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FlexNPU: a dataflow-aware
flexible deep learning accelerator
for energy-e�cient edge devices

Arnab Raha*, Deepak A. Mathaikutty, Shamik Kundu and

Soumendu K. Ghosh

Advanced Architecture Research, NPU IP, Intel Corporation, Santa Clara, CA, United States

This paper introduces FlexNPU, a Flexible Neural Processing Unit, which adopts

agile design principles to enable versatile dataflows, enhancing energy e�ciency.

Unlike conventional convolutional neural network accelerator architectures that

adhere to fixed dataflows (such as input, weight, output, or row stationary)

to transfer activations and weights between storage and compute units, our

design revolutionizes by enabling adaptable dataflows of any type through

configurable software descriptors. Considering that data movement costs

considerably outweigh compute costs from an energy perspective, the flexibility

in dataflow allows us to optimize the movement per layer for minimal data

transfer and energy consumption, a capability unattainable in fixed dataflow

architectures. To further enhance throughput and reduce energy consumption in

the FlexNPU architecture, we propose a novel sparsity-based acceleration logic

that utilizes fine-grained sparsity in both the activation and weight tensors to

bypass redundant computations, thus optimizing the convolution engine within

the hardware accelerator. Extensive experimental results underscore a significant

improvement in the performance and energy e�ciency of FlexNPU compared to

existing DNN accelerators.
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1 Introduction

The landscape of machine learning is experiencing an unprecedented surge, with a

multitude of artificial intelligence (AI) networks proposed along with the development

of numerous hardware platforms dedicated to accelerating Deep Neural Network (DNN)

inference tasks. As the field progresses, the complexity of DNNs continues to grow,

resulting in the handling of large amounts of tensor data that exhibit diverse shapes and

dimensions across different layers of existing networks. Moreover, with the continuous

introduction of new networks, the dimensions of these tensor data are in constant flux.

Consequently, there is a pressing need to engineer hardware accelerators with the flexibility

to efficiently process network layers of varying dimensions (Raha et al., 2023, 2021b).

Furthermore, the proliferation of edge devices, including wearables, smart cameras,

smartphones, and surveillance platforms, underscores the importance of energy efficiency

in the design of DNN accelerators (Ghosh et al., 2023). In this work, efficiency refers

primarily to energy savings achieved through optimal scheduling (dataflow) strategies that

minimize data movement and enhance data reuse at all levels of the memory hierarchy.

Since tensor operations frequently span multiple memory levels, reducing unnecessary

data transfers and maximizing reuse and compute resource utilization are essential to

significantly improve the energy efficiency of DNN accelerators (Raha et al., 2021a).
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However, established canonical accelerators for DNN

execution—such as Eyeriss (Chen et al., 2016c) and TPU (Jouppi

et al., 2017)—represent two foundational dataflow strategies: row

stationary and weight stationary, respectively. These architectures

have not only pioneered critical memory hierarchy and data reuse

principles but also serve as the underlying blueprints for a majority

of modern accelerator designs. In fact, most recent accelerators,

academic or commercial, can be viewed as derivatives or targeted

refinements of these two archetypes. For this reason, we adopt

Eyeriss and TPU as the principal baselines in our evaluations,

providing a meaningful and representative comparison point

rooted in the architectural lineage. Although newer accelerators

continue to emerge, their innovations often build upon the same

dataflow philosophies introduced by these early systems. To

acknowledge this evolution and provide a comprehensive view, we

discuss several prominent and highly cited recent accelerators in

detail later in Section 6. As DNN models and workloads continue

to evolve, there is growing interest in exploring novel architectures

and strategies that can better adapt to the evolving demands of

DNN inference while simultaneously improving energy efficiency

across a range of edge devices and AI applications.

The energy consumption for each layer in DNN inference

is heavily influenced by the movement of data across the

memory hierarchy and the level of reuse within the processing

units. Previous studies have attempted to characterize energy

efficiency through analytical models while stressing the

importance of allowing flexibility in scheduling tensors of

varying dimensions (Kwon et al., 2019). This flexibility involves

optimizing the ordering, blocking, and partitioning of tensors to

maximize reuse from the innermost memory hierarchy, where the

energy cost per unit of data moved is minimized. However, most

existing DNNs, such as ResNet, YOLO, VGG, and GoogLeNet,

comprise tens to hundreds of layers, each with different preferences

for scheduling to achieve energy optimality. Fixed-schedule DNN

accelerators can only offer optimal data reuse and resource

utilization for a subset of DNN layers, thus limiting overall energy

efficiency. Moreover, these accelerators exhibit strong network

dependencies, which poses challenges in adapting to the rapidly

evolving landscape of DNNs. Existing DNN accelerator designs

from both industry and academia predominantly employ fixed

schedules, such as input stationary (IS), weight stationary (WS),

output stationary (OS), non-local reuse (NR), and row stationary

(RS) (Chen et al., 2016b,c). The fixed dataflow characteristic of

these accelerators originates from their tensor data distribution

modules, which perform addressing to on-die storage, data transfer

to processing engine arrays, and data storage to SRAM banks

in a predetermined manner. As a result, these accelerators lack

the flexibility to implement different schedules (i.e., dataflows).

Although software solutions on general-purpose CPUs and GPUs

can reshape and load tensor data, fixed-function accelerators do

not support flexibility. FPGAs, although offering flexibility, cannot

alter the hardware configuration during execution from one layer

to another.

In contrast to previous approaches, this paper proposes a

dataflow-aware flexible DNN accelerator that leverages schedule

information from DNN layers to adapt tensor data shape and

internal compute configuration per layer. This enables the compiler

to configure the DNN accelerator optimally for handling tensor

operations based on tensor dimensions. The key advantage of

our proposed accelerator design lies in its ability to switch

among multiple schedules based on layer characteristics, thereby

minimizing memory accesses for a given tensor operation and

resulting in significant energy savings at the accelerator level.

To further enhance performance and increase energy efficiency

in the accelerator, we capitalize on the inherent sparsity in DNNs.

Due to the nature of DNNs, the weights associated with the

network are often “sparse,” which means that they contain a

significant number of zeros generated during the training phase

(Parashar et al., 2017; Ghosh et al., 2024). These zero-valued

weights do not contribute to the accumulation of partial sums

during multiply-and-accumulate (MAC) operations. Additionally,

highly sparse weights cause activations to become sparse in

subsequent layers of the DNN after passing through non-linear

activation functions like ReLU. Furthermore, network quantization

(INT8/INT4) for edge device inference also results in a high

number of zeros in both weights and activations. This fine-

grained unstructured sparsity in weights and activations offers

potential for improved energy efficiency and processing speed in

two ways: (1) MAC computation can be gated or skipped, and

(2) weights and activations can be compressed to reduce storage

and data movement. The former reduces energy consumption,

while the latter reduces both energy consumption and processing

cycles. However, designing DNN accelerators to harness these

benefits from sparsity is challenging due to irregular access

patterns, workload imbalances, and under-utilization of MAC-

based processing elements (Chen et al., 2019). Hence, in this

paper, we develop a novel sparsity acceleration logic capable

of skipping computation of zero-valued compressed data while

simultaneously identifying non-zero elements in both activation

and weight tensors. This will facilitate the implementation of an

efficient convolution engine in the hardware accelerator at the edge,

enabling efficient utilization of resources and enhancing overall

performance and energy efficiency.

In this paper, we introduce FLEXNPU, a Flexible Neural

Processing Unit, designed with agile principles to support versatile

dataflows, thereby improving energy efficiency. Recognizing that

data movement costs significantly outweigh compute costs in terms

of energy consumption, the flexibility in dataflow enables us to

optimize data transfer per layer, leading to minimal data movement

and reduced energy consumption, an advantage not achievable

in fixed dataflow architectures. Furthermore, to further boost

throughput and reduce energy consumption within the FLEXNPU

architecture, we propose an innovative sparsity-based acceleration

logic. This logic harnesses fine-grained sparsity in both activation

and weight tensors to bypass redundant computations, effectively

optimizing the convolution engine within the hardware accelerator.

In summary, this paper makes the following contributions.

• This paper introduces a novel DNN accelerator, FLEXNPU,

designed to be sensitive to dataflow, offering flexibility by

integrating DNN layer scheduling insights. By dynamically

adjusting tensor data shape and internal compute

configuration for each layer, the accelerator allows the

compiler to optimize its performance in handling tensor
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operations, tailoring its configurations based on tensor

dimensions for diverse neural network architectures.

• We introduce a novel sparsity acceleration logic that

capitalizes on the unstructured fine-grained sparsity present in

incoming activation and weights, thereby expediting inference

execution within the DNN accelerator. Data are maintained

in a zero-compressed format to mitigate storage and data

movement expenses. Weights and activations are mapped

while considering sparsity to enhance reuse, thus enhancing

overall performance.

• Extensive experimental evaluations conducted on six

distinct DNNs that span both image classification and

object detection tasks highlight the transformative

impact of our accelerator. Specifically, our architecture

showcases substantial improvements over fixed-schedule

accelerators for ResNet101 and YOLOv2, demonstrating

up to 77% and 62% energy reduction over Eyeriss and

TPU, respectively. Furthermore, our accelerator achieves

notable sparsity improvements for four additional DNNs,

namely ResNet50, MobileNetV2, GoogLeNet, InceptionV3.

Across these benchmarks, FLEXNPU achieves a speedup

of 1.8×–3.3× over dense accelerators and 1.7×–2.0× over

semi-sparse accelerators with weight-sparsity support. For

four transformer models, namely DETR-ResNet50, T5,

MobileBERT, DistilBERT, FLEXNPU provides 1.4×–4.2× and

upto 2.2× speedup over dense and weight-sparse accelerators,

respectively. Sparsity support also provides 1.7×–3.0× and

1.6×–1.8× improvement in energy efficiency compared

to dense and weight-sparse accelerator. The savings for

transformers amount to 1.3×–3.6× and 1.0×–2.0×. These

results underscore the profound impact of our accelerator

in enabling efficient execution of sparse and compact

DNNs, significantly enhancing both speed and energy

consumption metrics.

The remainder of the paper is organized as follows. Section

2 delineates the need for flexible dataflow and efficient two-

sided sparsity acceleration logic. Section 3 describes the

microarchitectural details of the proposed FLEXNPU accelerator.

Section 4 presents the experimental setup followed by the results

in Section 5. The prior art in this domain is described in Section 6.

