
TYPE Original Research

PUBLISHED 06 June 2025

DOI 10.3389/fhpcp.2025.1550855

OPEN ACCESS

EDITED BY

Martin Berzins,

The University of Utah, United States

REVIEWED BY

Xiao Wang,

Oak Ridge National Laboratory (DOE), United

States

Peng Chen,

RIKEN, Japan

*CORRESPONDENCE

Hai Duc Nguyen

hai.nguyen@anl.gov

RECEIVED 24 December 2024

ACCEPTED 12 May 2025

PUBLISHED 06 June 2025

CITATION

Nguyen HD, Bicer T, Nicolae B, Kettimuthu R,

Huerta EA and Foster IT (2025) Resilient

execution of distributed X-ray image analysis

workflows.

Front. High Perform. Comput. 3:1550855.

doi: 10.3389/fhpcp.2025.1550855

COPYRIGHT

© 2025 Nguyen, Bicer, Nicolae, Kettimuthu,

Huerta and Foster. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in

other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication

in this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Resilient execution of distributed
X-ray image analysis workflows

Hai Duc Nguyen1*, Tekin Bicer1, Bogdan Nicolae1,

Rajkumar Kettimuthu1, E. A. Huerta1,2 and Ian T. Foster1,2

1Argonne National Laboratory, Lemont, IL, United States, 2University of Chicago, Chicago, IL,

United States

Long-running scientific workflows, such as tomographic data analysis pipelines,

are prone to a variety of failures, including hardware and network disruptions, as

well as software errors. These failures can substantially degrade performance and

increase turnaround times, particularly in large-scale, geographically distributed,

and time-sensitive environments like synchrotron radiation facilities. In this

work, we propose and evaluate resilience strategies aimed at mitigating the

impact of failures in tomographic reconstruction workflows. Specifically, we

introduce an asynchronous, non-blocking checkpointing mechanism and a

dynamic load redistribution technique with lazy recovery, designed to enhance

workflow reliability and minimize failure-induced overheads. These approaches

facilitate progress preservation, balanced load distribution, and e�cient recovery

in error-prone environments. To evaluate their e�ectiveness, we implement a 3D

tomographic reconstruction pipeline and deploy it across Argonne’s leadership

computing infrastructure and synchrotron facilities. Our results demonstrate that

the proposed resilience techniques significantly reduce failure impact—by up to

500×—while maintaining negligible overhead (<3%).

KEYWORDS

HPC, producer-consumer workflows, tomographic reconstruction, resilience, fault

tolerance, checkpointing, load-balancing

1 Introduction

Large-scale, long-running X-ray image analysis workflows are crucial in synchrotron
radiation facilities, supporting data-intensive experimentation across diverse scientific
domains, including life sciences (Rawson et al., 2020), energy (Finegan et al., 2015;
Liu et al., 2019a), geology (Leu et al., 2014; Butler et al., 2020), and materials science
(Vásárhelyi et al., 2020; Ravi et al., 2022). These workflows enable advanced imaging
techniques, such as high-speed, time-resolved tomography (Zwanenburg et al., 2021;
Maire and Withers, 2014). Central to these workflows is tomographic reconstruction,
which converts partial, low-dimensional data captured from various angles into detailed,
high-dimensional representations (Withers et al., 2021), providing critical insights for
downstream, domain-specific analyses (Hsieh and Flohr, 2021; Tang et al., 2021).

Data Intensive Tomographic Reconstruction. Iterative tomographic reconstruction
methods are commonly employed due to their ability to balance reconstruction quality
and computational efficiency (Stiller, 2018). These techniques iteratively refine image
estimates by comparing them to actual data collected from scientific instruments.
At each iteration, the differences between the estimates and the measurements
are used to progressively improve the reconstruction until a predefined quality
criterion is met. While computationally intensive, these methods are particularly

Frontiers inHighPerformanceComputing 01 frontiersin.org

https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://doi.org/10.3389/fhpcp.2025.1550855
http://crossmark.crossref.org/dialog/?doi=10.3389/fhpcp.2025.1550855&domain=pdf&date_stamp=2025-06-06
mailto:hai.nguyen@anl.gov
https://doi.org/10.3389/fhpcp.2025.1550855
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fhpcp.2025.1550855/full
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Nguyen et al. 10.3389/fhpcp.2025.1550855

well-suited for large, high-resolution datasets (Hidayetoğlu et al.,
2019; Wang et al., 2017). Thus, an important goal is to reduce
the duration of the reconstruction. A key observation is that
the reconstructed image and the corresponding raw data can be
partitioned into slices, which can be independently processed in
parallel. This partitioning facilitates significant speed-up, as parallel
tasks can process slices concurrently, with performance scaling
proportionally to the number of available compute nodes.

Fault Tolerance is a Significant Challenge. The adoption
of parallelization in tomographic reconstruction introduces
significant challenges in fault tolerance. These workflows often run
on high-performance computing (HPC) systems, which consist of
thousands of compute nodes (Wang et al., 2017; Bicer et al., 2017).
The large number of components, including CPUs, GPUs, memory,
communication links, and storage systems, makes these systems
highly susceptible to failures, ranging from software crashes to
complete system outages (Cappello et al., 2014; Dubey et al.,
2024). In such environments, failures are the norm rather than
the exception (Cappello et al., 2014; Dubey et al., 2024). When a
failure occurs, the progress of the affected task is typically lost unless
appropriate recovery mechanisms are in place (Schlichting and
Schneider, 1983). This issue is exacerbated when spare resources
are unavailable, forcing surviving tasks to complete their slices
while leaving the final reconstructed image incomplete. Restarting
failed tasks from scratch can recover the image but at a high
cost, potentially doubling runtimes and leading to inefficient
resource utilization as many nodes sit idle for extended periods.
In extreme cases, the failure rate may surpass the system’s ability
to make progress, trapping the workflow in an endless cycle
of recomputation.

Limitations of Current Approaches. Current HPC fault
tolerance mechanisms typically rely on checkpoint-restart
techniques (Elnozahy et al., 2002). These systems periodically
save the state of each process, allowing failed tasks to be restarted
from the last checkpoint. While this reduces the amount of lost
computation, it introduces I/O overhead due to frequent writes to
parallel file systems (PFS), which can become a bottleneck in high-
concurrency environments. Advanced checkpointing systems,
such as VeloC (Nicolae et al., 2021) and SCR (Mohror et al.,
2014), alleviate this issue by asynchronously writing checkpoint
data to local storage and deferring PFS writes. However, these
systems are optimized for tightly coupled parallel tasks, which
require all tasks to restart simultaneously in the event of a failure.
Tomographic reconstruction, in contrast, is an embarrassingly
parallel problem. The failure of a single task does not require
the restart of surviving tasks, which do not have dependencies
on the failed tasks, eliminating unnecessary synchronization
overhead. Recovery options include (i) restarting failed tasks
sequentially after surviving tasks finish, resulting in long runtimes
and inefficient resource usage, or (ii) redistributing checkpointed
slices among surviving tasks. While redistribution reduces runtime
and improves resource utilization, the lack of spare resources
complicates recovery and load balancing. Furthermore, slices
cannot be arbitrarily divided, making efficient redistribution
non-trivial to implement.

Contributions. To address the limitations of existing fault
tolerance mechanisms, we propose a checkpoint-restart solution

specifically optimized for data-parallel patterns and thus directly
applicable to parallelized tomographic reconstruction. Our
approach incorporates two key innovations. First, we introduce
an asynchronous, non-blocking checkpointing mechanism. This
mechanism operates independently for each task and supports
variable-sized checkpoints that reflect the evolving critical state
required for recovery. As a result, tasks can continue without being
blocked while critical state data is saved progressively, ensuring
minimal disruption during execution. Second, in the event of a
failure, we employ a lazy, balanced redistribution of failed tasks.
Surviving tasks are allowed to continue their processing without
interruption, while the checkpointed slices of the failed tasks
are redistributed among the survivors in the background. We
design an optimized redistribution strategy that minimizes the
expensive read overheads associated with parallel file systems
(PFS) by relying on direct communication between surviving tasks.
This strategy ensures efficient resource utilization and maintains
balanced load distribution across the available tasks. In brief, our
contributions are:

• We formulate a performance model to quantify the impact
of failures on parallel tomographic reconstruction time. We
demonstrate that frequent failures can increase reconstruction
time by up to four orders of magnitude without proper
resilience mechanisms (Section 2).

• We present a detailed description of our resilient solutions,
incorporating asynchronous checkpointing and lazy
redistribution. These strategies allow for large-scale
reconstruction with minimal overhead, even in failure-
prone environments. Specifically, checkpointing reduces
failure impact by up to 100×, and dynamic redistribution
further improves performance by an additional 4.3× (Section
4).

• We provide a comprehensive experimental evaluation,
including controlled studies and diverse failure scenarios. Our
results show that our solutions reduce reconstruction time
sensitivity to failure timing and frequency, minimize recovery
overhead, and maintain balanced workloads across tasks. In
total, these approaches reduce failure impact by up to 500×,
with minimal increase in reconstruction time (no more than
3×) and <3% overhead (Section 5).

2 Background

Here, we introduce a computed tomography (CT) image
analysis pipeline employed at synchrotron light sources, followed
by a discussion of the computational workflow for imaging
and reconstruction.

2.1 Tomographic reconstruction

Figure 1 illustrates a typical tomographic experimental setup
along with its data acquisition, sinogram generation, and
reconstruction stages. During a tomography experiment, a target
sample is placed on a rotating stage and illuminated by an X-ray

Frontiers inHighPerformanceComputing 02 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1550855
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Nguyen et al. 10.3389/fhpcp.2025.1550855

FIGURE 1

Semantics of a typical tomographic data acquisition and reconstruction pipeline (Liu et al., 2019b): 2D projections obtained during data acquisition

are decomposed into independent sinograms for parallel, iterative reconstruction. The pipeline can also include a feedback loop, where

reconstructed images are analyzed to refine and dynamically control the ongoing experiment.

source. As the X-rays pass through the sample, they are attenuated
depending on the sample’s thickness and density—denser regions
cause greater attenuation, resulting in lower detector readings
compared to less dense areas. The attenuated X-rays are then
measured by a photon detector, producing a reading known as
a projection.

Projections are collected at various angles of rotation, θ ,
typically with a fixed exposure time for each. Ideally, the experiment
captures projections that fully cover the sample from all necessary
angles. The attenuation of the X-ray intensity is modeled by the
Beer–Lambert law:

Iθ (s) = I0(s) exp[−pθ (s)] , (1)

where I0(s) represents the initial X-ray intensity, Iθ (s) represents
the detector readings at angle θ , and pθ (s) corresponds to the
cross-sectional projection of the sample, known as a sinogram

(depicted in red in Figure 1). For parallel beam geometry, which
is the common data acquisition technique at synchrotron radiation
facilities, the sinogram contains measurements corresponding to a
specific cross-section of the target sample.

The goal of tomographic reconstruction is to recover, from
a set of sinograms, 2D cross-sectional images of the sample.
Iterative reconstruction techniques, such as ART-family or more
advancedModel-based iterative reconstruction (MBIR) techniques,
are popular for recovering 2D images as they offer advantages
over traditional analytical methods, especially when dealing with
dynamically evolving features or limited/noisy data (Mohan
et al., 2015; Nikitin et al., 2019). They are also well suited for
fast reconstruction tasks with limited data, provided adequate
computational resources are available (Bicer et al., 2016; Wang
et al., 2016).

The iterative reconstruction techniques can also be used for
the reconstruction of streaming X-ray projections, where the
reconstruction tasks can process unbounded data streams and
provide low-latency feedback to the downstream tasks, such as
experimental control systems or domain/beamline scientists (Bicer
et al., 2020). Although such tightly coupled experimentation and
online data analysis pipelines are difficult to establish—mainly due
to their computational, latency, and output quality requirements—
they are useful for long-running experiments and real-time science-
relevant data acquisitions. In this work, we focus on offline

reconstruction workflows, in which the full measurement data
is available during the reconstruction. However, our resiliency
techniques can also be extended to online workflows.

2.2 O	ine reconstruction workflow

We briefly describe the general structure of an offline
tomographic reconstruction. As shown in Figure 2, the
offline tomographic reconstruction workflow consists of
four components.

Data acquisition collects projections from the experimental
setup as a sequence of 2D images, each corresponding to a specific
projection angle, θ . The size of the sequence is characterized by
X × Y × K where X × Y is X-ray projection dimensions, and K

is the number of acquired projections. These parameters depend
on the experimental setup and data acquisition configuration.
For instance, image resolution can range from (X × Y) =
(1,024 × 1,024) to (4,096 × 4,096) pixels, depending on the
target spatial and temporal resolutions, detector’s specification, and
sample/phenomena being observed. Further, large samples can be
imaged via multiple data acquisition sessions and stitching X-
ray projections, which can result in very large projections, e.g.,
(20,000 × 20,000) mouse brain data (Hidayetoğlu et al., 2020).
The total number of projections (or the rotation angles) depends
on the sample/phenomena that is being imaged and can be in the
thousands range.

