and validation of a SWIN-based vision transformer

(ViT), called the “SWIN-XVR” to fuse spatial and temporal

sub-samples of image sequences acquired from a high-speed x-

ray imaging experiment. We utilized the Polaris HPC system

located at the ALCF and the PyTorch DDP framework to

scale up the model training to multiple GPUs and multiple

computing nodes and for a wide range of hyper-parameters

of interest. Such an algorithmic framework allowed rapid

experimentation with candidate deep learning-based models to

establish new benchmarks. The validated model was applied to

two testing datasets from typical high-speed imaging experiments

and demonstrated high accuracy compared to past methods.

In the future, this presented work can be instrumental to the

construction of an efficient processing pipeline at the synchrotron

radiation facility, such as the APS to optimize the planning of

the lifecycle of the massive imaging data generated during its

routine operations.
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