Finally, Section 7 concludes the paper.

2 Motivation

In this section, we delve into the fundamental motivations

driving the design and development of our accelerator architecture,

focusing on two key aspects: the paramount importance of

flexibility and the critical need for efficient sparsity acceleration.

By addressing these critical considerations, our accelerator

aims to revolutionize the landscape of deep learning (DL)

hardware, offering unparalleled versatility and performance across

a wide range of DNNs and applications. We explore how

these foundational principles drive innovation and shape the

architectural decisions that lead to the design of FLEXNPU.

2.1 Importance of flexibility

Numerous DNN accelerators utilize spatial architectures

comprised of arrays of processing elements (PEs) alongside local

storage, such as register files (RFs), for those PEs, and external

storage, such as SRAM banks. In inference tasks, trained weights,

or filters (FL), must be loaded into PE arrays from storage sources

such as DRAMs and SRAM buffers. Input images, referred to as

input activations or features (IFs), are also transferred to PE arrays,

where MAC operations occur across multiple input channels (ICs)

between activations and weights, generating output activations

or features (OFs). Multiple sets of weight tensors (OCs) are

commonly used against a specific set of activations to produce an

output tensor volume. Finally, a non-linear function (e.g., ReLU)

is applied to the output activations, which then become the input

activations for the subsequent layer. Tensor processing involved in

a convolution operation, as shown in Figure 1, shows convolution

layers comprising six nested loops. These layers generate an output

tensor, OF map, from multiple kernel feature maps, FLs, operating

on one or more input tensors, IF map. Each point in the output

volume undergoes a MAC operation during the calculation. For

instance, a 1×1 convolution layer, such as the second convolution

layer in ResNet50, illustrates IF map dimensions of IX = 56, IY =

56, IC = 64, and the filters dimensions of FX = 1, FY = 1, IC =

64, OC = 256. These dimensions convolve (with a batch size of 1)

to produce an OF map with dimensions OX= 56, OY= 56, OC=

256, accompanied by appropriate padding values.

The dimensions of the input tensor undergo changes as they

transition from one layer to another within a DNN and across

various DNNs. Consequently, the development of flexible hardware

accelerators becomes crucial to maintaining high utilization of

compute units across network layers with arbitrary dimensions.

Attempting to map various tensor dimensions to a fixed PE array

with a consistent tensor mapping pattern can lead to decreased

array utilization. To improve performance and energy efficiency,

it is imperative to minimize data movement by maximizing data

reuse from local memory and improving resource utilization.

This optimization is particularly vital, as the cost of memory

accesses often exceeds that of computing, as illustrated in Figure 2.

Numerous existing DNN accelerators, such as Eyeriss (Chen et al.,

2019), TPU (Jouppi et al., 2017), and SCNN (Parashar et al.,

2017), implement novel memory hierarchies and fixed dataflows,

influencing the movement of tensors for activations and weights

within the processing units and the workload assigned to each

PE. A fixed dataflow constrains the types of data movement

across the memory hierarchy, limiting the degree of reuse within

processing units. The movement of IFs, FLs, and partial sums

(psums), as well as the order of reuse, directly impact the energy

consumption of each layer. In the literature (Kwon et al., 2019),

inference accelerators are classified into IS, WS, OS, and RS based

on dataflow. The data reuse scheme is based on loop order, loop

blocking, and loop partitioning for tensor processing, collectively

called a “schedule,” as depicted in Figure 3. This schedule is

described in relation to the dimensions of the tensors in a

convolutional neural network. The loop order dictates the relative

order of IX, IY (spatial), and IC dimensions for activations, and

FX, FY, IC, and OC dimensions for filters when loading these data
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FIGURE 1

Illustration of multi-loop tensor processing during convolution operation in DNN.

FIGURE 2

Relative energy costs of di�erent compute and memory operations at various precisions in 45 nm technology (Horowitz, 2014). Note that x-axis is in

logarithmic scale.

FIGURE 3

Illustration of (1) loop order, (2) loop partitioning, and (3) loop blocking—referred to collectively as schedule—for optimizing data loading and

distribution in the accelerator.

into the accelerator. Loop partitioning dictates how the overall

convolution operation is distributed among the PEs in the PE

array, whereas loop blocking governs the allocation of multiple

points in each dimension to the same PE. This optimization is

particularly vital, as the cost of memory accesses often exceeds that

of computing, as illustrated in Figure 2. To maintain high compute

unit utilization across layers with arbitrary and irregular shapes—

not necessarily powers of two—it is essential to design accelerators
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that support flexible scheduling. This includes the ability to adapt

loop blocking, partitioning, and tensor mapping at a per-layer level,

allowing efficient mapping of diverse layer configurations while

minimizing under-utilization.

All existing inference engines operate with fixed loop

orders, blocking, and partitioning for convolution operations.

Consequently, each accelerator can execute only one

predetermined dataflow, where the data remain stationary in

a single aspect. Various schedules require that IFs, FLs, and

OFs/psums be mapped and accessed from local RF storage

differently, depending on the type of schedule being computed. For

example, in the IS scenario, a single point within the IF RF must

undergo multiplication and accumulation against multiple points

in the FL RF. The frequency of this repetition of operations varies

on the basis of the schedule. Similarly, in the WS situation, a single

point within the FL RFmust be multiplied and accumulated against

multiple points in the IF RF. Lastly, for OS schedules, the same

psum in the OF RF must be retained and used to accumulate the

results of multiplication between distinct IF and FL RF points over

multiple cycles. Furthermore, when SRAM size imposes limitations

on the number of IC points that can be stored, incomplete OF

points in the form of psums must be transferred to a higher-level

memory hierarchy (DRAM) for subsequent retrieval into PE RFs

to complete OF computation across all ICs.

Previous research aimed at characterizing the energy efficiency

of DNN accelerators by constructing analytical models underscores

the need to introduce flexibility in scheduling tensor operations

of various dimensions to maximize reuse from the innermost

memory hierarchy, where the energy cost per unit of data moved

is minimized (Kwon et al., 2019). However, as mentioned in

Section 1, fixed dataflows can only cater to optimal data reuse and

resource utilization for a limited subset of DNN layers. To address

this flexibility challenge, the proposed tensor data computing PE

array offers a practical solution with minimal hardware overhead.

Implementing a flexible dataflow accelerator requires a dataflow-

aware tensor distribution unit that can exploit layer-specific

optimal schedules and dataflow information to distribute data

throughout the array. Moreover, the accelerator should inherently

support flexible mapping and execution of these data within

each PE.

Motivation 1: It is important to develop a flexible dataflow in order to

minimize data movement and maximize reuse in the PE array.

2.2 Importance of sparsity acceleration

Sparse input features are a common characteristic of modern

DNNs, driven by activation functions and architectural choices.

One primary cause is the widespread use of ReLU as an activation

function, which zeros out negative values, resulting in high

activation sparsity. This is especially pronounced in deeper

layers of convolutional networks like ResNet50, InceptionV3,

MobileNetV2/V3, and newer architectures such as EfficientNet

and ConvNeXt, where sparsity can exceed 90%. Sparsity is also

prevalent in convolutional encoder-decoder style networks, such as

U-Net, DeepLabv3+, and SegFormer, commonly used in semantic

segmentation and image generation tasks. These networks

employ convolutional up-sampling through techniques such as

transposed convolution or zero-insertion, which significantly

increase the proportion of zero-valued activations, often

surpassing 75%.

The trend of activation sparsity is not limited to vision models,

but also evident in transformers/Large language models (LLMs).

For example, ReLU-based OPT model shows > 90% activation

sparsity in Feed Forward Network layers (Mirzadeh et al., 2023).

While many LLMs (e.g., PaLM, LLaMA, Falcon) use smooth

activations like GELU or SiLU that lack inherent sparsity, recent

works have reintroduced sparsity through techniques such as

ReLU/Squared ReLU replacements and activation regularization

(Liu et al., 2024; Luo et al., 2024). Moreover, recent work such

as ProSparse (Song et al., 2024) reports up to 89.3% sparsity in

modified LLaMA2-7B/13B models with minimal accuracy loss.

To support these trends, Figure 4 presents layer-wise activation

sparsity, averaged across corresponding datasets for representative

CNNs (dataset: ImageNet) and transformers (datasets: MS COCO,

Glue SST2, Glue MNLI).

Furthermore, weight sparsity has also been a major target

of optimization in both traditional CNNs and transformers.

Numerous structured and unstructured pruning techniques have

been proposed to eliminate redundant weights without degrading

model accuracy. Pruning methods typically rely on criteria such

as magnitude, saliency, gradient sensitivity, or energy impact

to identify and remove less critical weights. As a result, these

pruned networks exhibit weight sparsity levels of up to 90% (Gale

et al., 2019; Hoefler et al., 2021; Frantar and Alistarh, 2023; Li

et al., 2023). Taken together with activation sparsity, these trends

underscore the need for accelerator designs that can fully exploit

both static (weight) and dynamic (activation) sparsity for maximal

performance and energy efficiency.

The observed sparsity in weights and activations presents a

compelling opportunity to improve both energy efficiency and

processing speed. However, designing DNN accelerators capable

of effectively harnessing these characteristics remains a formidable

challenge. Computation gating emerges as a promising technique

for converting sparsity in both IFs and FLs into energy savings. The

implementation involves recognizing whether either the weight

or activation is zero and clock-gating the datapath switching and

memory accesses accordingly, achieving cost-effective solutions.

To optimize throughput while conserving energy, skipping cycles

of processing MACs with zero weights or activations becomes

desirable. Yet, this necessitates intricate read logic to locate the

next non-zero value without expending cycles on zeros. A natural

solution entails maintaining FLs and IFs in a compressed format

indicating the next non-zero location relative to the current

one. However, compressed formats, often of variable length, pose

challenges for parallel processing across PEs without compromising

compression efficiency. Additionally, simultaneous recognition of

sparsity in both weights and activations complicates matters, as

efficiently “looking ahead” (e.g., skipping non-zero weights when

the corresponding activation is zero) proves challenging with

many compression formats. The irregularity introduced by such

jumps precludes the use of pre-fetching to enhance throughput.

Consequently, the control logic for processing compressed data

becomes complex, adding overhead to the PEs. Addressing these
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FIGURE 4

Activation sparsity of di�erent pretrained DNN benchmarks. First 3 networks are traditional CNNs, last 3 networks are transformers. Sparsity

measured at input of all convolution/matmul layer.

complexities is vital to realize the full potential of sparsity in

DNN accelerators.