Data distributor generates sinograms from acquired
projections and assigns them to their corresponding reconstruction
tasks. The chunking is based on the rows, so sinograms are
generated by slicing projections horizontally with the finest
granularity. For example, if the resolution of a projection is
(X,Y) = (1,920× 1,080), then the data distributor will split it into
1,080 sinograms, each with dimension 1,920 × 1. Sinograms are
identified by their row indexes. After slicing, the data distribution
map sinogram row indexes to the reconstruction task, try to
equalize the number of rows assigned to a task for load balancing.

Reconstruction tasks perform iterative tomographic
reconstruction on assigned sinograms as described in Section
2.1. The reconstruction is performed in parallel by N tasks
T1,T2, ...,TN . The complete 3D construction is a cube of size
X × Y × Z, where X × Y are the width and height of the

Frontiers inHighPerformanceComputing 03 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1550855
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Nguyen et al. 10.3389/fhpcp.2025.1550855

FIGURE 2

The tomography reconstruction workflow includes four components: (1) a data acquisition task, (2) a data distribution task, (3) N reconstruction tasks

(here, N = 3), and (4) a quality measurement task.

reconstruction, identical to the dimension of projections used by
the reconstruction, and Z is its depth. Reconstruction tasks create
the 3D independent construction by row. That is, all sinograms
with the same row index are assigned to the same tasks. These
sinograms together form a complete input dataset to reconstruct a
X×1×Z 3D slice of the 3D construction. These slices are collected
by the downstream process (e.g., quality measurement) and stacked
by their row indexes to form the complete reconstruction.

Quality measurement: reconstructed slices generated by
reconstruction tasks are aggregated to form a complete 3D image.
A quality metric, such as the Structural Similarity Index Measure
(SSIM) or Mean Squared Error (MSE), is calculated to assess
whether the reconstruction meets the desired quality, determining
whether the process can be concluded.

2.3 Problem formulation

We now use the general workflow described above to formulate
the problem in terms of computation structure, performance,
and the impact of failure on reconstruction execution. Notations
introduced in this section (and employed in the rest of the paper)
are summarized in Table 1. LetM be the number of iterations of the
reconstruction process. In each iteration, each pixel of theX×Y×Z
3D construction is generated by adjusting the old generated pixel
with the ground truth measurement collected from K projections.
The computation is performed independently in parallel byN tasks.
Thus, the overall reconstruction time is

R(N,M) =
M

N
O(XYZK) , (2)

whereN andM are configurable parameters that the reconstruction
workflow can adjust depending on the objective. For example,
having more tasks (big N) will speed up the reconstruction
time, while performing more iterations (big M) will improve
reconstruction output at the cost of more computation and thus

TABLE 1 Notation employed in this paper.

Symbol Explanation

Computation workflow modeling

X The width of 3D reconstruction (or the number of columns of a 2D
projection)

Y The height of 3D reconstruction (or the number of rows/sinograms
of a 2D projection)

Yo Number of outstanding sinograms

Z The depth of 3D construction

K Number of projections

M Number of reconstruction iterations

N Number of reconstruction tasks

Ns Number of surviving tasks after failure

Ti The i-th reconstruction task (1 ≤ i ≤ N)

R(N,M) Ideal reconstruction time (no failure, see Equation 2)

Failure and resilience modeling

µ Per-task mean time to failure (MTTF)

λ Per-task failure frequency (1/µ)

µP Application’s mean time between failure (MTBF)

C(N) Overhead of creating a checkpoint of current reconstruction progress

W Checkpointing period

increased reconstruction time. Selecting N and M leads to an
optimization problem where we want to minimize the execution
time to achieve a good enough reconstruction quality. In this paper,
we assume N and M have been configured optimally and focus on
minimizing the impact of failures on the end-to-end reconstruction
time for those optimal parameter values.

Frontiers inHighPerformanceComputing 04 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1550855
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Nguyen et al. 10.3389/fhpcp.2025.1550855

Failures can occur at any level of the data processing pipeline,
including hardware failures, software crashes, and network
anomalies (Canal et al., 2020). These failures vary in nature:
some are transient, while others are unrecoverable. Some silently
corrupt the workflow state, whereas others immediately interrupt
execution. In this paper, we focus on fail-stop failures (Schlichting
and Schneider, 1983), in which a task halts execution upon failure;
in tomographic reconstruction, such a failure results in the loss of
all progress made on the task’s assigned sinograms. These failures
are unpredictable and can occur at any time.

Fail-stop failures are often modeled as random processes
(Benoit et al., 2022), where tasks fail independently with identical
probabilities. These failures are characterized by the mean time
to failure (MTTF), denoted as µ, which represents the average
time a single task runs before failing. Task failure probability is
typically described using an exponential distribution Exp(λ), where
λ = 1

µ
represents the failure occurrence frequency (Dongarra et al.,

2015). Consequently, the failure probability of the entire pipeline
also follows an exponential distribution Exp(Nλ). The mean time
between failures (MTBF) for the whole pipeline is given by

µp =
µ

N
. (3)

Equation 3 shows that increasing reconstruction parallelism
by adding more tasks reduces the mean time between failures
(MTBF). This is intuitive, as more tasks introduce more potential
points of failure, causing failures to occur more frequently. This
phenomenon poses a significant challenge for achieving resilient
execution at large scales. For instance, if the MTTF of a single task
is approximately one week, a reconstruction pipeline with 1,000
tasks would, on average, fail in about 10 min—often shorter than
the runtime of many workflows of this size (Bicer et al., 2015).
Moreover, even with compute nodes designed to operate reliably
for years, the sheer scale of large systems amplifies failure rates.
Studies have shown that large-scale deployments, with thousands
of compute nodes, can experience failures several times per day due
to the aggregated likelihood of individual node failures (Cappello
et al., 2014; Ferreira et al., 2011).

Current reconstruction workflow deployments, like traditional
HPC applications (Benoit et al., 2022), restart the entire pipeline
when a failure occurs. While this approach simplifies management,
it becomes inefficient at large scales where failures are common
rather than rare (as shown by Equation 3). Frequent restarts can
introduce substantial overhead. Worse, since most computation
infrastructure operates in shared environments, resources needed
for reconstruction tasks may not always be immediately available,
leading to unbounded waiting times.

To address these challenges, we want to continue
reconstruction with the surviving tasks instead of restarting
the entire pipeline. Achieving this resilient capability requires two
additional steps:

1. Data redistribution: the data distributor reassigns the sinograms
from the failed task to surviving tasks, ensuring that all
sinograms are eventually reconstructed.

2. Progress recovery: the surviving tasks recover the progress
made by the failed task and continue processing both the
recovered sinograms and their own. This step ensures all

sinograms are processed sufficiently to achieve the desired
reconstruction quality.

While these extra steps mitigate the impact of failures, they
introduce additional overhead to the end-to-end reconstruction
process, which, as we will demonstrate below, can be significant.

2.4 Impact of failures on reconstruction
time

We discuss the impact of failure on reconstruction time
from two perspectives: the time required to repeat the
computation performed by the failed task prior to failure
and increased time due to reallocation of work from the failed task
following failure.

2.4.1 Expensive progress recovery
Figure 3a shows a naive approach to progress recovery where

a surviving task takes over the data of a failed task. Since the
failed task’s progress is lost, the surviving task must recompute
from the beginning up to the point where the failed task left off.
This effort is referred to as recomputation, and the time spent on
recomputation is wasted, as no new results are generated during
this time. To quantify the recomputation impact on end-to-end
reconstruction time, we run a reconstruction simulation of 256
sinograms (640 × 640 pixels each) over 10 iterations. Figure 3b
shows the average reconstruction time under various mean times
to failure (MTTF), with failures injected according to the failure
model presented above.

In an ideal scenario without failures, reconstruction time
decreases linearly with increased parallelism. A single task needs
15,360 s (∼4.2 h) to complete. Adding more parallel tasks reduces
this time significantly, achieving an ideal reconstruction time of
240 s (∼4 min) with 64 tasks (black line). However, the presence
of failures drastically alters this performance. At MTTF = 10,000
s (∼2.8 h), the reconstruction time increases by 1.5× to 2×
across all parallel configurations. Alarmingly, as the failure rate
increases, the impact on reconstruction time grows exponentially.
For instance, with one task, reducing the MTTF from 10,000 s to
1,000 s introduces 10×more failures but extends the reconstruction
time by over 100× (green and blue bars on the left). Even
at high parallelism, failures remain devastating. With 64 tasks,
reducing the MTTF from 10,000 s to just 10 s (a three-orders-
of-magnitude decrease) results in reconstruction times soaring
by more than four orders of magnitude! These results highlight
the catastrophic impact of frequent failures on reconstruction
performance and, thus, the critical need for robust failure-resilience
solutions.

A conventional approach to minimize expensive
recomputation is to use checkpoints. In this method,
reconstruction tasks periodically save snapshots of their progress
on assigned sinograms to the underlying parallel file system.
These snapshots, called checkpoints, record the state of task
progress throughout the reconstruction pipeline. If a task fails,
the remaining tasks can load the latest checkpoint to recover lost

Frontiers inHighPerformanceComputing 05 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1550855
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Nguyen et al. 10.3389/fhpcp.2025.1550855

FIGURE 3

Naive resilience incurs expensive recomputation, significantly prolongs reconstruction at failures. (a) Progress recovery triggers expensive

recomputation when failure occurs. (b) Impact of recomputation on execution time.

progress, skipping prior computations and significantly reducing
recovery time.

However, determining the optimal checkpoint frequency is
challenging. Checkpoints introduce overhead, including the time
to save progress to permanent storage and communication costs to
ensure consistency across tasks. Taking checkpoints too frequently
increases this overhead, potentially outweighing the time savings
from reduced recovery. Conversely, infrequent checkpoints—
especially the extreme case of no checkpoints at all—lead to longer
recomputation times, as seen earlier.

Research has long focused on balancing this trade-off between
checkpointing overhead and recovery time. In a general setting,
the Young/Daly formula (Daly, 2006; Young, 1974) provides an
optimal checkpoint periodWYD, given by

WYD =

√

2µpC(N) , (4)

where C(N) is the checkpoint overhead whose complexity depends
on the number of tasks participating in creating the checkpoints
N and the size of the checkpoint (a constant, X × Y × Z, in
our formulation).

While this formula is widely used in traditional HPC
applications (Bautista-Gomez et al., 2024), it has a significant
limitation in our setting. It assumes that failures result in
application-wide crashes, where all tasks are equally affected.
However, in our resilient framework, the pipeline continues to
execute when a task fails, leading to dynamic changes in (i)
the number of active tasks, Ns; (ii) the load per task; and (iii)
the time spent on computation and checkpointing, C(N). These
dynamics render the static checkpointing period derived from the
Young/Daly formula suboptimal. To address this limitation, we
need a new adaptive strategy that accounts for execution-time
dynamics, allowing the checkpointing configuration to adjust as
failures occur.

2.4.2 Load imbalance
Throughout the reconstruction execution, the total amount

of computation remains unchanged, so when a task fails, the

surviving tasks must take on additional work. Since each task has

limited resources, this added workload slows down their progress,
significantly reducing overall reconstruction efficiency. Figure 4a
illustrates this issue using three reconstruction tasks (T1, T2, T3).
If T1 fails, its data is redistributed to T2. However, due to T2’s
limited resources, two issues arise: (1) T2 must recover T1’s lost
progress, stalling the reconstruction of its own data, and (2) after
recovery, T2 must process both T1’s data and its own, and thus
takes much longer to complete than would have T3. As a result,
T3 finishes early and sits idle, waiting for T2, leading to significant
resource waste.

This example highlights the urgent need for robust load-

balancing and computation scheduling strategies to mitigate

stragglers and reduce resource waste. However, implementing

such strategies in tomographic reconstruction presents unique

challenges due to the workflow’s structure. First, per-sinogram
reconstruction requires the full details of each sinogram, which
prevents splitting a single sinogram across multiple tasks for
parallel processing. This imposes a lower bound on how
finely the data can be divided, limiting the granularity of
redistribution needed for load balancing. Second, tomographic
reconstruction relies on multiple iterations that must proceed
in a strict sequential order. This prevents redistributing data

across tasks in the temporal dimension by duplicating sinograms

and parallelizing iterations. As a result, all sinograms must
progress at a similar pace. If progress becomes uneven, some
sinograms can turn into stragglers, which may delay the entire
reconstruction workflow.

To quantify the impact of such constraints, we consider a

scenario in which 10 reconstruction tasks work on 10 sinograms,
each of size 640 × 640, for 10 iterations. Failures are injected

immediately after the reconstruction starts, and the number of tasks
stopped by failures varies from one to nine. The reconstruction

Frontiers inHighPerformanceComputing 06 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1550855
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Nguyen et al. 10.3389/fhpcp.2025.1550855

FIGURE 4

Failures potentially make load unevenly distributed among surviving tasks, negatively impacting reconstruction time. (a) Leftover failure tasks may

cause load imbalance among remaining tasks. (b) Impact of load imbalance on reconstruction time.

times, shown in Figure 4b, reveal a striking pattern: there is no
performance difference when the number of surviving tasks is
9, 8, 7, 6, or 5. This counterintuitive result occurs because, in
all these cases, at least one surviving task must process two
sinograms while the others handle only one. Due to the sinogram
restriction, we cannot split or redistribute excess sinograms
across underloaded tasks to balance the workload. As depicted in
Figure 4a, the overloaded tasks become stragglers, determining the
overall reconstruction time, while underloaded tasks finish early
and sit idle, wasting resources. The inefficiency is particularly severe
when considering resource usage: there is a 1.8× difference in total
resources between the cases of nine and five surviving tasks, yet this
does not result in any improvement in reconstruction performance.
This example highlights the significant resource inefficiency caused
by load imbalance and the inability to redistribute work under the
constraints of tomographic reconstruction.