As a result, hardware solutions in this domain have been

limited. For example, Cnvlutin (Albericio et al., 2016) exclusively

facilitates skipping cycles for activations without compressing

weights, while Cambricon-X (Zhang et al., 2016) lacks the ability

to maintain activations in compressed format. Given the intricacies

involved in skipping cycles for both weights and activations,

existing hardware designed for sparse processing tends to be

tailored to specific layer types. For example, EIE (Han et al., 2016)

is tailored for fully connected (FC) layers, while SCNN (Parashar

et al., 2017) is optimized for convolutional (CONV) layers. This

specialization underscores the need for further innovation in

developing versatile hardware architectures capable of efficiently

handling sparsity across various layer types in diverse DNNs.

Introducing computation skipping for sparse data

fundamentally alters the workload distribution across PEs, as the

workload at each PE becomes contingent on sparsity levels. As the

count of non-zero values fluctuates across diverse layers, data types,

or even within specific regions within the same filter or feature

map, it endangers an inherent imbalance in workload distribution

across PEs (Chen et al., 2019). Consequently, the throughput of the

entire DNN accelerator becomes constrained by the PE processing

the highest number of non-zero MAC operations. This imbalance

inevitably results in reduced PE utilization, thereby impeding

the overall efficiency and performance of the DNN accelerator.

Addressing this challenge requires innovative strategies to optimize

workload distribution and improve PE utilization, thusmaximizing

the potential benefits of computation skipping for sparse data.

Motivation 2: It is important to develop an acceleration logic that can

leverage both unstructured IF and FL sparsity, in zero-compressed format.

3 Microarchitecture design

In this section, we present the microarchitecture of the

proposed FLEXNPU accelerator, beginning with its integration into

a heterogeneous compute system. We then delve into the core

architecture, emphasizing flexible dataflow and support for fine-

grained sparsity acceleration that enable efficient DNN execution.

3.1 System-level integration

To contextualize the design of FLEXNPU accelerator, we adopt a

system-level perspective commonly seen in heterogeneous System-

on-Chip (SoC) designs (Raha et al., 2023). As shown in Figure 5, the

accelerator is integrated alongside a scalar host processor, a vector

DSP, and a dedicated DMA engine. The scalar core orchestrates

control flow and data movement across off-chip memory (DRAM),

on-chip SRAM, and compute units, issuing instructions via a

shared Network-on-Chip (NoC).

A lightweight DMA engine enables data transfers between

DRAM and SRAM, decoupling memory access from compute and

minimizing load/store overhead on the scalar processor. The vector

DSP handles operations unsuitable for direct mapping on the

accelerator, such as complex non-linear activation functions (e.g.,

GeLU, Swish, SoftMax), normalization layers (e.g., LayerNorm),

other control-flow and pre/post-processing operations (e.g., Slice,

Gather, Concatenate, Reshape, Padding) common in CNNs and

transformers, while FLEXNPU is optimized for high-throughput,

energy-efficient execution of core DNN layers (e.g., convolution,

matrix multiplication, elementwise, pool). Due to its limited

arithmetic resources and memory reuse, the vector DSP operates at

lower performance and is used only when necessary. This design

hierarchy ensures that the accelerator is utilized for the most

compute-intensive layers, maximizing overall system efficiency.

In the remainder of this paper, we focus entirely on the

microarchitectural innovations of the FLEXNPU accelerator, which

accounts for the majority of compute and energy consumption in

the system.

3.2 Overview of FlexNPU accelerator

The proposed FLEXNPU accelerator supports flexible and

reconfigurable dataflow to accommodate various DNN workloads.

Although it is capable of executing any valid schedule, performance
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FIGURE 5

(1) Integration of FLEXNPU accelerator in heterogeneous computing system. (2) High-level schematic of FLEXNPU showing PE array, load and drain

paths, and flow of DNN activations and weights.

and energy efficiency are maximized by selecting optimal schedules

tailored to each layer of the neural network. To this end, we employ

a cycle-accurate cost model—similar to prior works (Yang et al.,

2020; Kwon et al., 2020)—which evaluates candidate schedules

and selects the one that minimizes latency and energy for each

layer. Further details are provided in Section 4.2. The choice of

schedule directly impacts the opportunities for data reuse across

memory hierarchies, thereby influencing efficiency. To support

this, the accelerator employs a carefully designed three-level

memory hierarchy, illustrated in Figures 5.2, 6, which is critical

for maximizing reuse and minimizing energy consumption during

DNN execution. (1) The first level consists of internal register files

within each PE. The second level comprises an on-chip SRAM,

serving as a small L1 cache for input activations, filter weights,

partial sums, output features, and layer configuration metadata.

The third level is system DRAM, providing high-capacity storage

for large models and spilled output activations. For brevity, we omit

DRAM-level implementation specifics and assume that the SRAM’s

capacity is sufficient to accommodate all input, intermediate

activations, and weights.

The FLEXNPU accelerator supports multiple datatypes, such as,

INT8,U8, FP16, and BF16 and comprises three primary subsystems

that are detailed in the following sections: the Processing Element

Array/inter-PE mesh (Section 3.3), a schedule-aware load path

(Section 3.4.1) for distributing activations/psums and weights from

SRAM to PEs and drain path (Section 3.4.2) for writing output

features/psums in SRAM.

3.3 Versatile processing element

The inter-PE mesh forms the core compute fabric of the

FLEXNPU accelerator and consists of an N × M array of

Versatile Processing Elements (VPEs). The array dimensions are

parameterized at design time, typically via synthesis parameters.

For simplicity and streamlined control logic, we adopt a square

configuration (N×N) with N = 16, where each column comprises

N VPEs and is managed by a dedicated control unit. The VPE is the

fundamental computational unit within the accelerator. Each VPE

performs MAC operations between IF and FL points for channel-

wise and depth-wise convolutions and supports the accumulation

of both internal and external psums (Mohapatra et al., 2020; Hsu

et al., 2021; Raha et al., 2021d). Designed for flexibility, the VPE

dynamically selects the appropriate compute template based on

the optimal schedule per layer, optimizing the reuse of IF, FL, and

OF data.

Figure 6.1 illustrates the schematic of the DNN inter-PE mesh.

While the diagram depicts an N × N control block for clarity,

in practice, each column of VPEs is paired with a control unit

composed of N individual control blocks, one per VPE. Each VPE,

as demonstrated in Figures 6.2, 3, consists of register files, MAC

unit, configuration logic to iterate over the inputs as well as 2-sided

sparsity acceleration logic to skip computations that results in zero

product. Each VPE consists of four sub-banks of four 4R1W IF

compressed data (CD) RFs to store input features (IF0RF to IF3RF),

1R1W FL CD RF to store weights (FL0RF to FL3RF), and 1R1W

OF RF (OF0RF to OF3RF) to store output values (OF/psum). Each

IF and FL data sub-bank can store upto 16×9bit entries. Both IF

and FL are stored in INT9 precision after zero point subtraction.

The OFRF sub-banks can each hold 4×32bit entries. In addition,

each VPE consists of 4 sub-banks of 1R1W RFs to store sparsity

bitmaps (SP BMP), namely IF SP BMP RF and FL SP BMP RF, with

16×1bit size. During a typical MAC operation, the input operands

are fetched from the IF and FL RFs, based on the stored bitmaps, the

sparsity acceleration logic (described later in Section 3.5), and the

addresses generated by control and address generation (CAG) unit.

The operation output is accumulated within the OF RF. Note that

for stall-free high-performance execution, we introduced double

buffers (active+ shadow) in IF, FL, and OF RFs.

Figure 6.3 shows the detailed microarchitecture view of VPE

that executes computations on the IF, FL, and OF/psum tensor

data based on the optimal schedule of the current layer. VPE

dynamically adjusts the loading and access patterns of the IF,

FL, and OF/psum tensor data within the PE RFs to maximize

reuse of the tensor data. The PE’s microarchitecture is crafted to

effectively utilize sparsity within both IF and FL. As illustrated in

the figure, the PE comprises registers dedicated to storing sparsity

data from incoming IF and FL streams, represented as bitmaps

(IF SP BMP RF and FL SP BMP RF). These bitmaps are merged
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FIGURE 6

Top-level schematic of the FLEXNPU accelerator: (1) System-level view showing interconnect pathways within the PE array (arranged in N columns),

the data distribution network, control block, and SRAM. (2) High-level view of a single VPE, highlighting data storage (IF/FL/OF RF), sparsity bitmap

registers (IF/FL SP BMP RF), and the MAC unit. (3) Detailed VPE view, showcasing internal interconnects, sparsity acceleration logic, and control units,

while illustrating support for two accumulation orders.

using a sparsity acceleration logic (further elaborated in Section

3.5), resulting in a combined sparsity bitmap (CSB). This unified

bitmap serves as input to the CAG unit, facilitating the generation

of participating non-zero IF and FL read addresses. N control

blocks in each PE column updates the configuration descriptors

inside individual PE at the onset of each convolution layer based

on the optimal layer schedule, guiding data redirection during

load, compute, and drain operations throughout the lifetime of

the input tensor data. The PE finite-state machine (FSM) guides

internal counters and logic in the CAG unit to generate read and

write control signals for IF, FL, and OF RFs, along with multiplexer

control signals to route data from the RFs to the appropriate units

based on the template, viz., vector-vector (V×V) or matrix-matrix

(M×M) or operation type, viz., MAC/Eltwise/Pooling and tensor

dimension. The Floating Point MAC (FPMAC) sits in parallel with

the Integer MAC, as illustrated in Figure 6.3, and both units share

the same load, compute, and drain register files within the FlexNPU

architecture (Kaul et al., 2019).

Assisted by the PE FSM, internal registers within the CAG unit

track the total number of PE blocks (or OF/psum points) produced,

aiding in addressing IF/FL/OF RFs. Additionally, counters like

ifcount, wcount, and ofcount manage the addresses/indexes for

IF, FL, and OF RFs, increasing or clearing based on the number

of input activations and weights required to calculate each OF

point or psum block. The layer schedule determines the type

and extent of IF/FL/OF RF data reuse, regulated by internal

IF/FL/OF block counters controlling the loading of new IF/FL

data and draining OF data each round, as per the layer’s optimal

schedule. These internal structures and associated control logic

are crucial to supporting flexible schedules within the VPE. The

critical role of VPE in facilitating flexible blocking within the DNN

accelerator is realized by dividing the RF into multiple subbanks

(X) and incorporating XMACs (e.g., X= 4) alongside multiplexers,

allowing the implementation of V×V, V×M, and M×M templates

(Mohapatra et al., 2022b), based on layer’s optimal blocking factor

(ICB,OCB,OXB,OYB), as shown in Figure 7.