3 Related work

We review related work in tomographic reconstruction and
HPC checkpoint-restart.

3.1 Related and similar applications

Tomographic reconstruction algorithms have been well-
researched, and many advanced techniques exist (Kak and Slaney,
2001; Crowther et al., 1970; Withers et al., 2021; Fessler et al., 2000;
Mohan et al., 2014). These techniques can be grouped into two
categories: one-pass analytical and iterative statistical techniques.
One-pass algorithms can provide fast feedback, but are prone to
measurement noise and error and can generate reconstructions
with significant artifacts (Bicer et al., 2017). Iterative techniques,
in contrast, can provide better quality with limited/partial data,
typically at the cost of additional computation (Hidayetoğlu

et al., 2019; Bicer et al., 2015; Mohan et al., 2015). Methods
for parallelizing these reconstruction algorithms have advanced
considerably in recent years, motivated by the demands of larger
problems and experimental time constraints (Hidayetoğlu et al.,
2020; Wang et al., 2016; Chen et al., 2019).

Long-running experiments that generate large experimental
datasets require executing large-scale distributed workflows,
potentially on geographically distributed resources (Bicer et al.,
2016, 2021). AI/ML models have been incorporated into such
workflows to accelerate processing (Kamilov et al., 2023, 2015; Lin
et al., 2024; Liu et al., 2019b; Mohan et al., 2024; Bouvier et al.,
2024). However, although such workflows have been researched in
the context of synchrotron radiation data analysis pipelines (Babu
et al., 2023; Benmore et al., 2022; Vescovi et al., 2022), their resilient
execution has seen little attention.

3.2 HPC checkpoint-restart

Scalable Checkpoint/Restart (SCR) (Mohror et al., 2014),
introduces multi-level resilience strategies that take advantage
of the multiple storage levels: it supports local storage, partner
replication, and XOR encoding on remote nodes in addition to
flushing the checkpoint data to the PFS. Fault Tolerant Interface
(FTI) (Bautista-Gomez et al., 2011) is another related effort
that offers similar support while adding Reed-Solomon (RS)
encoding (Reed and Solomon, 1960). Both offer limited support
for asynchronous checkpoint flushes between the levels and they
adopt a one-file-per-process approach, which results in a large
number of files that often overwhelms a parallel file system.
Aggregation approaches such as MPI-IO (Thakur et al., 1999) and
GenericIO (Habib et al., 2016) solve this problem for synchronous
I/O. They collect the checkpointing data to a smaller number of
proxy compute nodes, which in turn interact with the parallel
file system and write a smaller number of files. Other approaches

Frontiers inHighPerformanceComputing 07 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1550855
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Nguyen et al. 10.3389/fhpcp.2025.1550855

such as Gossman et al. (2024) introduce aggregation support for
asynchronous checkpointing.

VeloC (Nicolae et al., 2021) is a checkpointing system that
improves on the multi-level resilience strategies introduced
by SCR and FTI. Specifically, it focuses on providing efficient
asynchronous support to mask the overhead of the multi-level
resilience strategies through a background engine that implements
a modular checkpointing pipeline designed to streamline
the entire life-cycle of the checkpoints, from serialization of
checkpointing data, to additional transformations, integrity
verification and checksumming, caching, prefetching, and GPU
support (Maurya et al., 2023). It mitigates interference with the
application through a series of multi-threading policies that
prioritize application resource utilization under competition.
VeloC supports checkpointing of both embarrassingly parallel (i.e.,
independent checkpointing) and tightly coupled (i.e., collective
checkpointing) applications. Specific optimizations can be applied
for checkpointing AI models (Nicolae et al., 2020; Mohan et al.,
2021; Maurya et al., 2024).

An important in the context of checkpointing systems is
versioning, which is critical in the case when the latest checkpoint
is not necessarily trusted. This can happen when anomalies
(silent data corruption, convergence instability due to spikes, etc.)
cannot be immediately detected and may be captured in the latest
checkpoint, prompting the need to restart from older checkpoints.
In this case, versioning needs to maintain an entire history of
checkpoints, which can quickly explode to large sizes. Incremental
techniques (Nicolae et al., 2011; Tan et al., 2023; Underwood et al.,
2024) that store only differences in order to compact the history
(Nicolae, 2022) can be used in order to improve I/O performance,
scalability, and space efficiency.

4 Resilient solutions

This section introduces strategies to (i) minimize
recomputation overhead and (ii) resolve resource waste and
load imbalances among surviving tasks after failures. Finally, we
discuss how to integrate these strategies into the reconstruction
workflow to enable failure-resilient capabilities for the application.

4.1 High-level ideas

4.1.1 Checkpointing
To reduce recomputation during failure recovery, we

implement checkpointing, which periodically saves snapshots
of the reconstruction state to the underlying parallel file
system. Additionally, we leverage the structure of the
reconstruction workflow to apply advanced checkpointing
techniques that minimize checkpoint creation overhead during
failure-free execution:

• Asynchronous checkpointing: per-sinogram reconstructions
are independent; each sinogram is processed independently,
requiring no communication or synchronization with others
to produce proper results. We take advantage of this by
making checkpoints self-contained, embedding all necessary

information to restore progress (e.g., completed iterations,
sinogram indices, etc.). This design allows surviving tasks to
manage checkpoints independently, eliminating computation
and synchronization overhead during failure recovery. This
lightweight approach simplifies the recovery process and
enhances efficiency.

• Non-blocking: tomographic reconstruction is computation-
intensive, whereas checkpointing is I/O-intensive. To
minimize checkpoint creation overhead, we overlap these
processes by offloading checkpoint creation from the
reconstruction’s critical path. When a task needs to create
a checkpoint, it specifies the memory regions containing
the checkpoint data and delegates this information to a
separate process. The task then resumes its computation
immediately while the checkpoint is written asynchronously
in the background. This approach effectively overlaps
computation with I/O, reducing the impact of checkpointing
on reconstruction runtime.

We now address the critical question of how frequently
checkpoints should be taken to minimize the combined overhead
of checkpoint creation during failure-free execution and wasted
computation when failures occur. Using the techniques described
earlier, we significantly reduce checkpoint creation overhead,
making it negligible compared to reconstruction time in ideal
conditions (see Section 5.2.3). In such cases, the optimal strategy is
to checkpoint as frequently as possible. For our setting, the highest
feasible frequency is once per iteration, as reconstruction at each
iteration is atomic.

However, real-world computational environments are shared,
and I/O bandwidth is often contested by multiple co-located
applications. This contention introduces uncertainty and can
severely degrade I/O performance, making checkpoint creation
overhead significant—even exceeding the time required for per-
iteration reconstruction. In these cases, frequent checkpointing can
block the reconstruction progress. To handle this challenge, we
dynamically adjust the checkpoint period W based on a modified
Young/Daly formula as follows

W =

√

2
µ

Ns
C(Ns) , (5)

recall Ns ≤ N is the number of surviving tasks at the time of
reconfiguration, µ is the mean time to failure of a single task,
and C(Ns) is the empirical checkpoint overhead, calculated as the
average overhead observed since the last reconfiguration.

This formula assumes task failures are independent and
identically distributed, following an exponential (memoryless)
distribution. Consequently, the mean time between failures
(MTBF) for the entire pipeline is determined by the sum of
the MTTFs of all surviving tasks. According to the original
Young/Daly formula (Equation 4), reconfiguration based on this
formula gives the optimal checkpoint period forNs tasks. To ensure
optimal checkpointing throughout execution, we reconfigure the
checkpoint period W dynamically whenever a failure occurs. This
adaptive approach accounts for changes in task availability and I/O
performance, ensuring that checkpointing remains efficient and
minimizes overhead across the entire pipeline execution.

Frontiers inHighPerformanceComputing 08 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1550855
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Nguyen et al. 10.3389/fhpcp.2025.1550855

FIGURE 5

Resilient solution ideas: (a) Asynchronous, non-blocking checkpoint mechanism with dynamic reconfiguration avoids costly recomputation with

minimum checkpointing overhead; (b) Dynamic data redistribution balances load among surviving tasks.

Figure 5a illustrates our proposed checkpointing solutions
using an example with four reconstruction tasks: T1,T2,T3, and T4.
The non-blocking checkpoint mechanism enables checkpoints to
be created in the background, allowing reconstruction to proceed
seamlessly during failure-free operation. When a failure occurs,
tasks T1 and T2 stop working, but their progress is preserved
in their most recent checkpoints, avoiding costly recomputation.
The asynchronous checkpointing mechanism further enhances
efficiency by allowing surviving tasks to recover independently
and in parallel. In this example, T3 recovers the progress of T1

while T4 recovers T2, with zero inter-task communication and
synchronization, minimizing recovery overhead. After recovery,
the number of active tasks is halved, prompting a reconfiguration
of the checkpointing period to adapt to the new task count. This
dynamic adjustment ensures that both checkpoint overhead and
wasted computation are minimized, maintaining overall efficiency
even in the face of failures.

4.1.2 Dynamic redistribution and lazy recovery
To optimize resource usage and balance the workload among

reconstruction tasks, we implement a dynamic redistribution
approach based on two key ideas:

• Lazy recovery: when a failure occurs, surviving tasks do
not immediately recover lost progress from checkpoints.
Instead, they treat the checkpointed progress as the most
recent state of the failed task. Recovery is embedded into
future reconstruction iterations, avoiding resource locking
and enabling tasks to utilize their resources more efficiently
for ongoing computations.

• Dynamic load balancing: static data assignment can create
stragglers, leading to inefficiencies. To address this, we divide
data into the smallest manageable units (e.g., single sinograms)
and dynamically redistribute them among reconstruction
tasks. This ensures that the computational workload is evenly
distributed over time, allowing all tasks to progress at a similar
pace and avoiding bottlenecks for efficient reconstruction.

We implement two pools within each reconstruction task: a
compute pool for sinograms currently under reconstruction and
a waiting pool for completed sinograms or excess outstanding
sinograms from overloaded tasks. Sinograms are assigned to these
pools as follows: completed sinograms are moved to the waiting
pool, while the remaining sinograms are sorted by progress. The
top R sinograms with the least progress are assigned to the compute
pool, and the rest go to the waiting pool. The value of R, a global
parameter determined by the load distributor, is calculated as:

R = ⌊
Yo

Ns
⌋ , (6)

where Yo is the total number of outstanding sinograms, and Ns is
the number of surviving tasks. During computation, tasks process
only the sinograms in their compute pool. Thus, distributing
outstanding sinograms close to R across compute pools ensures
equal computation demand and eliminates stragglers.

If Yo is divisible by Ns, the distribution is straightforward.
Otherwise, we dynamically shift the remainder sinograms from
Yo/Ns among tasks in a round-robin manner. Specifically,
wheneverYo orNs changes, the data distributor recalculatesR using
Equation 6 and determines E = Yo−R·Ns. It then ensures each task
holds at least R sinograms, assigning the E excess sinograms to the
E surviving tasks with the lowest indexes. After each iteration, tasks
update the progress of their sinograms. Tasks with excess sinograms
retain only the R sinograms with the highest progress and shift
the remainder to the next E tasks in a cyclic order, wrapping
around to the initial indexes as needed. This dynamic redistribution
maintains balanced workloads and ensures efficient reconstruction
throughout the process.

To clarify the idea, we use an example illustrated in Figure 5b.
Initially, there are Yo = 3 outstanding sinograms, each being
processed by one of the three active tasks T1, T2, and T3 (Ns = 3).
The reconstruction consists of 10 iterations, with each iteration
advancing the progress of a sinogram by 10%. At the start, all three
sinograms are at 10% progress.

Before completing the first iteration, Task T1 fails, leaving its
sinogram stuck at 10% progress. By the time the failure is detected

Frontiers inHighPerformanceComputing 09 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1550855
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Nguyen et al. 10.3389/fhpcp.2025.1550855

at t0, T2 and T3 have proceeded to the next iteration. The failure
triggers recovery, including updating Ns = 2 and R = ⌊YoNs

⌋ = 1
(Equation 6). This means each surviving task, T2 and T3, will hold
one sinogram each, and the sinogram left by T1 will be periodically
shifted between them based on the round-robin rule. Thus, at t0,
T2 restores T1’s sinogram, but due to lazy recovery, the sinogram
retains its checkpointed progress (10%) rather than triggering
recomputation immediately, while the other sinograms are already
at 20%. Since the recovered sinogram has the least progress, it
is placed in T2’s compute pool and is processed alongside the
sinogram held by T3.

After completing the iteration at t1, T2 has two outstanding
sinograms but R = 1, so it must shift a sinogram with the
lowest progress to T3. Since both sinograms held by T2 are at
20%, it just randomly picks one of them; here, we assume the
recovered sinogram is shifted. Then, both tasks proceed to the next
iteration, where T3 places the shifted sinogram (now at 20%) into
its compute pool for further processing, advancing its progress to
30%. Meanwhile, the sinogram originally assigned to T3 remains
in the waiting pool at 30%. In the next iteration (t2), the recovered
sinogram is shifted back to T2, and the reconstruction continues in
this pattern.

By t2, all sinograms have reached equal progress (30%)
despite the recovered sinogram initially lagging behind due to
T1’s failure. This example illustrates how dynamic redistribution
prioritizes sinograms with the least progress, gradually equalizing
their progress while keeping all tasks active. Thus, this approach
eliminates stragglers, optimizes resource utilization, and ensures
the reconstruction pipeline operates efficiently.

4.2 Unified algorithm

Building on the illustrative examples above, we now describe
how we integrated our resilient solutions into the tomographic
reconstruction pipeline. Our approach comprises two components:
the resilient data distributor and reconstruction tasks.

while true do

if Yo or Ns change then

if Ns changes then ⊲ Failure detected

Trigger Recovery

Collect recovered sinograms

Reassign recovered sinograms

Send recovered sinograms to assigned tasks

Reconfigure Checkpoint Period W

end if

if Yo = 0 then

complete()

else

R← ⌊
Yo

Ns
⌋

SendToTasks(Yo,R)

end if

end if

end while

Algorithm 1. Resilient solution implementation at data distributor.

Algorithm 1 outlines the pseudo-code for the resilient
data distributor implementation. The distributor operates
in an infinite control loop, responding to changes in the
number of outstanding sinograms (Yo) or surviving tasks (Ns),
triggered by either a completed sinogram reconstruction or task
failures, respectively.

When a task fails (i.e., Ns changes), the distributor initiates
recovery by instructing surviving tasks to load checkpoints of data
lost due to the failure. These tasks then return the checkpointed
data to the distributor for load balance-aware redistribution. Tasks
are assigned at least R = ⌊YoNs

⌋ sinograms, with any excess (E =
Yo − R · Ns) distributed to the first E surviving tasks with the
smallest indexes. This strategy ensures near-optimal load balancing,
minimizing the difference in workload across tasks. The distributor
then transfers the assigned sinograms back to the reconstruction
tasks accordingly to resume processing. Finally, the checkpoint
period W is adjusted with the new Ns to minimize the overhead
of upcoming checkpoint creations.

If no failures are detected, the distributor updates Yo and the
compute pool size R to assist reconstruction tasks in efficiently
shifting sinograms (discuss below). Once Yo = 0, all sinogram
processing is complete, and the data distributor halts, concluding
the process.

while true do

if RecoveryIsTriggered() then

Recover lost sinograms from checkpoints

Send recovered sinograms to data distributor

Receive sinograms from distributor

Reconfigure checkpoint period W

end if

Yo,R← ReceiveFromDataDistributor()

if Yo = 0 then

complete()

else

ComputePool, WaitingPool ← Assign(R)

Reconsruction(ComputePool)

UpdateProgress(ComputePool)

if current time − last ckpt time ≥ W then

Checkpoint(ComputePool, WaitingPool)

end if

ExceedSinograms ← collectExceedSinograms(R)

Shift(ExceedSinograms)

end if

end while

Algorithm 2. Resilient solution implementation in reconstruction tasks.

Algorithm 2 outlines the resilient implementation for
reconstruction tasks. The reconstruction is an iterative process.
At the start of each iteration, tasks check for failures reported by
the data distributor. If a failure is detected, the data distributor
broadcasts the indexes of failed tasks. Let S be the number of failed
tasks whose checkpoints must be read for recovery. If S ≥ Ns, each
surviving task loads checkpoints from one failed task in parallel,
updates S, and repeats this process until S < Ns. Then, the first
S tasks with the smallest indexes load the remaining checkpoints.

Frontiers inHighPerformanceComputing 10 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1550855
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Nguyen et al. 10.3389/fhpcp.2025.1550855

These loaded checkpoints are sent to the data distributor for
redistribution as described above.

The distributor then sends newly assigned sinograms to
surviving tasks. To proceed, each task updates the load balance
factor R from the data distributor and divides its sinograms
into compute and waiting pools. The top R sinograms with the
least progress are assigned to the compute pool, while the rest
go to the waiting pool. Tasks process the compute pool, update
progress, notify the data distributor upon sinogram completion,
and create checkpoints. If a task has more than R outstanding
sinograms, it shifts the excess (those with the least progress)
to the next surviving tasks with the smallest cycled indexes.
This shifting serves to (1) move low-progress sinograms to
underloaded tasks for continued computation, ensuring sinograms
are constructed at a similar pace, and (2) balance workloads across
tasks, preventing stragglers and resource waste, therebyminimizing
reconstruction time.

4.3 Resilient implementation

We developed a minimalistic workflow to generate a
tomographic reconstruction pipeline for resiliency tests,1 which is
based on the Trace reconstruction engine (Bicer et al., 2017, 2020).
The pipeline supports three iterative reconstruction algorithms:
Algebraic Reconstruction Technique (ART) (Gordon et al.,
1970), Simultaneous Iterative Reconstruction Technique (SIRT)
(Kak and Slaney, 2001), and Maximum Likelihood Expectation
Maximization (MLEM) (Dempster et al., 1977). Trace parallelizes
the execution of these algorithms via partitioning sinogram
and using block iterations (on projections). The workflow can
continuously update reconstruction data as more data becomes
available. The code is CPU-based and is optimized for shared and
distributed memory parallelism. While this application employs
X-ray imaging data generated at the Advanced Photon Source
(APS) for tomographic tasks, it is generic in capturing a wide
class of tomography applications, including scanning transmission
electron microscopy (STEM) (Al-Najjar et al., 2022).

Our workflow design is based on the architecture described in
Figure 2. It comprises three main components: data acquisition,
DAQ, for simulating data acquisition from experimental setup;
distributor, DIST, responsible for normalizing incoming data from
DAQ and distributing to parallel reconstruction tasks; and the
reconstruction task, SIRT, which performs partial 3D volume
reconstruction using the data received from DAQ. In our workflow,
DAQ and DIST components have only one instance, whereas there
can be thousands of SIRT instances, depending on the scale of
the reconstruction (Bicer et al., 2017). In our implementation,
we containerize these three workflow components, for portability,
scalability, and easy (resiliency) testing.

The resilient features are implemented in C++, utilizing
the Message Passing Interface (MPI) for data exchange between
workflow components. For non-blocking checkpointing, we use

1 The code base can be accessed at https://github.com/diaspora-project/

aps-mini-apps.

VeloC (Nicolae et al., 2019). In each reconstruction task,
we allocate dedicated memory regions for the reconstruction
output and register them with VeloC whenever the checkpoint
configuration changes.

When a task is about to create a checkpoint, it populates the
registered memory regions with the most up-to-date data needed
for recovery. This data includes (i) the reconstruction results, (ii)
the ID of corresponding sinograms in the results, and (iii) progress
indicators, such as the number of completed iterations for each
sinogram. After updating the memory regions, the task sends a
write signal to VeloC and immediately resumes the reconstruction
process. VeloC handles the checkpointing asynchronously by
using a separate process to flush the registered memory regions
to permanent storage (e.g., a parallel file system). Each saved
checkpoint is identified by a tuple (Ti, v) where Ti is the ID of the
task that created the checkpoint, and v is an auto-incrementing
number indicating the version of the checkpoint.

When a failure occurs, the data distributor will notify the
surviving tasks of the IDs of the failed tasks. If a surviving task
is designated to recover a failed task’s data, it allocates memory
for recovery and registers this memory with VeloC. The task then
sends a read request to VeloC, specifying the ID of the task to be
recovered. VeloC searches for the latest version of the checkpoint
corresponding to that task ID, loads it into the registered recovery
memory region, and notifies the task. The task can then proceed
with data redistribution as described in Section 4.1.2.

5 Evaluation

We perform experiments to evaluate the performance of the
resilient solution discussed in Section 4. We will first present
the evaluation methodology, including objectives, workloads, and
execution environment configurations in Section 5.1, followed by
the results in Section 5.2.

5.1 Methodology

5.1.1 Objectives
We perform experiments with two objectives. First, we

create well-controlled execution scenarios to gain insights into
the impact of failures on reconstruction execution as well
as to quantitatively evaluate our resilient solution ideas and
implementations. Second, we generate failures based on standard
randomization processes while varying experimental conditions,
including reconstruction sizes, algorithms, and projection datasets,
to assess the applicability and robustness of our resilient solutions
in diverse real-world settings.

5.1.2 Workloads
We used two sample datasets from TomoBank (De Carlo

et al., 2018) to create workflow loads. The first, Spheres, comprises
1,500 X-ray projections (i.e., rotation angles) of borosilicate glass
spheres encased in a polypropylene matrix (Spheres, 2024). Each
projection is an image with dimensions (2,048 × 2,048), resulting

Frontiers inHighPerformanceComputing 11 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1550855
https://github.com/diaspora-project/aps-mini-apps
https://github.com/diaspora-project/aps-mini-apps
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Nguyen et al. 10.3389/fhpcp.2025.1550855

in an overall dataset size of (1,500, 2,048, 2,048). The second
dataset is the Chip dataset corresponding to a portion of an
electronic circuit (Nano CT, 2024) with 1,204 (2,448 × 2,448)
projections. In our first controlled experiments, we down-sampled
the datasets to manage the execution scale, simulate various failure
scenarios, and reduce experimentation time. We used the full-scale
datasets in later experiments to evaluate our resilient solutions in
practical settings.

5.1.3 System configurations
All experiments are conducted on the Polaris supercomputer

at Argonne National Laboratory. To ensure full control over
the experimental environment, the reconstruction pipelines are
deployed on dedicated compute nodes with no co-located
applications. Each compute node features a single AMD EPYC
“Milan” processor with 64 physical cores and 512 GB of
memory. Each reconstruction task is assigned to one physical
core, and the compute nodes are interconnected by a 200
Gbps high-speed network. Checkpoints are managed by VeloC
operating in asynchronous mode (Nicolae et al., 2019) and
stored in a Luster File System, making them accessible to all
reconstruction tasks.

5.1.4 Tomographic deployment approaches
We run experiments using the following tomographic

reconstruction pipelines.

• Naive (baseline): naive resilient implementation. When a
failure is detected, recovery starts immediately, reassigning
lost data of a failed task to an arbitrary surviving task. The
selected task reconstructs the lost data from scratch before
continues making progress.

• Ckpt: similar to Naive, except the selected task reconstructs
the lost progress from the latest checkpoint. Checkpoints are
created and configured following ideas presented in Section
4.1.1.

• Balance-aware: similar to naive, except lost data are spread
evenly among surviving tasks according to our dynamic load
balancing algorithm discussed in Section 4.1.2.

• Lazy: similar to Naive, except the progress recovery does not
start immediately but gets deferred according to our lazy
recovery algorithm, as discussed in Section 4.1.2.

Note that Ckpt, Balance-Aware, and Lazy implementation are
orthogonal, so they can be stacked to yield better performance.
Thus, we will conduct controlled experiments with them separately
in Sections 5.2.1, 5.2.2 to evaluate their effectiveness and integrate
them latter in Section 5.2.3 according to our resilient algorithm in
Section 4 to see their combined efficiency in practice.

5.1.5 Metrics
We evaluate resilient solutions based on four metrics.

• Elapsed time: the end-to-end reconstruction time to measure
the performance of a resilient solution under failure.

• Number of failures: the number of failures that occur
throughout the reconstruction process. The metric indicates
the impact of failure on the construction process.

• Balance: calculated as follows

Balance =
L− S

S
, (7)

where L is the largest number of sinograms assigned to a task
and S is the smallest number of sinograms assigned to a task
at the same moment or interval (assuming the sinogram-to-
task assignment does not change throughout the interval). The
metric allows us to investigate the balance of load among tasks
with Balance = 0 indicating perfect even load distribution.

• Overhead: The additional time that a reconstruction pipeline
spends without making progress (e.g., recomputation, making
checkpoint, or communication for failure recovery). The
metric indicates the required cost to achieve resilient goals.

5.2 Experimental results

We present the experimental results in two stages. First, we
evaluate the reconstruction pipeline in a controlled environment
with deterministic failure injections to analyze their impact on
reconstruction time and assess the effectiveness of our solutions in
mitigating these effects (Sections 5.2.1, 5.2.2). Second, we introduce
randomized failure injections to evaluate the practical efficiency of
our solutions under realistic conditions (Section 5.2.3).

5.2.1 Checkpointing e�ectiveness
We evaluate the impact of failures on reconstruction time by

manually injecting failures into a pipeline processing 64 sinograms
(640×640 pixels each) with 64 parallel reconstruction tasks (one
sinogram per task) over ten iterations. Failures are introduced at
varying points in the pipeline’s progress (measured as the fraction of
total completion) and by varying the fraction of tasks affected (up to
64 tasks). The results, shown in Figure 6, compare recomputation
overhead (normalized against ideal execution without failures)
in two scenarios: without checkpointing (Figure 6a) and with
checkpointing (Figure 6b).