Although the adder datapath in the VPE includes four

independent partial sum adders and a reduction adder tree, not

all adders are utilized concurrently in every clock cycle. This

design reflects a deliberate architectural trade-off: the inclusion

of seven adders supports both accumulator update and cross-

MAC reduction modes, enabling greater flexibility in scheduling

while avoiding pipeline stalls under varying sparsity patterns.

While the peak adder utilization may be bounded by 4/7,

the additional hardware simplifies the datapath and reduces

control overhead compared to a multiplexed alternative. During

execution, the adders operate in one of two modes—collaborative

or independent—selected per layer based on the schedule. This

choice prioritizes energy efficiency and schedule adaptability over

peak instantaneous utilization, which is a key design objective in

latency- and power-constrained inference scenarios.

To aid clarity of the VPE microarchitecture, Figure 6.3

demonstrates signal widths and register configurations across all

data paths. Each OFRF sub-bank consists of four entries, each
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FIGURE 7

Versatile Processing Element (VPE) accommodating (1) V×V and (2) M×M templates. In V×V, accumulation involves Input Channel (IC) of the same

Output Channel (OC) of weights (FL), while M×M entail accumulation of ICs from di�erent OCs. M×M involves di�erent V×M each round. Illustration

presents schedule-aware flexible dataflow along with loop blocking and partitioning. Weight dimensions assumed: FX = 1 and FY = 1. Shadow,

pipeline bu�ers, signal width, FPMAC not shown for clarity.

32 bits wide, corresponding to the output precision of the partial

sum adders. The four 18-bit multipliers inside the VPE compute

independent products which are accumulated into 32-bit partial

sums, and these results are stored directly into dedicated OFRF

sub-banks. The datapath shows that the adder tree reads directly

from these sub-banks. Input/output port widths for all adders in the

accumulation network have been annotated to be 32 bits, consistent

with the partial sum precision. Additionally, read port widths have

been annotated on the IF and FL compressed data RFs, as well as

the sparsity bitmap RFs, to improve dataflow transparency. For

completeness, Figure 6.3 also illustrates the dual-bank structure

(active and shadow) within each RF to support double buffering.

This enables stall-free operation during overlapping load, compute,

and drain phases of execution. These enhancements collectively

provide a more detailed view of the memory and accumulation

subsystems within the VPE, which are essential for implementing

the layer-wise flexible dataflow and high-throughput execution

modes central to the FLEXNPU design.

For specific schedules, the convolution operation can be

partitioned to split across multiple VPEs based on the number of

ICs. Consequently, DNN computations that generate psums across

different sets of ICs for a particular OF point should be mapped

to a single column or row of VPEs. External psum accumulation

enables the summation of all ICs partitioned into multiple VPEs

to generate the final OF point. The inter-PE mesh facilitates the

transmission of psums formed within the PE to its right or top

neighbor, which is essential for the psum accumulation in inter-

PE mesh. To mitigate wire congestion and routing complexity,

interconnections between PEs are restricted to their top and right

neighbors. As shown in Figure 6.2, three multiplexers are used with

control signal accum_dir selecting the neighbor, accum_Nbr and

en_ext_psum selecting between external accumulation and internal

MAC accumulation. Note that these multiplexers are not shown

in Figures 6.3, 7 for clarity. This architectural decision inherently

influences how work is partitioned among different PEs, mainly in

the IC dimension.

In certain optimal schedules, all ICs are not accumulated

simultaneously. Instead, a portion of the IC set is initially loaded

into the PE RFs, and the computed psum is extracted to the

SRAM (or even DRAM) to be brought back into the PE RFs

later when the remaining ICs are accumulated. External partial

sum accumulation necessitates a 32-bit wide read and write direct

bypass to and from the SRAMs. Sharing arithmetic units for

MAC and Eltwise computation, along with multiplexer control

logic routing appropriate tensor data into these units, reduces

area overhead by enhancing hardware reuse efficiency within

the PE. Residual networks such as ResNet require element-wise

operations, such as the addition of OFs from two convolution

layers. To support such operations while maximizing hardware

resource reuse, OFs from two different layers are routed into the

PE, using existing load and drain paths. The Eltwise field in the

programmable descriptor signals an eltwise operation, bypassing

the multiply operation within the PE and performing an eltwise

addition of the two IF inputs.

Illustrative example: The FLEXNPU PE demonstrates

flexibility by executing V×V and M×M MAC operations,

exploiting sparsity in both scenarios, as illustrated in Figures 7.1,

2 respectively. The PE adapts this flexibility in its operation based

on the optimal schedule selected for each specific layer. Let us first

delve into the V×V operation scenario, where ICs within the same

OC are accumulated and the MACs are operating in collaborative

mode (A = 1). In this example with ICB = 32, 32 IFs and FLs are

assigned to the PE for computation, corresponding to 32 distinct

ICs but belonging to the same OC (represented by a single yellow

color). Since these values exhibit sparsity, the sparsity bitmaps of

IF and FL are stored in the respective registers IF SP BMP RF and

FL SP BMP RF. The IF select signal retrieves the bitmaps from the

first IF register (IF0) and the first FL register (FL0), transmitting
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them to the two-sided combined sparsity acceleration logic, which

produces CSB00. This logic identifies the non-zero activations and

weight addresses through the CAG unit. These addresses guide the

IF and FL CD RFs that store zero-compressed IF and FL values and

provide precise values for MAC operations. Simultaneously, this

process repeats for the other IFs (IF1 to IF3) and FL registers (FL1
to FL3), thus feeding the MACs with IF/FL points from different

IF/FL RF subbanks and generating four psums concurrently in

each case, within the OF RFs. These psums aggregate to produce

a single OF point upon completion of the computation using the

adder tree fed directly by the OFRFs. This cycle is iterated until

all 32 ICs are processed. Subsequently, the next set of 32 ICs is

loaded, and this process continues until all OF points for that OC

are computed.

Now, let us dive into the second scenario of M×M operations,

focusing on the computation of ICs across different OCs within the

PE, where the MACs are operating in independent mode (A = 0).

Here, IF SP BMP RFs and IF CD RFs receive bitmaps and input

features that correspond to four distinct OCs, each represented

by a different color. Similarly, the corresponding FL SP BMP RFs

are loaded with four different FLs. During computation, in the

initial round (i), only elements from the first IF SP BMP RF

are provided as input to all CAGs along with four different FL

bitmap values for the four OCs. Consequently, the CAG generates

addresses only corresponding to IF0 following a two-sided sparsity

acceleration logic (CSB00 − CSB03). Subsequently, after obtaining

the participating non-zero IFs and FLs from the compressed RFs,

the MAC operation partially generates each of the four OC points

in the first round, each denoted by a distinct color. Notably, in

this case, MACs draw input exclusively from one IF RF subbank

at a time, unlike the previous scenario in which they obtained IFs

from all sub-banks simultaneously. In this mode, the adder tree

is inactive as illustrated in the figure. In the subsequent round,

IF RF subbanks are switched using appropriate MUXing logic,

consequently switching the compressed IF RF bank to acquire

non-zero IF points for that specific round. Thus, contingent on

the optimal layer schedule, the sparse PE efficiently conducts both

V×V and M×M operations, capitalizing on both-sided sparsity in

activations and weights.

3.3.1 Schedule-aware flexible depth adder tree
(FlexTree)

Our FLEXNPU accelerator’s core features a tree-based

architecture named FLEXTREE, designed for psum accumulation

across numerous PEs within the inter-PE mesh to generate the final

output point (Mohapatra et al., 2022a). The distinguishing feature

of FLEXTREE is its ability to dynamically adapt the depth of the

adder tree, allowing the compiler to create flexible schedules for

network layers of varying dimensions. This hardware enhancement

allows the compiler/scheduler to discover highly compute-efficient

schedules. Before delving into the FLEXTREE architecture, it is

essential to understand the concept of Input Channel Partition

(ICP), similar to OF channel partition as illustrated earlier in

Figure 3. ICP denotes how many ICs are assigned to a single

PE in the inter-PE mesh. Consequently, this also denotes the

number of PEs that participate in the partial sum accumulation.

Let us elucidate ICP using an example of 64 ICs. When ICP = 1,

the computation involves only one PE, denoted PE1. All 64 ICs

undergo pointwise multiplication and accumulation within PE1,

producing the final output. When ICP = 2, 64 ICs are evenly

divided between PE1 and PE2, each processing 32 ICs. PE1

accumulates psums from channels 0 to 31, while PE2 accumulates

those from channels 32 to 63, forming the final output collectively.

Similarly, for ICP = 4, the channels are distributed in PE1, PE2,

PE3, and PE4, each PE handling 16 ICs. These psums of the

respective sets of ICs are accumulated within each PE to generate

the final output. Essentially, ICP × ICB = IC.

Figure 8 illustrates the FLEXTREE architecture, which receives

16 inputs from the 16 PEs within a column of the PE array in

the DNN accelerator. ICP supported by the adder tree network

ranges from 1 to 16, inclusively. Even if ICP=2, the output of

the computation must still pass through the adder tree network

before producing the final OF output. This ensures a reduction in

hardware overhead by simplifying hardware design and achieving

uniformity across all ICP values. It is noteworthy that our

FLEXTREE architecture can accommodate ICP values that are not

powers of 2 by entering zeros into the FLEXTREE network of PEs

that do not align with powers of 2. Each module marked with

a “+” sign comprises both the INT8 adder and the FP16 adder

to support convolution layers of different precision (Raha et al.,

2022a). Depending on the input precision (INT8 vs. FP16), the

psum output from the PEs is routed to the appropriate hardware

resource within FLEXTREE. In Figure 8, for ICP values of [1, 2], the

flops [A, B, C, D, E, F, G, H] at level 1 serve as the final OF output tap

points. For ICP = [4], the flops [I, J, K, L] at level 2 act as the final OF

output tap points. Similarly, for ICP values of [8] and [16], the flops

[M, N] at level 3 and [O] at level 4, respectively, serve as the final OF

output tap points. Therefore, the total number of FLEXTREE output

tap points varies for different ICP values. Therefore, for ICP values

of [1, 2, 4, 8, 16], the total number of FLEXTREE output tap points

is [8, 8, 4, 2, 1], respectively. To simplify the extraction of final OF

points from the FLEXTREE module into the drain module, we allow

a maximum of four OF points to be extracted from FLEXTREE in

one round. The figure illustration assumes IC = 64, ICP = 16, and

therefore Port O is active.

As is evident from the above discussion, FLEXTREE achieves

dynamic reconfiguration of the depth of the adder tree. This

configurable feature is aided by software-programmable

configuration registers. Unlike existing DNN accelerators

where partial sum accumulation occurs by moving psums

among neighboring PEs, FLEXTREE’s innovative tree-based

architecture significantly enhances partial sum accumulation

efficiency (up to 2.14× speedup). In contrast to state-of-

the-art DNN accelerators with fixed schedules and adder

tree-based architectures, where the adder tree depth remains

fixed at design time, our FLEXTREE technique offers dynamic

reconfiguration capabilities, achieving speedups of up to

4×–16×, across seven DNNs, namely, ResNet50, GoogleNet,

InceptionV2, MobileNetV2, MobileNetV3, SqueezeNet1.1, and

MobileNet_SSD. Thus, our proposed FLEXTREE architecture

enhances compute efficiency by allowing superior psum

accumulation techniques across a wide range of layers found in

modern DNNs.
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FIGURE 8

FlexTree architecture details with illustration using 64 input channels and 16 input channel partition factor.

3.4 Schedule-aware tensor distribution
network

The Schedule-aware Tensor Distribution Network (SDN)

serves as one of the fundamental architectural innovations of the

proposed FLEXNPU accelerator, tasked with efficiently transferring

input data between on-chip memory (SRAM) and inter-PE mesh,

and vice versa, adhering to the optimal layer schedule (Chinya

et al., 2024). These data include configuration settings, activation

and kernel data (IF & FL), sparsity encodings, as well as bias & scale

factors essential for calculation within the PE array. Additionally,

the SDN manages the transportation of computational results,

including output activation (OF) and partial sums, from the PE

array’s internal storage structure (RF) back to the SRAM, ensuring

that the layout facilitates subsequent tensor layer acceleration.

During the operational phases, the input side of the distribution

network is termed the “load/fill” phase, while the output side is

termed the “drain” phase. In fixed hardware accelerators, the pre-

determined data layout in SRAM simplifies the load and drain

phases, but compromises flexibility and optimization in operations.

This rigidity restricts reuse potential, escalates memory accesses,

and significantly increases overall energy and power consumption.

Flexible hardware demands dynamic changes in the SRAM data

layout, contingent on the type of reuse and optimal schedule

(blocking and partitioning) for the layer.

3.4.1 Load path
The usual design consideration revolves around simplifying

one of load or drain phase, while the other phase manages the

complexities associated with rearranging the data to adhere to

the optimal schedule. When the SRAM data layout remains fixed,

the loading process must handle the complexity associated with

unpacking the fixed layout data and arranging it according to

the predetermined order and sequence dictated by the optimal

schedule. Furthermore, the loading process must be hierarchical:

initially organizing the input in a manner consumable by a column

of PEs based on the partitioning factor and then, within the column,
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determining which input byte corresponds to which PE based on

the blocking factor through a series of multiplexers (Mathaikutty

et al., 2022a,b). For activation data, this involves retrieving data

from memory in a predetermined order and distributing the IX,

IY, and IC in the sequence and quantity specified by the reuse

factor of the optimal schedule. Throughout the reuse process, one

set of input remains resident, while the other circulates multiple

times. Typically, the optimal schedule strives to maximize reuse,

thereby reducing the frequency of fetching from SRAM. Ideally,

a fully flexible DNN accelerator would allow partitioning in both

the incoming activation and weights. However, this approach

introduces a significant rise in MUXing complexity, along with

its accompanying overheads, resulting in a convoluted routing

process in the load, circular buffer, and PE FSM. To mitigate

these challenges, we restrict weight partitioning within column and

activation partitioning across column of the PE array. This strategy

aims to streamline routing complexities and enhance operational

efficiency within the accelerator architecture.

Figure 9.1 illustrates the crucial load path of FLEXNPU,

spanning from SRAM to PEs. Central to this pathway is the load

FSM, which interfaces with SRAM, the circular buffer FSM, sparse

byte select modules, and PE columns. Activation of the load FSM is

initiated by a start signal, indicating that all configuration register

values have been appropriately set by the schedule descriptor based

on the optimal schedule. Optionally, this start signal can also serve

as the reset input for the load FSM, ensuring the removal of any

FIGURE 9

(1) FLEXNPU accelerator load path. Compressed activations (IF) and weights (FL) along with sparsity bitmaps are fetched from SRAM and delivered to

PE array via the NoC interfaces. Flexible schedule support is integrated in Load FSM, Circular Bu�er FSM, and PE FSM. OF NoC (part of drain) not

shown inside PE array for clarity. (2) Illustration of di�erent data distributions adopted by IF, FL, OF NoC for optimizing reuse and minimizing SRAM

accesses.
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outdated register values from previous layers. Once the FSM is

active and space becomes available within the circular buffer, the

FSM transmits fetch address and bank select signals to SRAM, and

the IF and FL NoCs commence the transmission of IF and FL data

to their respective circular buffers. Concurrently, each PE within

the PE columns returns credits to the load FSM as space becomes

available in the any of the double-buffered IF/FL data RF. Upon

receipt, the FSM directs read requests to the circular buffer FSM.

Within the circular buffer FSM, metadata is managed and data are

dequeued in response to load FSM requests, signaling when the

buffer is empty.

In cases where valid compressed IF/FL data and corresponding

sparsity bitmaps are present in the buffers, the circular buffer

FSM initiates bitmap transmission to the sparse byte select module

and compressed IF/FL data transmission to the IF/FL multiplexer

(mux) array. The load FSM calculates logical byte select signals

based on current load counter values and configuration registers.

These signals are utilized by the byte select modules, along with

sparsity bitmaps, to determine physical byte select signals, which

control the IF and FL mux arrays for data routing, accounting

for potential compression. These mux arrays facilitate data routing

between the circular buffers and the column buffers associated with

each PE column. It is important to note that when communicating

with the PE, control signals pass through the distribution network,

utilizing a specific number of staging buffers to meet timing

requirements. The Load FSM remains active, fetching data until

the entire load volume is processed, at which point clock gating

is initiated.

Another critical aspect of the distribution network is the

interconnect or Network-on-Chip used to link the PE array to the

drain and load blocks in the design. NoC must have the ability

to unicast, multicast, or broadcast the input data to one or more

PEs based on the order specified by the optimal schedule, as

demonstrated in Figure 9.2. This maximizes reuse and minimizes

the number of SRAM accesses, improving overall efficiency, as

defined in existing research (Kwon et al., 2018). As shown in

Figure 9.1, when valid compressed data are loaded into column

buffers, IF and FL NoCs distribute data to the appropriate PEs.

3.4.2 Drain path
One of the core innovations within the FLEXNPU architecture

is FLEXDRAIN, an efficient framework for processing OF

maps across various schedules. Systematically drains OF maps,

specifically tailored for flexible schedule-based DNN accelerators.

Focusing on MAC operations along the IC dimension, the fixed

drain pattern ensures consistent extraction of OF points in an IC-

major fashion, regardless of the current layer schedule. This design

choice capitalizes on the understanding that sparse compression in

DNN accelerators predominantly occurs along the IC dimension.

Implementing this fixed draining methodology simplifies drain

design, integrating schedule awareness into load logic withminimal

overhead. This novel approach holds promise for advancing

DNN accelerators, enhancing reuse, reducing memory traffic, and

improving energy efficiency.

The FLEXDRAIN datapath encompasses several agents

distributed across the PE compute array subsystem. Figure 10

provides a high-level depiction of these components and their

respective functions. The components constituting the drain data

path are: (1) Local Drain (LD): Instantiated on a per-column

basis, the LD is responsible for extracting the output activation

or psums from the PE, facilitating their transfer to the Super

Column Drain Concatenator (SCDC). (2) SCDC: Implemented on

a per-super column basis, the SCDC is tasked with concatenating

data from the output column buffers of all 4 columns within a

super column using psum-NoC. Subsequently, it transmits this

concatenated data to the Global Drain (GD) via the super-column

NoC. (3) GD: Serving as a central agent, it plays a pivotal role

in rearranging SCDC data in a 1×1×Z manner, which further

encodes/compresses these data and writes them to the SRAM.

Local drain: The Local Drain (LD) operates to extract output

activation data from the PEs within a column, forwarding them

to the Post Processing Modules (PPMs), and then directing the

PPM outputs to the column’s output buffer, subsequently routed

to the centralized GD. An overview of the local drain datapath is

depicted in Figure 10. The accompanying block diagram illustrates

the various components of the Local Drain at a high level, each of

which will be elaborated upon in subsequent sections. As previously

outlined, each PE can generate up to 16 OF points per round for a

given set of input data, with the exact count contingent upon the

layer and input tensor parameters. Upon readiness, these OF points

transition from the active OF RF to the shadow OF RF. Following

this transfer, the PE signals to the Accumulate Finite State Machine

(AccumFSM), a part of local drain FSM, that the associated Local

Drain is primed to extract the OF points from the PEs.

Flow of Control: Based on the layers and tensor parameters

configured in the registers, it is possible to determine whether

AccumFSM needs to consume data for accumulation across PEs,

particularly if ICs are distributed across different PEs. In such

scenarios, the LD waits for the AccumFSM to complete processing

these OF points before proceeding. When AccumFSM is active,

the LD streamlines the flow, refraining from extracting OF points

until the accumulation is complete. In contrast, whenAccumFSM is

not required prior to LD operations, the PEs trigger the extraction

process to the LD. The extraction sites and the number of points in

each PE with a valid OF point to be extracted are determined using

configuration registers. This information guides the sequential

extraction of OF points from the shadow OF RF. Upon completing

the extraction from the shadow OF RF, the LD indicates to the PEs

that the shadow OF RF is fully utilized and prepared for the next

round of transfers from the active OF RF.