As expected, failures affecting more tasks lead to higher
overhead. For instance, when a failure occurs at 10% progress, the
overhead increases by 6.8× as the fraction of affected tasks rises
from 10 to 90%. Additionally, the timing of the failure significantly
impacts the results. Without checkpointing, failures occurring late
in the pipeline incur drastically higher overhead compared to
earlier failures. As shown in Figure 6a, a failure at 90% progress
results in an overhead ranging from 83 to 221%.

In contrast, checkpointing dramatically reduces overhead and
minimizes sensitivity to failure timing. As illustrated in Figure 7a,
for most cases, the overhead with checkpointing remains below
22%, even for failures at 90% progress—delivering performance
four to ten times faster than the no-checkpointing scenario.
This improvement stems from checkpointing’s ability to preserve
progress: after a failure, only computations after the last checkpoint
need to be recomputed, while earlier progress is retained. In
comparison, without checkpointing, all progress made by affected

Frontiers inHighPerformanceComputing 12 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1550855
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Nguyen et al. 10.3389/fhpcp.2025.1550855

FIGURE 6

Checkpointing e�ciency: overhead is bounded by checkpointing recovery, while without checkpointing, the later the failure, the worse the e�ect on

reconstruction time. (a) Without checkpointing. (b) With checkpointing.

FIGURE 7

Checkpoint reconfiguration e�ciency: By dynamically adjusting the checkpoint period, the combined checkpoint overhead and wasted

computation are minimized under various MTTF scenarios, even when the reconstruction is under I/O contention. (a) Without I/O contention. (b)

With I/O contention.

tasks is lost, requiring full recomputation of the lost data and
significantly increasing overhead, especially for failures occurring
late in the process.

Next, we explore the effectiveness of the dynamic checkpoint
reconfiguration by manually injecting failures following
an exponential distribution into a reconstruction pipeline
processing 64 sinograms (each 640 × 640 pixels) with 64 parallel
reconstruction tasks (one sinogram per task) over 20 iterations.
To handle failures, the pipeline implements two checkpointing
strategies: (i) our proposed dynamic reconfiguration strategy
(described in Section 4.1.1), and (ii) static checkpoint based
on a preconfigured period with two extreme configurations:
no checkpointing (infinity) and checkpointing at the highest

frequency (once per iteration). Figure 7 presents the combined
overhead and wasted computation under varying MTTF (µ) for
two scenarios: (1) no I/O contention and (2) with I/O contention
(where each checkpoint creation overhead is manually increased to
match per-iteration reconstruction time).

Under failure-free execution (MTTF = ∞), checkpointing
adds unnecessary overhead, making the No Checkpoint strategy
optimal. However, as failures begin to occur with decreasingMTTF,
checkpoints become critical to reduce wasted computation. At
MTTF = 1,000 s, static checkpointing at the highest frequency
(once per iteration) achieves the lowest overhead.

When there is no I/O contention, our checkpointing
implementation introduces insignificant overhead (more in

Frontiers inHighPerformanceComputing 13 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1550855
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Nguyen et al. 10.3389/fhpcp.2025.1550855

Section 5.2.3), so wasted computation dominates the combined
overhead, and frequent checkpointing is optimal. As shown in
Figure 7a, static checkpointing at the highest frequency achieves
the best results. However, when I/O contention emerges, the
situation changes dramatically. Checkpointing overhead becomes
significant, and blindly checkpointing at the highest frequency
is counterproductive. For example, at MTTF = 100,000 s (in
Figure 7b), frequent checkpointing performs as poorly as having
no checkpoint at all due to I/O bottlenecks. The results demonstrate
that static checkpointing, while simple, is insufficient for handling
dynamic execution environments. A configuration that works
optimally in one scenario becomes inefficient when execution
conditions change (e.g., task failures or I/O contention).

In contrast, our dynamic reconfiguration strategy overcomes
these challenges by dynamically adjusting the checkpoint frequency
based on decisive factors, including task MTTF, the number of
surviving tasks after failures, and real-time checkpoint overhead
influenced by I/O contention. This adaptability allows the strategy
to maintain efficiency across varying execution conditions.

As shown in Figure 7, the Dynamic Reconfiguration strategy
consistently matches or outperforms the best static checkpointing
across all MTTF values and I/O contention scenarios, remarkably
achieving at least 3× lower overhead compared to the worst static
configuration. The results confirm the essential of a self-adaptive
strategy like ours to efficiently balance checkpointing overhead and
failure recovery in unpredictable, large-scale systems.

Takeaway: Checkpointing avoids recovering lost progress

from scratch, significantly reduces recomputation overhead and

mitigates sensitivity to failure timing. However, determining the

optimal checkpointing period is heavily influenced by uncertain

execution conditions, requiring dynamic reconfiguration to

maintain efficient and resilient execution.

5.2.2 Dynamic distribution e�ectiveness
We evaluate the effectiveness of dynamic redistribution by

focusing on two key aspects: (i) load-balancing-aware data
redistribution and (ii) lazy recovery. To measure the impact of load
balancing, we conduct an experiment with 64 tasks, reconstructing
256 sinograms (640 × 640 pixels each) over 10 iterations. At
10% progress, we manually inject a failure, varying the fraction of
affected tasks. By introducing the failure early, we ensure that the
remaining 90% of the reconstruction process is influenced by the
pipeline’s response to failure, providing a clear assessment of the
redistribution approaches.

Upon detecting a failure, the pipeline either (i) naively
redistributes data from failed tasks to remaining tasks using a
one-to-one mapping (i.e., the Naive approach) or (ii) employs
the balance-aware dynamic redistribution approach described in
Section 4.1.2 (i.e., the Balance-Aware approach).

The results of our experiments, shown in Figure 8a, allow
us to compare the reconstruction times and load balance (see
Equation 7) achieved by the two approaches as a function of
the fraction of tasks that are failed at 10% progress. We find
that the balance-aware approach effectively maintains an even

workload distribution, with its balance indicator consistently close
to zero. Thus, it ensures efficient resource utilization andminimizes
reconstruction time. In contrast, the naive approach assigns
sinograms without considering workload disparities, resulting in
significantly higher balance indicators and up to 38% longer
reconstruction times. These results highlight the effectiveness of the
balance-aware approach in optimizing performance and handling
task failures.

Next, we evaluate the effectiveness of lazy recovery by
periodically injecting failures into a reconstruction pipeline with
64 tasks processing 64 sinograms (640 × 640 pixels each) over 10
iterations. This setup highlights the impact of recovery overhead,
as reconstruction stalls during recovery due to resources being
spent on loading checkpoints and recomputing lost progress.
Long recovery increases the pipeline’s vulnerability to additional
failures, compounding the recovery overhead and further delaying
reconstruction. Worse, if failures frequently occur during recovery,
the overhead stacks, creating a vicious cycle that significantly
prolongs reconstruction time.

The results of this second set of experiments are given in
Figure 8b, which shows reconstruction time for different MTTF
values in two scenarios: (i) immediate recovery, where lost progress
is restored from checkpoints immediately after failure detection,
and (ii) lazy recovery, where progress is gradually restored during
subsequent reconstruction iterations. When a failure occurs, one
surviving task is terminated, and the solid lines in the figure indicate
the total number of failures introduced. If all tasks are terminated,
the pipeline restarts from the most recent checkpoints.

When the time between failures is above eight seconds,
the number of terminated tasks remains low (fewer than 10),
and failures have minimal impact on reconstruction time.
However, when failure intervals shorten, the pipeline becomes
increasingly prone to overlapping failures during recovery. This
overlap destroys partial recovery progress, requiring repeated
recomputation of the same data and exponentially increasing
recovery overhead.

The results clearly show the advantage of lazy recovery in such
cases. Even with time between failures as short as four seconds,
lazy recovery reduces reconstruction time by up to 4× compared
to immediate recovery, as it avoids the compounding effects of
stacked recovery overhead. This demonstrates the robustness of
lazy recovery in mitigating the impact of frequent failures and
ensuring efficient pipeline performance.

Takeaway: Dynamic redistribution and lazy recovery ensure

balanced workloads and reduce sensitivity to frequent failures,

delivering up to 4× improvement over naive resilient solutions.

5.2.3 Resilient solution e�ciency
Next, we evaluate the combined efficiency of all resilient

solutions by integrating them into the reconstruction pipeline and
testing them under an uncertain environment with random failure
occurrences modeled using a Poisson process with task failures
generated by identical, independent Exponential distributions.
Figure 9a shows the reconstruction time of 64 tasks processing

Frontiers inHighPerformanceComputing 14 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1550855
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Nguyen et al. 10.3389/fhpcp.2025.1550855

FIGURE 8

E�ectiveness of two methods for responding to failures. Balance-aware dynamic distribution keeps load evenly distributed among surviving tasks

while lazy recovery eliminates the compounding e�ect of high-frequent failure occurrences. They improve resilient e�ciency by up to 38% and 4×,

respectively. (a) Balance-aware redistribution. (b) Lazy recovery.

64 sinograms (640 × 640 pixels each) over 10 iterations under
varying MTTF µ. We compare four pipeline implementations:
(1) no resilience, (2) reconstruction with checkpointing (+Ckpt),
(3) reconstruction with checkpointing and load balancing (+Ckpt
+Balance), and (4) reconstruction with checkpointing, load
balancing, and lazy recovery (+Ckpt+Balance+Lazy).

Without resilient solutions, reconstruction time increases
exponentially as MTTF decreases. Starting from 60 s in a failure-
free environment, the reconstruction time surges to over 100,000
s (>27 h, a four-order-of-magnitude slowdown) at MTTF of 10
s. Introducing checkpointing dramatically reduces this overhead
by preserving progress and avoiding full recomputation of lost
work. At MTTF of 10 s, checkpointing reduces reconstruction
time to under 1,000 s—a 100× improvement compared to no
resilience.

Adding dynamic redistribution with balance-aware assignment
and lazy recovery further enhances performance, reducing
reconstruction time by an additional 4.3×. Under the extreme
condition of an MTTF of 10 s, 6× shorter than the pipeline’s
ideal execution time, the fully resilient pipeline completes the
reconstruction in just 184 s, only 3× slower than ideal execution
and over 500× faster than the naive resilient baseline. The
results confirm the efficiency of the proposed resilient solutions in
practical settings. Furthermore, the solutions are complementary
and work seamlessly together. The observed improvements align
with those reported in controlled experiments, showing that
stacking these techniques consistently enhances overall efficiency.
This confirms that combining these solutions can provide robust
and scalable resilience.

These remarkable improvements come with minimal overhead.
As shown in Figure 9b, the combined checkpointing and
communication overhead for dynamic redistribution remains
consistently below 3% of the ideal reconstruction time across
all failure scenarios. This negligible cost is vastly outweighed by
the dramatic reductions in reconstruction time, especially under
extreme failure conditions.

Takeaway: Integrating checkpointing, balance-aware dynamic

redistribution, and lazy recovery into reconstruction pipelines

dramatically improves resilience, achieving over 500× faster

reconstruction under extreme failure conditions with minimal

overhead (<3% of ideal runtime), ensuring robust and practical

failure handling.

5.2.4 Applicability
Finally, we evaluate the applicability of our resilient solutions

by integrating all proposed mechanisms—checkpointing, dynamic
load balancing, and lazy recovery—to support reconstruction
workflows across diverse execution scenarios. The objective
is to ensure our solutions maintain efficiency under different
conditions, demonstrating their viability for real-world
tomographic reconstruction. To achieve this, we begin with
a base configuration (64 reconstruction tasks processing 64
sinograms from the Spheres dataset in 10 iterations using the
ART algorithm) and systematically alter key parameters, including
sinogram size, dataset, and reconstruction algorithm. We then
compare end-to-end reconstruction time and cost against the
base setting and ideal failure-free execution to assess robustness
and applicability.

Robustness against data size.We reuse the efficiency evaluation
setup (Section 5.2.3), employing the ART algorithm with 64 tasks
reconstructing a 3D volume from 64 sinograms over 10 iterations.
Sinogram sizes vary among 640×640, 1,280 × 1,280, and 2,048 ×
2,048 to assess scalability. The end-to-end reconstruction time and
overhead are depicted in Figure 10. Changes in sinogram size have
minimal impact on the efficiency we previously observed in Section
5.2.3.

In terms of performance, Figure 10a illustrates the actual
reconstruction time under failure, normalized by the ideal runtime
without failure. Our solution effectively mitigates failure across all
sinogram sizes. As the mean time to failure (MTTF) decreases

Frontiers inHighPerformanceComputing 15 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1550855
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Nguyen et al. 10.3389/fhpcp.2025.1550855

FIGURE 9

Overall e�ciency (a) and overhead breakdown (b) for our resilient application as a function of mean time to failure. Our resilient solutions

significantly reduce the impact of failure on reconstruction time with a negligible overhead.