OF Select to PPM: The OF outputs accumulated from the

FLEXTREE flexible adder architecture (Section 3.3.1), multiplexed

(MUXed) using a 15:4 MUX, are fed into each PPM. LD

orchestrates the selection of inputs for the psum-MUX in a round-

robin manner, facilitating the transfer of input data into the

PPM. The LD assumes the responsibility of steering the data path

for the PPM, issuing input data alongside bias/scale values, and

subsequently extracting the output data to feed into the output

column buffer.

Post-Processing Module (PPM): The PPM performs various

post-processing operations on the OF points of each layer. It

includes two primary data paths: an INT path and an FP path,

as illustrated in Figure 10.3. The INT path is primarily used
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FIGURE 10

FLEXNPU accelerator local drain path, showing (1) local drain path routing output activations/partial sums from each PE inside a PE column to column

bu�er. Group of 4 columns organized into the super column. (2) SDSC per super column routes data from the local to global drain. (3) Detailed

architecture of the post-processing module showing both floating-point and integer paths.

for quantized convolution/matmul workloads. It processes INT32

accumulator outputs through a sequence of operations: bias

addition, activation function, quantization, rounding, zero-point

adjustment, and clamping, to produce INT8 outputs. The FP path

is used for floating-point convolutions/matmuls. It applies bias

addition, activation functions, and output format conversion (e.g.,

from FP32 to FP16/BF16). Additionally, the PPM supports mixed-

precision modes: for instance, in FP-to-INT8 conversion, the FP

path handles bias and activation, while the INT path applies scaling

and zero-point adjustment. Similarly, INT-to-FP conversions are

also supported, where dequantization is applied before activation in

the FP path. Note that PPM also supports bypass mode for draining

partial sums when the final OF is not generated in the current

computation round. All functions and modes are controlled

via a dedicated bank of configuration registers, which dictate

processing behavior, scale selection, and bias application. The PPM

natively supports multiple ReLU variants for quantized inference,

programmable through descriptor-based control logic. For more

complex activation functions such as GELU or Swish—which

are not natively implemented—the FLEXNPU system provides a

fallback mechanism via a tightly integrated on-chip DSP processor

(as shown in Figure 5). In such cases, OF points are routed

directly to the DSP in floating-point precision (FP16/BF16 or FP32

using bypass mode), and the processed outputs are seamlessly

reintegrated into the accelerator pipeline.

OF Rearranger: The PPM data output links to the column OF

buffer entries through a 4:1 DeMUX, configured by LD FSM based

on the drained OF point context. LD directs the PPM output to the

appropriate buffer entry. In layers where certain PEs yield no OF

points, LD ensures that 0 values populate the corresponding buffer

entries, facilitating seamless data drainage by GD. For floating-

point cases, datamust be outputted in high-low pattern for seamless

processing by both GD and Sparse Encoder.

Taking into account the area and performance specifications

of the accelerator, it has been established that each column,

comprising 16 PEs, should integrate 4 PPMs. This configuration

includes 4 INT PPMs and 4 FP PPMs, activated when FPMACs

are enabled. Each of these PPMs is exclusively allocated to

serve 4 PEs, ensuring optimized resource utilization and efficient

processing capabilities.

Super Column Drain Concatenator (SCDC): The Super Column

Drain Concatenator (SCDC) plays a pivotal role in consolidating
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data from the output column buffers of all 4 columns within a

super column and forwarding it to the centralized GD via the

Super ColumnNoC (SC-NoC). Each output column buffer within a

column is 4 bytes wide and 16 entries deep. Once all round-required

entries are filled in individual column buffers, LD in each column

transmits 16 bytes of data from its column buffer to the SCDC

through the psum agent packet NoC (psum-NoC) per round. SDSC

combines these 4×16B values into 64B data. A 2-bit super-column

ID (SCID) is appended to create a 514-bit data packet for GD, which

is subsequently transferred to the GD via the SC-NoC. Thus, the

SDSC serves as a crucial link between the LD and the GD. Note that

when PPM is enabled, each generated output activation is 1 byte for

INT8 precision or 2 bytes for FP16/BF16 precision. In both cases,

data from the column buffer is dispatched to the SCDC in 16-byte

chunks, formed by 1byte from the 16 different entries of the buffer.

Thus, the SDSC drains outs INT8 OF in 1 cycle, FP16/BF16 OF in

2 cycles, and FP32/INT32 PSUM in 4 cycles in bypass mode.

Global Drain: The Global Drain (GD), as demonstrated in

Figure 11 (left side), serves as the central hub within the PE array

subsystem, tasked with gathering output activation points from

PEs across all columns. Its primary function involves rearranging

these activations into a 1×1×Z format, where Z represents the

OC dimension for the current layer (or the IC dimension for the

subsequent layer). Subsequently, the GD encodes these activations

and writes them to the SRAM for further processing or storage. The

GD comprises the following components: (1) A 256B input buffer

called the Drain Staging Buffer (DSB) where the output activations

from all PEs are staged. 64B data from each Super Column are

transmitted to the GD via the SC-NoC, and concatenated into

the DSB, thereby generating 256B for processing. (2) Global Drain

Mux (GDM) network consisting of 4 sets of multiplexer arrays that

rearrange the staged output activations from DSB into the Drain

Banks. (3) Sixty four Drain Banks (DB) organized as 4 groups of

16 entries, with each Drain Bank of size 16B, for a total of 1KB.

These buffers serve as a pre-final staging area for output activations

fromPEs before encoding andwriting to SRAM. Each 16B bank can

hold 16 OCs for the next layer, controlled by GDM for writing and

DAGU for reading. (4) Drain Address Generator Unit (DAGU),

FIGURE 11

FLEXNPU global drain path, showing (1) drain staging bu�er, (2) global drain mux network, (3) drain bu�er banks, (4) drain address generation unit, (5)

sparse encoders, and (6) write combining bu�ers. Collectively, these units drain uncompressed data from local drains and writes compressed data to

SRAM. Illustration of sparse encoder performing zero-valued compression provided on the right.
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which computes the x, y, z coordinates of the points in the DBs

that will be written into the SRAM. The read signals drive a drain

bank reader (not shown in figure) to get the data out of the DBs.

(5) A bank of four Sparse Encoders (SE), which encode the data

to be written to the SRAM. (6) Four Write combining buffers

that allow the writing of compressed data and the corresponding

sparsity bitmaps into the SRAMs. Among the six components, the

Global Drain Mux and Sparse Encoder are the most important

elements of the GD. Detailed explanations of these components are

provided below.

Global Drain Mux: The role of the GD Mux control logic is to

manage the selection process across the various mux stages to drain

data from the DSB. There are a total of four GDMs, each capable

of independently accessing DSB entries but restricted to writing

solely to its designated group of DBs. Let us dive into each stage

of the GDM: Stage S1: Entry Select: This stage involves choosing

16B of the DSB data. Following the configuration registers, the

GD Mux control logic adopts a row-wise selection approach from

the DSB, utilizing a 16:1 entry selects Mux capable of picking any

of the 16 row entries. Stage S2: Bank Select: The 64 drain banks

(DBs) are grouped into four sets, each containing 16 entries. The

bank select function determines to which of the 16 entries the data

will be written to. Notably, data can be written to multiple entries,

potentially all 16 entries in an extreme scenario. The bank select

or bank enable ensures proper multicasting of data to the DBs.

Stage S3: Right Rotator: After each GDM multicasts the selected

DSB entry to one or more DBs, it assigns an appropriate right

rotation value specific to each DB. This step is crucial to align and

concatenate consecutive Zs within a single DB. Stage S4: Byte Enable:

Finally, this serves as the write byte enable, ensuring that the correct

set of bytes from DSB line is written to the DB.

Sparse Encoder: This is a pivotal element within the global

drain, crucial for leveraging data sparsity to enhance the speed of

inference processing in FLEXNPU. Figure 11 (right side) provides

a schematic representation of the SE block. Its primary function is

to compress dense data streams by discarding zero values, thereby

outputting a compressed data representation accompanied by a

sparsity bitmap. The drain buffer acts as a staging area for the data

before they are written to SRAM, providing the SE with input. Each

DB bank is allocated to store data corresponding to a unique output

context (OX, OY) point, with a 16B payload containing the OC

data for that specific OX, OY coordinate pair. A single context,

representing one data stream, may extend across multiple banks

and up to 16 contexts can be processed concurrently within a group.

The GDM ensures that banks flagged with valid bits, indicating

that their data has yet to be processed by the SE, are protected

from being overwritten. The SE itself operates on 16B granularity,

compressing the data for each distinct context contained within the

DB. The degree of sparsity dictates the number of input lines that

the SE must handle before it can produce a compressed 16B output

line for a particular context. Alongside the compressed data, the

SE generates a unique sparsity bitmap for each context, which is

then sent to SRAM through the OF-NoC. The address for writing

the bitmap to SRAM is determined by DAGU. As elements within

a context stream may be received over several cycles, the SE is

designed to manage context switching efficiently by preserving the

state of each context and retrieving it when necessary to continue

processing. Note that the sparse encoder is bypassed when the final

output activation point is not generated in the current computation

round and instead partial sums are drained out to SRAM.

3.5 Two-sided sparsity acceleration

In the proposed FLEXNPU accelerator, our aim is to harness the

sparsity in both FLs and IFs to enhance not only energy efficiency

but also DNN inference throughput. Throughout the accelerator,

the data remains compressed until reaching the PE. Operating

within the compressed domain offers advantages, such as reducing

on-chip bandwidth requirements and storage demands. However,

handling compressed data, which often varies in length, poses

challenges in terms of data manipulation, such as distributing data

across PEs and implementing sliding window processing within

the PE (Raha et al., 2022c). In this section, we will introduce

an innovative two-sided sparsity acceleration logic capable of

processing sparse data within the compressed domain to achieve

higher throughput (Chinya et al., 2021; Raha et al., 2021c, 2022b;

Kundu et al., 2024). This logic spans multiple units including VPE,

load and drain path.

The core idea is that IFs or FLs with a value of 0 do not

contribute to non-zero outcomes duringMAC operations, allowing

them to be skipped during both the compute and storage phases

(Connor et al., 2020). As explained in Section 3.4.1, SRAM serves

as storage for zero-value compressed input activations (IF) and

weights (FL), which are delivered to each column buffer in batches

through the load path in SDN (Chinya et al., 2023; Raha et al.,

2021c). The PE FSM then transmits the compressed IF and FL to

their respective buffers (CD RF) in each PE. Along with these, the

corresponding bitmaps are also transferred to IF and FL sparsity

bitmap buffers, respectively.

As illustrated in Figure 6.3, the two-sided sparsity acceleration

module in FLEXNPU receives bitmaps as inputs, each consisting

of 1-bit entries that denote whether a corresponding value in the

original activation (IF) or weight (FL) vector is non-zero. A “1”

represents a meaningful non-zero entry, while a “0” indicates a

zero value that has been removed through zero-value compression

(ZVC). These compressed vectors and their associated bitmaps

are loaded into dedicated register files and buffers within each

Processing Element (PE). This logic operates over a fixed-size

compute window—such as 16 activations and 16 weights. Rather

than decompressing the data or performing all possible multiply-

accumulate (MAC) operations, the accelerator uses a dedicated

find-first sparsity logic to identify only those positions where both

activation and weight are non-zero. This produces a combined

sparsity map that directly indicates the valid compute pairs—

those that will contribute to non-zero partial sums. To execute

this efficiently, the system maintains a tracking mechanism to

keep record of which pairs have already been processed. In

each cycle, it scans for the next unprocessed valid pair—i.e.,

the earliest position in the window where a non-zero activation

aligns with a non-zero weight. This is done through a low-latency

circuit implemented in combinational logic. Once identified, the

logic computes the internal offset within the compressed data
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FIGURE 12

Two-sided combined sparsity acceleration logic.

and retrieves the corresponding values from the register files.

These values are then fed into the MAC unit via the CAG

unit, contributing to the generation of the output feature maps,

as demonstrated in Figure 12. After each MAC operation, the

tracking state is updated, and the system proceeds to the next valid

pair. This continues until all meaningful activation-weight pairs

in the window are processed. Critically, the design ensures that

each cycle performs exactly one useful computation, dynamically

adapting to sparsity and skipping ineffectual MACs without

wasting compute resources. Once the computations are complete,

the output feature maps flow through post-processing stages such

as activation functions and scaling. They are then passed through

another ZVC module that removes zero-valued elements and

generates updated bitmaps for the outputs. These compressed

feature maps are stored in SRAM or DRAM for further use in

downstream layers, preserving compression throughout the end-

to-end inference pipeline. By tightly integrating sparsity-aware

decoding, dynamic compute scheduling, and output compression,

this combined logic significantly improves the performance and

energy efficiency of FLEXNPU. It reduces the number of cycles

to match the actual number of useful computations, minimizes

data movement, and maintains a lean, compression-aware memory

footprint—making the architecture especially suited for efficient

deep learning inference in energy-constrained environments.

4 Experimental setup

To evaluate the efficiency of the proposed accelerator, we

implemented FLEXNPU in Chisel 3.0, with the generated RTL

simulated in Synopsys VCS R©. We chose Chisel because of its ability

to facilitate the generation of parametrizable designs featuring

multiple variations of PE, allowing easy modification of RF

size, number of MAC units, etc. As mentioned in Section 3.2,

the accelerator supports UINT8, INT8, FP16, BF16 precision.

Subsequently, the RTL undergoes synthesis in the Synopsys Design

Compiler (DC), utilizing one of the industry’s most advanced

process technology nodes, (based on 7 nm), to generate the Gate-

Level Netlist (GLS) and corresponding area for each accelerator

component. To estimate the power consumption within the

proposed FLEXNPU accelerator, we employed Synopsys Verdi to

generate an activity file (Switching Activity Interchange Format:

SAIF), using test benches for assistance. The accelerator netlist,

coupled with the activity file, serves as input to Synopsys

PrimeTimePX (PTPX), enabling power estimation at the gate level

for both block and full-chip designs of the FLEXNPU accelerator.

The FLEXNPU architecture comprises a unified tile of 256 PEs

organized in a 16×16 grid (16 columns with each column having

16 individual PEs), featuring 8MAC units within each PE, resulting

in a total of 2048 MACs. This tile encompasses 1.5 MB of SRAM

equipped with 32-byte read/write ports. The PE consists of 4×16

9bit IF Data RF Register File (RF), 4×16 9bit FL Data RF, and 16×4

B OF RF. In addition, each PE also consists of 4×2B IF sparsity

bitmap RF and 4×2B FL sparsity bitmap RF, which is 1/8th the size

of data RF, as 1 bit in bitmap is used to represent 1 entry in IF/FL.

Together, these RFs contribute to 224B RF per PE. The precision

of the IF and FL is INT9 and OF points is FP32/INT32. The

memory hierarchy of our design is illustrated in Table 1. Operating

at a frequency of 2.4 GHz and 0.65 volts, the accelerator boasts

a dense peak Trillion Operations Per Second (TOPS) performance,

reaching 7.37 TOPS, with efficiency metrics of 5 TOPS/watt and

4.6 TOPS/mm2.

4.1 Datasets and benchmarks

We conducted a comparative analysis of the performance

of FLEXNPU in conjunction with two state-of-the-art dense

accelerators, namely Eyeriss (Chen et al., 2016c) and TPU

(Jouppi et al., 2017). The comparison considered various design

specifications described in Table 1. Furthermore, we evaluated

the performance of FLEXNPU on sparse DNN workloads

using state-of-the-art networks: ResNet50, MobileNetV2,

InceptionV3, and GoogLeNet trained on the ImageNet dataset

(Krizhevsky et al., 2012). The first three models were compressed

using (i) Quantization-Aware Training (QAT) to quantize

weights/activations to INT8 precision and (ii) unstructured

pruning using the regularization-based sparsity algorithm (RB-

sparsity). GoogLeNet was quantized in the same way, but filter

pruning with geometric median criterion was applied. The

compressed models were obtained from Intel’s Neural Network

Compression Framework (NNCF) (Kozlov et al., 2020). Per-layer

and overall network weight sparsity were obtained from these

models. Furthermore, all models were subjected to inference on
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TABLE 1 Comparison of FlexNPU with state-of-the-art fixed schedule

accelerator designs.

Architecture
feature

Eyeriss TPU FlexNPU

Memory hierarchy 3-levela 3-level 3-level

Num of PEs 168 256 256

RF (in each PE) 512 B 32 B 224 B

On-chip Buffer/SRAMb 108 KB 64 KB 1.5 MB

DRAM 1 GB 28 MB 1 GB

Energy cost ratio

(PE:RF:SRAM:DRAM)

1:1:6:200 1:0.06:6:200 1:0.125:6:200

Identical memory hierarchies and cost ratios are used for evaluation. aEyeriss has additional

inter-PE communication with RF:PE= 1:2 cost ratio. bSRAM sub-bank size remains constant

for all.

the entire ImageNet2012 validation dataset (50,000 images) and

activation sparsity at input and output of each layer was calculated

using PyTorch hooks. The average activation sparsity across the

entire dataset, weight sparsity, and layer statistics were fed into a

framework of FLEXNPU, which was used to obtain the layer-wise

and overall network compute acceleration and total energy

consumption of the accelerator, reported in Section 5. In addition

to traditional CNNs, we considered 4 state-of-the-art transformer

based models and corresponding application/dataset. DETR-

ResNet50 was evaluated onMS-COCO dataset for object detection.

For Question Answering tasks, we employed DistilBERT-base on

the SQuAD1.1 dataset. Lastly, for Sentiment Classification, we

utilized T5-base on the Glue SST2 dataset, and MobileBERT on the

Glue MNLI dataset. Weights of all these models were compressed

to FP16 format, targeting evaluation of the FP MAC path in

our accelerator.

To ensure accurate modeling of activation sparsity, we adopted

a symmetric quantization scheme (for 4 CNNs) with a 0 zero-

point for the outputs of convolution layers followed by ReLU-

type activations. This choice preserves true zeros in the quantized

domain, thereby retaining the sparsity induced by the activation

functions. Using a non-zero zero-point could otherwise obscure

zero activations, reducing sparsity and degrading the effectiveness

of our two-sided sparsity-aware engine. This design choice ensures

that the sparsity measurements and acceleration results reported

in Section 5 faithfully reflect the actual sparsity distribution in the

models. Specifically, we compared the performance of FLEXNPU,

which uses two-sided combined sparsity, against dense accelerators

without any sparsity support and those capable of exploiting fixed

weight-sided sparsity (Chen et al., 2016c; Park et al., 2020). The

framework was modified to evaluate the latency and energy of a

dense variant and a weight-sided variant of FLEXNPU to allow

fair comparison.

4.2 FlexNPU cost model

To evaluate the performance of the proposed FLEXNPU

accelerator, we developed a cycle-accurate analytical cost model

calibrated using RTL simulations. This model is used to estimate

compute and memory latency per layer and to generate the

total end-to-end cycle counts reported in Section 5. Note that

compute acceleration metrics are reported only for FLEXNPU,

while reference architectures such as Eyeriss (Chen et al., 2016c)

and TPU (Jouppi et al., 2017) are evaluated purely in their dense

configurations. Since their RTL models and sparse execution logic

are not publicly available, they aremodeled under identical memory

and energy assumptions, but without sparsity-induced acceleration.

For FLEXNPU, the cost model was calibrated using detailed RTL

simulations of our architecture. The RTL was written in Chisel and

simulated using Synopsys VCS. Functional and switching activity

traces were collected to estimate dynamic behavior, and synthesis

was performed using Synopsys Design Compiler. A broad sweep

of representative DNN layers was simulated, spanning various

tensor shapes, sparsity levels, and schedule configurations, ensuring

the analytical model captures realistic microarchitectural behavior

across different scenarios. The model accounts for:

• Sparse MAC compute cycles, based on activation and

weight bitmaps.

• Memory access cycles across hierarchy levels, including

overhead for bitmap-based compression and decompression

for sparsity acceleration logic.

• Load/compute/drain phase transitions, governed by the FSM

in each PE column.

• Control logic and flow dependencies, including two-sided

sparsity traversal and operand gating.

Optimal layer schedules—defining the loop ordering, blocking

factors, and data reuse strategy are evaluated to select the

configuration that minimizes combined compute and memory

cycles. The analytical model incorporates FLEXNPU’s two-sided

sparsity support, which dynamically identifies valid operand

pairs at runtime, enabling zero-skipping in both activations and

weights as described in Section 3.5. The compute engine avoids

unnecessary MAC operations using this mechanism, and the

model accurately captures this benefit in per-layer cycle estimation.