FIGURE 10

Reconstruction time and overhead under various failure scenarios, for varying sinogram sizes. In all scenarios, our solutions ensure completion at an

acceptable reconstruction time with insignificant overhead. (a) Reconstruction time. (b) Overhead (MTTF = 1,000).

from 10,000 to 100 s (a 100× severity increase), the reconstruction
time increases by an order of magnitude slower, only 1.5× to 16×.
Notably, the failure impact prolongs reconstruction time by at
most 6.2×, except for the outlier case of 2,048 × 2,048 sinograms
at MTTF = 100 s, where the impact reaches 27× (rightmost
green column). However, even in this extreme case, the prolonged
reconstruction time is a necessary trade-off. Without resilience,
completing the reconstruction would be virtually impossible. The
ideal reconstruction time in this setting is 2,400 s, 24× the MTTF.
This means the probability for a task to complete without failure,
according to the Poisson process, is only p = exp (− 2,400

100 ) =
3.78×10-9%, making successful execution of a 64-task pipeline
infeasible. Our solution ensures completion, despite high failure
rates, at an acceptable reconstruction time.

In terms of cost, Figure 10b breaks down time spent on
checkpointing, communication, and computation at MTTF =
1,000, normalized by the ideal reconstruction time. As seen in

Figure 9a, resilience mechanisms contribute to less than 1% of
meaningful computation. Interestingly, as sinogram size increases
from 640×640 to 1,280×1,280, the overhead ratio decreases by
approximately 3.5×. This is because larger sinograms require
longer computation, allowing our asynchronous, non-blocking
mechanisms to overlap checkpointing with computation more
effectively, improving cost efficiency.

Reconstruction algorithms support. We further evaluate
how well our resilience mechanisms generalize across different
reconstruction algorithms. For the sake of generality, we consider
algorithms for two popular beam geometries: parallel-beam and
cone-beam.

For the parallel beam, we evaluate three algorithms: ART, SIRT,
and MLEM. We reconstruct 64 sinograms (2,048 × 2,048) with
64 tasks over 10 iterations. Figure 11a presents the reconstruction
times under various MTTF values. Differences among algorithms
are negligible, as both MLEM and SIRT, despite implementation

Frontiers inHighPerformanceComputing 16 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1550855
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Nguyen et al. 10.3389/fhpcp.2025.1550855

FIGURE 11

Reconstruction times under varying failure rates for di�erent reconstruction algorithms (a) and datasets (b). Despite changes in algorithm and input

data, the reconstruction times exhibit only minor variations.

FIGURE 12

The reconstruction time of cone-beam geometry, with and without

checkpointing, varying mean time to failure. Our checkpointing

solution dramatically reduces reconstruction time under failures by

up to 100×.

differences, follow an iterative pattern where intermediate states
serve as checkpoints. This makes our checkpointing mechanism
just as effective for these algorithms as it is for ART. Furthermore,
like ART, MLEM and SIRT are embarrassingly parallel, benefiting
equally from dynamic load balancing and lazy recovery.

In the cone-beam setup, cross-sinogram dependencies prevent
us from directly applying load-balancing and lazy recovery
techniques for resiliency. As a result, among the three solutions
evaluated in Section 5.2.3, only checkpointing can be applied
without compromising the correctness of the original algorithm.
Figure 12 presents the reconstruction time for 360 projections
processed by 16 tasks over 10 iterations, using a 100,000-s timeout
(i.e., reconstruction is forcefully terminated if execution exceeds
100,000 s, ∼27 h, or 1,000× the ideal execution time of 110 s). We
evaluate two (block-iterative versions of) SART algorithms: (i) a

naive MPI-based implementation of the SART algorithm derived
from the RTK toolkit (RTK, 2025) (No Resilience) and (ii) the same
MPI implementation enhanced with our checkpointing support.
We used a simple parallelization technique for the SART, in which
the volumes are replicated and projections are partitioned among
reconstruction processes. The volumes are synchronized at the
end of each iteration, which translates to block iterations on the
projection dimension.

Without failure (Mean time to failure = ∞), both
implementations complete the reconstruction in comparable
time, demonstrating the minimal overhead of our checkpointing
solution, consistent with earlier results. However, once failures
are introduced, the original implementation experiences severe
penalties: each failure forces a complete restart, causing the
reconstruction time to grow exponentially. Specifically, at MTTF
= 10 s, the original reconstruction exceeds the timeout, indicating
infeasibility with at least 1,000× slowdown relative to the ideal
runtime. In contrast, our checkpointing solution dramatically
mitigates the impact of failures. By checkpointing every iteration,
we reduce reconstruction time penalties by 25% at MTTF =
1,000 s and by a factor of at least 100× at MTTF = 10 s—an
extreme scenario where failures occur 11× faster than the ideal
reconstruction time. This reduction keeps the overhead under 10×
relative to the failure-free case, demonstrating that our solution
sustains practical and predictable reconstruction performance even
under highly failure-prone conditions, ensuring feasibility where
naive execution would become entirely impractical.

Robustness against datasets. Lastly, we assess the applicability
of our solution to different datasets. Using the same experimental
setup (64 tasks processing 64 sinograms over 10 iterations with
ART), we reconstruct full-scale Spheres and Chip datasets. Their
reconstruction times under various failure conditions are shown
in Figure 11b. The variation in reconstruction time between
datasets is attributed to differences in resolution (2,048×2,048
vs. 2,448×2,448). However, our resilience mechanisms remain
effective: at MTTF = 100,000 s, reconstruction times are nearly
identical to ideal cases. Even at MTTF = 100 s, where failure

Frontiers inHighPerformanceComputing 17 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1550855
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Nguyen et al. 10.3389/fhpcp.2025.1550855

severity increases by 1,000×, reconstruction time increases by at
most 60×, a significantly lower impact than the raw failure rate
increase, demonstrating robustness across datasets.

Takeaway: Proposed resilient solutions demonstrate robustness

across diverse datasets, varying data sizes, and multiple

reconstruction algorithms, ensuring their practical applicability to

a wide range of tomographic reconstruction pipelines.

6 Discussion

Our resilient solutions were initially designed for data-parallel
iterative tomographic reconstruction, but their core ideas rely on
two key properties common to many reconstruction pipelines—
making them broadly applicable. Specifically, these properties are:
(i) the iterative reconstruction pattern, in which the reconstructed
object represents an intermediate state that can serve as a progress
checkpoint to avoid expensive recomputation, and (ii) partial

updates with data-parallelism, where the data can be partitioned
(e.g., sinograms) and processed by independent tasks, enabling
efficient dynamic rebalancing and recovery when failures occur.

Any tomographic reconstruction workflow that exhibits one
or both of these properties can leverage our resilient solutions.
Furthermore, as demonstrated in Sections 5.2.3 and 5.2.4, our
techniques are designed to work in an orthogonal manner—if one
part of the solution is not applicable, the remaining mechanisms
retain their efficiency and still significantly reduce the impact
of failures. Based on this observation, we now discuss how our
approach can be adapted to a wide range of reconstructionmethods
and hardware platforms beyond the specific setting presented
previously in the paper.

6.1 Reconstruction methods

There is a vast number of tomographic reconstruction
techniques developed with different properties. For instance,
analytical reconstruction techniques, such as GridRec (Dowd
et al., 1999) or filtered-back projection (FBP) (Herman, 2009)
can provide fast reconstruction, however, they are typically prone
to measurement noise and can result in suboptimal image
quality with limited measurements. On the other hand, the
iterative techniques provide higher quality images at the cost
of additional computational demand. In this work, we focus on
providing resiliency with iterative techniques for the following
reasons: iterative techniques can provide reasonable and actionable
reconstructions with partial/streaming data; the system checkpoint
can be taken by saving the reconstructed volume throughout the
execution, e.g., between iterations; the reconstruction process can
continue after detection and redistribution of the workload.

The parallelization of (iterative) reconstruction techniques has
been an active research area, and many advanced methods have
been developed for large-scale, fine-grained parallel tomographic
reconstruction (Wu et al., 2024; Chen et al., 2021; Wang et al.,
2017, 2016; Hidayetoğlu et al., 2020). In this work, we focus on the
resiliency aspect of the iterative reconstruction applications and we
exploit the fact that partially reconstructed images represent the

intermediate state of the execution, which can be saved between
the iterations. This unique insight allows us to apply our resiliency
method to any iterative reconstruction process, irrespective of
underlying parallelization technique, algorithm, or data acquisition
geometry. Although, we focus on parallel beam geometry in
our experiments, the other reconstruction workflows can benefit
from our resiliency techniques as far as they follow the same
analysis pattern.

6.2 Underlying hardware

Although our resilient solutions are currently implemented and
evaluated on CPU-based systems, their design is independent of
any specific hardware architecture. As illustrated in Algorithm 2,
the core reconstruction computation is encapsulated in the
Reconstruction() function, which acts as a black box within our
resiliency framework. This abstraction enables the same strategies
to be applied to other platforms without requiring significant
modifications to the underlying reconstruction implementation.

For example, our approach can be adapted for GPU-based
reconstruction pipelines with only minor modifications. The
Reconstruction() function can be replaced by a GPU-specific
implementation that incorporates additional data transfers between
the GPU memory and the host to facilitate resilient control. These
transfers include: (i) periodically extracting the current output from
the GPU at the end of each iteration for checkpointing, and (ii)
refreshing the GPU memory to update the reconstruction state in
response to dynamic load redistribution and recovery.

In summary, our resilient solutions are flexible and highly
applicable. They can be seamlessly integrated with a variety
of reconstruction methods—whether employing parallel-beam or
cone-beam geometries—and across different hardware platforms,
from CPUs to GPUs. This versatility ensures that our approach
can effectively address the challenges of diverse and evolving
tomographic reconstruction environments.

7 Conclusion and future work

We have presented resilient solutions to enhance the
reliability and performance of distributed X-ray image analysis
workflows, particularly focusing on tomographic reconstruction.
We introduced an asynchronous, non-blocking checkpointing
mechanism and a dynamic redistribution technique with lazy
recovery to mitigate the impact of failures. These methods enabled
progress preservation, balanced load distribution, and low-cost
recovery reconstruction in error-prone environments. Our
evaluations, conducted using a 3D tomographic reconstruction
deployed across Argonne’s leadership computing infrastructure
and synchrotron facilities, demonstrated the effectiveness of the
proposed strategies in both controlled and real-world scenarios,
reducing failure impact by up to 500×while maintaining negligible
overhead (<3%).

This work creates many exciting future research directions.
For instance, while the current study focuses on task failures,
real-world scenarios involve other critical challenges, such as data
transmission losses, file corruptions, and storage failures. How

Frontiers inHighPerformanceComputing 18 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1550855
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Nguyen et al. 10.3389/fhpcp.2025.1550855

can the proposed solutions be integrated with existing approaches
to address these issues and further enhance the application’s
resilience? Moreover, with the growing demand for real-time
reconstruction, which requires data to be processed and available
within strict deadlines, how can the proposed solutions be adapted
or extended to meet these stringent timing requirements?

There are also significant opportunities for improvement. For
example, our current formulation assumes that resources associated
with failed tasks are lost permanently. In practice, workflows could
retain resources and spawn new tasks to replace failed ones. In
elastic environments like the cloud (Foster and Gannon, 2017),
workflows might dynamically scale the number of tasks across
geographically distributed resources to accelerate reconstruction
as needed. While these advancements present exciting possibilities
for deploying efficient pipelines at large scales, they also pose
challenging questions: How should data be redistributed upon task
restarts or scaling? When and where should tasks be started or
stopped to optimize performance and resilience?

Data availability statement

Publicly available datasets were analyzed in this study. Both
code and datasets can be accessed at: https://github.com/diaspora-
project/aps-mini-apps.

Author contributions

HN: Conceptualization, Formal analysis, Methodology,
Software, Visualization, Writing – original draft. TB:
Conceptualization, Data curation, Investigation, Methodology,
Software, Writing – original draft. BN: Conceptualization, Formal
analysis, Investigation, Methodology, Writing – original draft. RK:
Writing – review & editing. EH: Writing – review & editing. IF:
Funding acquisition, Project administration, Supervision, Writing
– review & editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This work was supported

by the U.S. Department of Energy (DOE) under Contract
No. DE-AC02-06CH11357, including funding from the Office
of Advanced Scientific Computing Research (ASCR)’s Diaspora
project and the Laboratory Directed Research. Additionally, this
work was partially supported by the National Science Foundation
(NSF), Office of Advanced Cyberinfrastructure, under Grant CSSI-
2411386/2411387.

Acknowledgments

This research used resources of the Argonne Leadership
Computing Facility, a U.S. DOE Office of Science user
facility at ANL, and is based on research supported by the
U.S. DOE Office of Science ASCR Program under Contract
No. DE-AC02-06CH11357.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The author(s) declared that they were an editorial board
member of Frontiers, at the time of submission. This had no impact
on the peer review process and the final decision.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation
of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Al-Najjar, A., Rao, N. S., Sankaran, R., Ziatdinov, M., Mukherjee, D., Ovchinnikova,
O., et al. (2022). “Enabling autonomous electron microscopy for networked
computation and steering,” in IEEE 18th International Conference on e-Science (e-
Science) (Salt Lake City, UT: IEEE), 267–277. doi: 10.1109/eScience55777.2022.00040

Babu, A. V., Bicer, T., Kandel, S., Zhou, T., Ching, D. J., Henke, S., et al.
(2023). AI-assisted automated workflow for real-time X-ray ptychography data analysis
via federated resources. Electron. Imaging 35, 1–6. doi: 10.2352/EI.2023.35.11.HP
CI-232

Bautista-Gomez, L., Benoit, A., Di, S., Herault, T., Robert, Y., Sun, H., et al.
(2024). A survey on checkpointing strategies: should we always checkpoint à la
Young/Daly? Future Gener. Comput. Syst. 161, 315–328. doi: 10.1016/j.future.2024.
07.022

Bautista-Gomez, L., Tsuboi, S., Komatitsch, D., Cappello, F., Maruyama, N.,
Matsuoka, S., et al. (2011). “FTI: high performance fault tolerance interface for
hybrid systems,” in ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis (Seattle, WA: ACM), 1–32.
doi: 10.1145/2063384.2063427

Benmore, C., Bicer, T., Chan, M. K., Di, Z., Gürsoy, D., Hwang, I., et al. (2022).
Advancing AI/ML at the advanced photon source. Synchrotron Radiat. News 35, 28–35.
doi: 10.1080/08940886.2022.2112500

Benoit, A., Du, Y., Herault, T., Marchal, L., Pallez, G., Perotin, L., et al.
(2022). “Checkpointing à la Young/Daly: an overview,” in 14th International
Conference on Contemporary Computing (New York, NY: ACM), 701–710.
doi: 10.1145/3549206.3549328

Frontiers inHighPerformanceComputing 19 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1550855
https://github.com/diaspora-project/aps-mini-apps
https://github.com/diaspora-project/aps-mini-apps
https://doi.org/10.1109/eScience55777.2022.00040
https://doi.org/10.2352/EI.2023.35.11.HPCI-232
https://doi.org/10.1016/j.future.2024.07.022
https://doi.org/10.1145/2063384.2063427
https://doi.org/10.1080/08940886.2022.2112500
https://doi.org/10.1145/3549206.3549328
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Nguyen et al. 10.3389/fhpcp.2025.1550855

Bicer, T., Gürsoy, D., Andrade, V. D., Kettimuthu, R., Scullin, W., Carlo, F. D., et al.
(2017). Trace: a high-throughput tomographic reconstruction engine for large-scale
datasets. Adv. Struct. Chem. Imaging. 3, 1–10. doi: 10.1186/s40679-017-0040-7

Bicer, T., Gursoy, D., Kettimuthu, R., De Carlo, F., Agrawal, G., and
Foster, I. T. (2015). “Rapid tomographic image reconstruction via large-scale
parallelization,” in European Conference on Parallel Processing (Cham: Springer),
289–302. doi: 10.1007/978-3-662-48096-0_23

Bicer, T., Gürsoy, D., Kettimuthu, R., De Carlo, F., and Foster, I. T. (2016).
Optimization of tomographic reconstruction workflows on geographically distributed
resources. J. Synchrotron Radiat. 23, 997–1005. doi: 10.1107/S1600577516007980

Bicer, T., Nikitin, V., Aslan, S., Gürsoy, D., Kettimuthu, R., and Foster, I. T. (2020).
“Tomographic reconstruction of dynamic features with streaming sliding subsets,” in
Annual Workshop on Large-scale Experiment-in-the-Loop Computing (IEEE/ACM).
doi: 10.1109/XLOOP51963.2020.00007

Bicer, T., Yu, X., Ching, D. J., Chard, R., Cherukara, M. J., Nicolae, B., et al.
(2021). “High-performance ptychographic reconstruction with federated facilities,”
in Smoky Mountains Computational Sciences and Engineering Conference (Cham:
Springer International Publishing), 173–189. doi: 10.1007/978-3-030-96498-6_10

Bouvier, T., Nicolae, B., Costan, A., Bicer, T., Foster, I., Antoniu, G., et al. (2024).
Efficient distributed continual learning for steering experiments in real-time. Future
Gener. Comput. Syst. 162:107438. doi: 10.1016/j.future.2024.07.016

Butler, I., Fusseis, F., Cartwright-Taylor, A., and Flynn, M. (2020).
Mjölnir: a miniature triaxial rock deformation apparatus for 4D
synchrotron X-ray microtomography. J. Synchrotron Radiat. 27, 1681–1687.
doi: 10.1107/S160057752001173X

Canal, R., Hernandez, C., Tornero, R., Cilardo, A., Massari, G., Reghenzani,
F., et al. (2020). Predictive reliability and fault management in exascale systems:
state of the art and perspectives. ACM Comput. Surv. 53, 1–32. doi: 10.1145/34
03956

Cappello, F., Geist, A., Gropp, W., Kale, S., Kramer, B., Snir, M., et al.
(2014). Toward exascale resilience: 2014 update. Supercomput. Front. Innov 1, 5–28.
doi: 10.14529/jsfi140101

Chen, P., Wahib, M., Takizawa, S., Takano, R., and Matsuoka, S. (2019). “iFDK: a
scalable framework for instant high-resolution image reconstruction,” in International
Conference for High Performance Computing, Networking, Storage and Analysis (New
York, NY: ACM), 1–24. doi: 10.1145/3295500.3356163

Chen, P., Wahib, M., Wang, X., Hirofuchi, T., Ogawa, H., Biguri, A., et al. (2021).
“Scalable FBP decomposition for cone-beam CT reconstruction,” in Proceedings of the
International Conference for High Performance Computing, Networking, Storage and
Analysis (New york, NY: ACM), 1–16. doi: 10.1145/3458817.3476139

Crowther, R. A., DeRosier, D., and Klug, A. (1970). The reconstruction of a three-
dimensional structure from projections and its application to electron microscopy.
Proc. R. Soc. Lond. A Math. Phys. Sci. 317, 319–340. doi: 10.1098/rspa.1970.0119

Daly, J. T. (2006). A higher order estimate of the optimum checkpoint
interval for restart dumps. Future Gener. Comput. Syst. 22, 303–312.
doi: 10.1016/j.future.2004.11.016

DeCarlo, F., Gürsoy, D., Ching, D. J., Batenburg, K. J., Ludwig,W.,Mancini, L., et al.
(2018). TomoBank: a tomographic data repository for computational X-ray science.
Meas. Sci. Technol. 29:034004. doi: 10.1088/1361-6501/aa9c19

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the em algorithm. J. R. Stat. Soc. Ser. B (Methodol.), 39, 1–22.
doi: 10.1111/j.2517-6161.1977.tb01600.x

Dongarra, J., Herault, T., and Robert, Y. (2015). Fault Tolerance Techniques for
High-Performance Computing. Cham: Springer. doi: 10.1007/978-3-319-20943-2_1

Dowd, B. A., Campbell, G. H., Marr, R. B., Nagarkar, V. V., Tipnis, S. V., Axe, L.,
et al. (1999). “Developments in synchrotron X-ray computed microtomography at the
national synchrotron light source,” in Developments in X-ray Tomography II, Vol. 3772
(Denver, CO: SPIE), 224–236. doi: 10.1117/12.363725

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A.,
et al. (2024). The Llama 3 herd of models. arXiv [Preprint]. arXiv:2407.21783.
doi: 10.48550/arXiv.2407.21783

Elnozahy, E. N. M., Alvisi, L., Wang, Y.-M., and Johnson, D. B. (2002). A survey
of rollback-recovery protocols in message-passing systems. ACM Comput. Surv. 34,
375–408. doi: 10.1145/568522.568525

Ferreira, K., Stearley, J., Laros, I. I. I., Oldfield, J. H., Pedretti, R., Brightwell, K., et al.
(2011). “Evaluating the viability of process replication reliability for exascale systems,”
in International Conference for High Performance Computing, Networking, Storage and
Analysis (New York, NY: ACM), 1–12. doi: 10.1145/2063384.2063443

Fessler, J. A., Sonka, M., and Fitzpatrick, J. M. (2000). Statistical image
reconstruction methods for transmission tomography. Handb. Med. Imaging 2, 1–70.
doi: 10.1117/3.831079.ch1

Finegan, D. P., Scheel, M., Robinson, J. B., Tjaden, B., Hunt, I., Mason, T. J., et al.
(2015). In-operando high-speed tomography of lithium-ion batteries during thermal
runaway. Nat. Commun. 6:6924. doi: 10.1038/ncomms7924

Foster, I., and Gannon, D. B. (2017). Cloud Computing for Science and Engineering.
Cambridge, MA: MIT Press.

Gordon, R., Bender, R., and Herman, G. T. (1970). Algebraic reconstruction
techniques (ART) for three-dimensional electron microscopy and X-ray photography.
J Theor. Biol. 29, 471–481. doi: 10.1016/0022-5193(70)90109-8

Gossman, M. J., Nicolae, B., and Calhoun, J. C. (2024). Scalable I/O aggregation for
asynchronous multi-level checkpointing. Future Gener. Comput. Syst. 160, 420–432.
doi: 10.1016/j.future.2024.06.003

Habib, S., Pope, A., Finkel, H., Frontiere, N., Heitmann, K., Daniel, D., et al. (2016).
HACC: simulating sky surveys on state-of-the-art supercomputing architectures. New
Astronomy 42, 49–65. doi: 10.1016/j.newast.2015.06.003

Herman, G. T. (2009). Fundamentals of Computerized Tomography: Image
Reconstruction From projections. Berlin: Springer Science and Business Media.

Hidayetoğlu, M., Bicer, T., De Gonzalo, S. G., Ren, B., De Andrade, V.,
Gursoy, D., et al. (2020). “Petascale XCT: 3D image reconstruction with hierarchical
communications on multi-GPU nodes,” in International Conference for High
Performance Computing, Networking, Storage and Analysis (Atlanta, GA: IEEE), 1–13.
doi: 10.1109/SC41405.2020.00041

Hidayetoğlu, M., Biçer, T., De Gonzalo, S. G., Ren, B., Gürsoy, D., Kettimuthu,
R., et al. (2019). “MemXCT: Memory-centric X-ray CT reconstruction with
massive parallelization,” in International Conference for High Performance
Computing, Networking, Storage and Analysis (New York, NY: ACM), 1–56.
doi: 10.1145/3295500.3356220

Hsieh, J., and Flohr, T. (2021). Computed tomography recent history and future
perspectives. J. Med. Imaging 8:052109. doi: 10.1117/1.JMI.8.5.052109

Kak, A. C., and Slaney, M. (2001). Principles of Computerized Tomographic
Imaging. Philadelphia, PA: Society for Industrial and Applied Mathematics.
doi: 10.1137/1.9780898719277

Kamilov, U. S., Bouman, C. A., Buzzard, G. T., and Wohlberg, B. (2023). Plug-
and-play methods for integrating physical and learned models in computational
imaging: theory, algorithms, and applications. IEEE Signal Process. Mag. 40, 85–97.
doi: 10.1109/MSP.2022.3199595

Kamilov, U. S., Papadopoulos, I. N., Shoreh, M. H., Goy, A., Vonesch, C., Unser,
M., et al. (2015). Learning approach to optical tomography. Optica 2, 517–522.
doi: 10.1364/OPTICA.2.000517

Leu, L., Berg, S., Enzmann, F., Armstrong, R. T., and Kersten, M. (2014). Fast X-ray
micro-tomography of multiphase flow in Berea sandstone: a sensitivity study on image
processing. Transp. Porous Media 105, 451–469. doi: 10.1007/s11242-014-0378-4

Lin, Y., Feng, S., Theiler, J., Chen, Y., Villa, U., Rao, J., et al. (2024). Physics
and deep learning in computational wave imaging. arXiv [Preprint] arXiv:2410.08329.
doi: 10.48550/arXiv.2410.08329

Liu, D., Shadike, Z., Lin, R., Qian, K., Li, H., Li, K., et al. (2019a). Review of
recent development of in situ/operando characterization techniques for lithium battery
research. Adv. Mater. 31:1806620. doi: 10.1002/adma.201806620

Liu, Z., Bicer, T., Kettimuthu, R., and Foster, I. (2019b). “Deep learning accelerated
light source experiments,” in 2019 IEEE/ACM Third Workshop on Deep Learning on
Supercomputers (DLS) (Denver, CO: IEEE), 20–28. doi: 10.1109/DLS49591.2019.00008

Maire, E., andWithers, P. J. (2014). Quantitative X-ray tomography. Int. Mater. Rev.
59, 1–43. doi: 10.1179/1743280413Y.0000000023

Maurya, A., Rafique, M., Tonellot, T., AlSalem, H., Cappello, F., and Nicolae, B.
(2023). “Gpu-enabled asynchronous multi-level checkpoint caching and prefetching,”
in HPDC’23: The 32nd International Symposium on High-Performance Parallel and
Distributed Computing (Orlando, FL), 73–85. doi: 10.1145/3588195.3592987

Maurya, A., Underwood, R., Rafique, M., Cappello, F., and Nicolae, B. (2024).
“Datastates-llm: lazy asynchronous checkpointing for large language models,” in
HPDC’24: The 33nd International Symposium on High-Performance Parallel and
Distributed Computing (Pisa). doi: 10.1145/3625549.3658685

Mohan, J., Phanishayee, A., and Chidambaram, V. (2021). “CheckFreq: frequent,
fine-grained DNN checkpointing,” in FAST’21: The 19th USENIX Conference on File
and Storage Technologies (Boston, MA: USENIX Association), 203–216.

Mohan, K., Venkatakrishnan, S., Gibbs, J., Gulsoy, E., Xiao, X., De Graef, M., et al.
(2015). TIMBIR: a method for time-space reconstruction from interlaced views. IEEE
Trans. Comput. Imaging 1, 96–111. doi: 10.1109/TCI.2015.2431913

Mohan, K. A., Ferrucci, M., Divin, C., Stevenson, G. A., and Kim, H.
(2024). Distributed stochastic optimization of a neural representation network
for time-space tomography reconstruction. arXiv [Preprint]. arXiv:2404.19075.
doi: 10.48550/arXiv.2404.19075

Mohan, K. A., Venkatakrishnan, S., Drummy, L. F., Simmons, J., Parkinson, D. Y.,
Bouman, C. A., et al. (2014). “Model-based iterative reconstruction for synchrotron X-
ray tomography,” in 2014 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) (Florence: IEEE), 6909–6913. doi: 10.1109/ICASSP.2014.6854939

Mohror, K., Moody, A., Bronevetsky, G., and de Supinski, B. R. (2014). Detailed
modeling and evaluation of a scalable multilevel checkpointing system. IEEE Trans.
Parallel Distrib. Syst. 25, 2255–2263. doi: 10.1109/TPDS.2013.100

Frontiers inHighPerformanceComputing 20 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1550855
https://doi.org/10.1186/s40679-017-0040-7
https://doi.org/10.1007/978-3-662-48096-0_23
https://doi.org/10.1107/S1600577516007980
https://doi.org/10.1109/XLOOP51963.2020.00007
https://doi.org/10.1007/978-3-030-96498-6_10
https://doi.org/10.1016/j.future.2024.07.016
https://doi.org/10.1107/S160057752001173X
https://doi.org/10.1145/3403956
https://doi.org/10.14529/jsfi140101
https://doi.org/10.1145/3295500.3356163
https://doi.org/10.1145/3458817.3476139
https://doi.org/10.1098/rspa.1970.0119
https://doi.org/10.1016/j.future.2004.11.016
https://doi.org/10.1088/1361-6501/aa9c19
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1007/978-3-319-20943-2_1
https://doi.org/10.1117/12.363725
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.1145/568522.568525
https://doi.org/10.1145/2063384.2063443
https://doi.org/10.1117/3.831079.ch1
https://doi.org/10.1038/ncomms7924
https://doi.org/10.1016/0022-5193(70)90109-8
https://doi.org/10.1016/j.future.2024.06.003
https://doi.org/10.1016/j.newast.2015.06.003
https://doi.org/10.1109/SC41405.2020.00041
https://doi.org/10.1145/3295500.3356220
https://doi.org/10.1117/1.JMI.8.5.052109
https://doi.org/10.1137/1.9780898719277
https://doi.org/10.1109/MSP.2022.3199595
https://doi.org/10.1364/OPTICA.2.000517
https://doi.org/10.1007/s11242-014-0378-4
https://doi.org/10.48550/arXiv.2410.08329
https://doi.org/10.1002/adma.201806620
https://doi.org/10.1109/DLS49591.2019.00008
https://doi.org/10.1179/1743280413Y.0000000023
https://doi.org/10.1145/3588195.3592987
https://doi.org/10.1145/3625549.3658685
https://doi.org/10.1109/TCI.2015.2431913
https://doi.org/10.48550/arXiv.2404.19075
https://doi.org/10.1109/ICASSP.2014.6854939
https://doi.org/10.1109/TPDS.2013.100
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Nguyen et al. 10.3389/fhpcp.2025.1550855

Nano CT (2024). Chip Dataset. Available online at: https://tomobank.readthedocs.
io/en/latest/source/data/docs.data.nano.html#psf (accessed May 26, 2025).

Nicolae, B. (2022). “Scalable multi-versioning ordered key-value
stores with persistent memory support,” in IPDPS 2022: The 36th IEEE
International Parallel and Distributed Processing Symposium (Lyon), 93–103.
doi: 10.1109/IPDPS53621.2022.00018

Nicolae, B., Antoniu, G., Bouge, L., Moise, D., and Carpen-Amarie, A. (2011).
Blobseer: next-generation data management for large scale infrastructures. J. Parallel
Distrib. Comput. 71, 169–184. doi: 10.1016/j.jpdc.2010.08.004

Nicolae, B., Li, J., Wozniak, J., Bosilca, G., Dorier, M., Cappello, F., et al. (2020).
“Deepfreeze: towards scalable asynchronous checkpointing of deep learning models,”
in CGrid’20: 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet
Computing (Melbourne, VIC), 172–181. doi: 10.1109/CCGrid49817.2020.00-76

Nicolae, B., Moody, A., Gonsiorowski, E., Mohror, K., and Cappello, F. (2019).
“VeloC: Towards high performance adaptive asynchronous checkpointing at large
scale,” in IEEE International Parallel and Distributed Processing Symposium (IEEE),
911–920. doi: 10.1109/IPDPS.2019.00099

Nicolae, B., Moody, A., Kosinovsky, G., Mohror, K., and Cappello, F. (2021). “Veloc:
very low overhead checkpointing in the age of exascale,” in SuperCheck’21: The First
International Symposium on Checkpointing for Supercomputing, Virtual Event.

Nikitin, V. V., Carlsson,M., Andersson, F., andMokso, R. (2019). Four-dimensional
tomographic reconstruction by time domain decomposition. IEEE Trans. Comput.
Imaging 5, 409–419. doi: 10.1109/TCI.2019.2898088

Ravi, N., Chaturvedi, P., Huerta, E., Liu, Z., Chard, R., Scourtas, A., et al. (2022).
Fair principles for ai models with a practical application for accelerated high energy
diffraction microscopy. Sci. Data 9:657. doi: 10.1038/s41597-022-01712-9

Rawson, S. D., Maksimcuka, J., Withers, P. J., and Cartmell, S. H.
(2020). X-ray computed tomography in life sciences. BMC Biol. 18, 1–15.
doi: 10.1186/s12915-020-0753-2

Reed, I. S., and Solomon, G. (1960). Polynomial codes over certain finite fields. J.
Soc. Ind. Appl. Math. 8, 300–304. doi: 10.1137/0108018

RTK (2025). Reconstruction Toolkit (RTK). Available online at: https://www.
openrtk.org/ (accessed May 26, 2025).

Schlichting, R. D., and Schneider, F. B. (1983). Fail-stop processors: an approach
to designing fault-tolerant computing systems. ACM Trans. Comput. Syst. 1, 222–238.
doi: 10.1145/357369.357371

Spheres (2024). Spheres dataset. Available online at: https://tomobank.readthedocs.
io/en/latest/source/data/docs.data.spheres.html (accessed May 26, 2025).

Stiller, W. (2018). Basics of iterative reconstruction methods in computed
tomography: a vendor-independent overview. Eur. J. Radiol. 109, 147–154.
doi: 10.1016/j.ejrad.2018.10.025

Tan, N., Luettgau, J., Marquez, J., Terianishi, K., Morales, N., Bhowmick, S., et al.
(2023). “Scalable incremental checkpointing using gpu-accelerated de-duplication,” in
ICPP’23: The 52nd International Conference on Parallel Processing (Salt Lake City:
665–674). doi: 10.1145/3605573.3605639

Tang, F., Wu, Z., Yang, C., Osenberg, M., Hilger, A., Dong, K., et al. (2021).
Synchrotron X-ray tomography for rechargeable battery research: fundamentals,
setups and applications. Small Methods 5:2100557. doi: 10.1002/smtd.2021
00557

Thakur, R., Gropp, W., and Lusk, E. (1999). “Data sieving and collective i/o
in Romio,” in Proceedings. Frontiers ’99. Seventh Symposium on the Frontiers of
Massively Parallel Computation (Annapolis, MA), 182–189. doi: 10.1109/FMPC.1999.7
50599

Underwood, R., Madhyastha, M., Burns, R., and Nicolae, B. (2024). “Evostore:
towards scalable storage of evolving learning models in HPDC’24: The 33nd
International Symposium on High-Performance Parallel and Distributed Computing
(Pisa). doi: 10.1145/3625549.3658679

Vásárhelyi, L., Kónya, Z., Kukovecz, Á., and Vajtai, R. (2020). Microcomputed
tomography-based characterization of advancedmaterials: a review.Mater. Today Adv.
8:100084. doi: 10.1016/j.mtadv.2020.100084

Vescovi, R., Chard, R., Saint, N. D., Blaiszik, B., Pruyne, J., Bicer, T., et al.
(2022). Linking scientific instruments and computation: patterns, technologies, and
experiences. Patterns 3:100606. doi: 10.1016/j.patter.2022.100606

Wang, X., Sabne, A., Kisner, S., Raghunathan, A., Bouman, C., Midkiff, S., et al.
(2016). High performance model based image reconstruction. ACM SIGPLAN Notices
51:2. doi: 10.1145/3016078.2851163

Wang, X., Sabne, A., Sakdhnagool, P., Kisner, S. J., Bouman, C. A., Midkiff, S. P.,
et al. (2017). “Massively parallel 3D image reconstruction,” in International Conference
for High Performance Computing, Networking, Storage and Analysis (Denver, CO),
1–12. doi: 10.1145/3126908.3126911

Withers, P. J., Bouman, C., Carmignato, S., Cnudde, V., Grimaldi, D., Hagen,
C. K., et al. (2021). X-ray computed tomography. Nat. Rev. Methods Prim. 1:18.
doi: 10.1038/s43586-021-00015-4

Wu, D., Chen, P., Wang, X., Lyngaas, I., Miyajima, T., Endo, T., et al. (2024).
“Real-time high-resolution X-ray computed tomography,” in Proceedings of the 38th
ACM International Conference on Supercomputing (New York, NY: ACM), 110–123.
doi: 10.1145/3650200.3656634

Young, J. W. (1974). A first order approximation to the optimum checkpoint
interval. Commun. ACM 17, 530–531. doi: 10.1145/361147.361115

Zwanenburg, E., Williams, M., and Warnett, J. M. (2021). Review of high-speed
imaging with lab-based X-ray computed tomography. Meas. Sci. Technol. 33:012003.
doi: 10.1088/1361-6501/ac354a

Frontiers inHighPerformanceComputing 21 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1550855
https://tomobank.readthedocs.io/en/latest/source/data/docs.data.nano.html#psf
https://tomobank.readthedocs.io/en/latest/source/data/docs.data.nano.html#psf
https://doi.org/10.1109/IPDPS53621.2022.00018
https://doi.org/10.1016/j.jpdc.2010.08.004
https://doi.org/10.1109/CCGrid49817.2020.00-76
https://doi.org/10.1109/IPDPS.2019.00099
https://doi.org/10.1109/TCI.2019.2898088
https://doi.org/10.1038/s41597-022-01712-9
https://doi.org/10.1186/s12915-020-0753-2
https://doi.org/10.1137/0108018
https://www.openrtk.org/
https://www.openrtk.org/
https://doi.org/10.1145/357369.357371
https://tomobank.readthedocs.io/en/latest/source/data/docs.data.spheres.html
https://tomobank.readthedocs.io/en/latest/source/data/docs.data.spheres.html
https://doi.org/10.1016/j.ejrad.2018.10.025
https://doi.org/10.1145/3605573.3605639
https://doi.org/10.1002/smtd.202100557
https://doi.org/10.1109/FMPC.1999.750599
https://doi.org/10.1145/3625549.3658679
https://doi.org/10.1016/j.mtadv.2020.100084
https://doi.org/10.1016/j.patter.2022.100606
https://doi.org/10.1145/3016078.2851163
https://doi.org/10.1145/3126908.3126911
https://doi.org/10.1038/s43586-021-00015-4
https://doi.org/10.1145/3650200.3656634
https://doi.org/10.1145/361147.361115
https://doi.org/10.1088/1361-6501/ac354a
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

	Resilient execution of distributed X-ray image analysis workflows
	1 Introduction
	2 Background
	2.1 Tomographic reconstruction
	2.2 Offline reconstruction workflow
	2.3 Problem formulation
	2.4 Impact of failures on reconstruction time
	2.4.1 Expensive progress recovery
	2.4.2 Load imbalance


	3 Related work
	3.1 Related and similar applications
	3.2 HPC checkpoint-restart

	4 Resilient solutions
	4.1 High-level ideas
	4.1.1 Checkpointing
	4.1.2 Dynamic redistribution and lazy recovery

	4.2 Unified algorithm
	4.3 Resilient implementation

	5 Evaluation
	5.1 Methodology
	5.1.1 Objectives
	5.1.2 Workloads
	5.1.3 System configurations
	5.1.4 Tomographic deployment approaches
	5.1.5 Metrics

	5.2 Experimental results
	5.2.1 Checkpointing effectiveness
	5.2.2 Dynamic distribution effectiveness
	5.2.3 Resilient solution efficiency
	5.2.4 Applicability


	6 Discussion
	6.1 Reconstruction methods
	6.2 Underlying hardware

	7 Conclusion and future work
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