By using consistent modeling assumptions across baselines and

validating against RTL simulations, we ensure that performance

and energy comparisons in Section 5 are both fair and grounded

in architectural reality.

5 Experimental results

In this section, we present a comprehensive evaluation of the

proposed FlexNN accelerator, including test chip measurements

and post-synthesis results. The evaluation begins with area and

power breakdowns at the chip and PE levels, followed by a

comparison with Eyeriss and TPU under dense inference to

highlight the benefits of flexible dataflow. We then demonstrate

the gains from two-sided sparsity acceleration across several

CNN and transformers models, showing improvements in energy

and performance.

5.1 FlexNPU test chip implementation and
evaluation

This section presents the implementation details of the

FLEXNPU test chip fabricated in Intel’s 7nm technology node,
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FIGURE 13

FLEXNPU test chip layout details and modular scaling layout. (1) Organization of accelerator tiles and four super column (16 VPE columns)/tile for

scaling FLEXNPU TOPs. (2) Logical layout of a single super column with four VPE columns. (3) Physical floorplan of test chip. (4) Place and route view

of single FLEXNPU VPE column with highlighted PEs, bu�ers, and local drain.
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followed by the power and area evaluation using both synthesis

results and post-silicon measurements.

5.1.1 Test chip design and layout
Figures 13.2, 3 illustrates the logical and physical layouts of the

FLEXNPU test chip prototype. The chip instantiates four FLEXNPU

columns, constrained by the available test chip area. Within each

column, sixteen VPEs are deployed. The place and route layout in

Figure 13.4 highlights individual PEs with different colors, IF/FL

load buffers, and the local drain in a single VPE column, which

follows the architecture described in Section 3.3. As illustrated, the

NoC includes routers that facilitate data movement between the

four columns, load (Section 3.4.1), the checker, which is a simplified

version of the global drain. This module aggregates output data

from the columns and compares it against precomputed reference

results stored in a programmable logic array (PLA). Detailed chip

parameters and area metrics are presented in Table 2. The aspect

ratio, total area, operating frequencies, and memory hierarchies

used are summarized to aid in contextualizing the power and area

efficiency of the design.

5.1.2 Power and area characterization
The power and area distributions for the FLEXNPU accelerator

are presented in Figure 14. The top row (1–4) visualizes the area

breakdown across different architectural hierarchies, while the

bottom row (5–8) reports the corresponding power consumption.

1. Synthesis results: In the synthesized design, the PE-level area is

dominated by MAC units, accounting for 54% of the PE column

area (Plot 1), followed by RFs used for IF/FL/OF data and

sparsity bitmaps, jointly consuming 33% (data: 28%, bitmap:

5%). Control and sparsity acceleration logic modules contribute

minimally. At the system level (Plot 2), inter-PEmesh consisting

of 16×16 PE array dominates both area and power, contributing

more than 80%. Similarly, in power breakdown (Plot 5), MAC

operations consume 46%, while data storage and movement

use 26% (data: 22%, bitmap: 4%), reflecting efficient data reuse.

Control and sparsity logic accounts for remaining 24% power.

2. Post-silicon test chip results: Power was measured by

executing integer and floating-point test configurations with

identical dimensions and durations, and averaging the results

over the active execution window. PE-level measurements (Plots

3 and 7) closely match synthesis trends, with MAC units

occupying 56% (FP: 30%, INT: 26%) of area and 43% (FP: 25%,

INT: 18%) of power. The PE column in the test chip (Plots 4

and 8) shows high efficiency: 16 PEs consume 85% of the area,

with remaining modules (local drain, FlexTree, control/buffers)

using 15%. Inside the drain, PPM modules contribute 6.4% of

the total column area. Note that, power consumption in the PE

column is overwhelmingly dominated by the compute engine

(98%), validating the minimal overhead from control and data

movement logic. The critical path, identified through test chip

measurements, lies within the FPMAC unit of the FLEXNPU

FlexNPU, where computations are performed using activations

and weights from the IF/FL RF and results are written back to

the OF RF.

TABLE 2 FlexNPU test chip parameters and area metrics.

Parameter Value

Technology node Intel 7 nm

NoC topology: # Routers 2

NoC topology: # Bridges 6

Latency 4 cycles

Unicast throughput 64 B/cycle

Multicast throughput 256 B/cycle

Frequency 2.43 GHz @ 0.65V

3.6 GHz @ 1.1V

NoC area 0.03 mm2

VPE column area 0.074 mm2

Super column area 0.296 mm2

Total chip area 0.4 mm2

Aspect ratio 0.778 mm× 0.513 mm

Cell usage (Column) 554K (Flop 72K)

Cell usage (Total) 2.65M (Flop 386K)

5.1.3 Scaling FlexNPU for high TOPS
To meet higher TOPS demands, the FLEXNPU architecture

adopts a hierarchical and modular scaling strategy—one that goes

beyond simply increasing the number of PEs. A naive scale-up

of PEs would eventually lead to routing congestion, bandwidth

bottlenecks, and diminishing returns due to the centralized

resource contention. Instead, FLEXNPU employs a structured,

congestion-aware design, as illustrated in Figure 13.1. At the lowest

level, individual PEs are organized into vertical columns, optimized

for local data reuse and pipelined computation. Next, four such PE

columns are grouped to form a Super Column, which integrates

localized interconnect and shared control. We then stamp out four

super columns to construct a single FLEXNPU tile, which acts as

an independently schedulable compute unit with its own dataflow

control and buffer hierarchy. This tiling approach ensures that

data movement and scheduling remain manageable even as the

architecture grows. Finally, multiple FLEXNPU tiles are instantiated

to form the complete FLEXNPU accelerator. At this top level,

workload distribution occurs across tiles, each of which executes

its assigned partition independently. This hierarchical scale-out

method allows FLEXNPU to achieve higher compute throughput

while maintaining area efficiency, predictable routing, and scalable

memory bandwidth—crucial for deployment in constrained edge

or mobile form factors.

5.2 Comparison with SOTA fixed schedule
accelerators

Figure 15 shows the improvement in energy efficiency of

our flexible schedule DNN accelerator FLEXNPU over two

prominent fixed-schedule designs, Eyeriss (Chen et al., 2016c)
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FIGURE 14

Area (top row) and power (bottom row) breakdown of synthesized and FLEXNPU test chip. (1, 5) PE breakdown in synthesis, (2, 6) full accelerator

breakdown in synthesis, (3, 7) PE breakdown in test chip, and (4, 8) single column breakdown in test chip.

FIGURE 15

Layer-wise distribution of % energy improvement of FLEXNPU over fixed schedule DNN accelerators (Table 1) for ResNet101 and YOLOv2 (dense

models). Optimal schedule used for each layer in FLEXNPU accelerator.

and TPU (Jouppi et al., 2017) assuming identical memory

hierarchies. These results are obtained for two DNNs used in image

classification and object detection, ResNet101 and YOLOv2, using

our custom DNN accelerator energy estimation framework. We

have used dense models (i.e., with 0 weight sparsity) for these

results. Note that we have scaled the memory hierarchy of the two

accelerators to the same level as FLEXNPU for a fair comparison.

In this figure, Here, the y-axis represents a % reduction in energy

consumption of FLEXNPU compared to these two designs. The

left subplot depicts the layer-wise energy reduction for all layers,

sorted in increasing order of reduction. In the right subplot,

we summarize the distribution of reduction across all layers.

The x-axis shows the two comparative accelerators. Compared to

Eyeriss, FLEXNPU results in 40%–77% reduction for ResNet101

and 45%–77% for YOLOv2. Compared to TPU, FLEXNPU provides

up to 62% and 58% energy savings for ResNet101 and YOLOv2,
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respectively. While it is true that in certain layers, FLEXNPU

exhibits a slight energy increase (indicated by a negative energy

reduction) compared to TPU, this is primarily attributed to the

optimized dataflow in TPU for specific layers, particularly 20 layers

in ResNet101 and 4 layers in YOLOv2. However, on average,

FLEXNPU still provides notable advantages, offering average energy

savings of 14% and 22% for these respective DNN architectures

over TPU. It is important to note that the increased energy

consumption in these layers comes from the robust support for

flexibility within DNN, which inherently introduces slightly higher

overhead. On the other hand, we see an average improvement of

57% and 69% over Eyeriss. Despite occasional spikes in energy

consumption for select layers, FLEXNPU consistently outperforms

these fixed-schedule accelerators, showcasing its superior efficiency

and overall cost-effectiveness.

5.3 Sparsity benefits using FlexNPU

In this section, we present a comprehensive analysis of the

layer-wise and overall network speed-up achieved by FLEXNPU

compared to two prominent counterparts: a dense accelerator

without any sparsity acceleration support and a fixed weight-sided

sparse accelerator. Figures 16.1–4 presents the layer-wise compute

acceleration (y-axis) provided by weight-sided and FLEXNPU

in comparison with the dense accelerator, for few representative

layers (x-axis) of 4 DNN benchmarks. Note that the activation

sparsity numbers reported in the following discussion are averaged

across the entire dataset. For a fair comparison, benchmarking

was performed using the same optimal schedule for all

accelerator types.

5.3.1 ResNet50
The sparse ResNet50 model has 5%–88% unstructured weight

sparsity, weight_splayer , resulting in up to 8.1% acceleration across

layers in weight-sided accelerator. However, except before the first

conv layer, ResNet50 has a high activation sparsity, act_splayer , at

the input of every convolution layer due to the presence of the

ReLU activation function. On average across the entire ImageNet

validation dataset, this amounts to act_splayer = 14%–83% sparsity.

FLEXNPU conveniently leverages both weight and activation

sparsity to provide up to 10.3% compute acceleration, as shown in

Figure 16.1. Overall, FLEXNPU gives up to 3.1× better acceleration

than the weight-sided accelerator for ResNet50.

5.3.2 GoogLeNet
Since GoogLeNet was filter-pruned, maximum weight_splayer

= 30%. This contributed to maximum 1.4× speed-up in weight-

sided accelerator. In contrast, the maximum measured act_splayer
= 91% resulted in a maximum acceleration 10.8× in FLEXNPU.

Figure 16.3 shows that FLEXNPU provides up to 7.7× better

compute acceleration compared to fixed weight-sided accelerator,

even for networks with low weight sparsity.

5.3.3 InceptionV3
This model is very sparse with a maximum weight_splayer =

96%. There are many layers with large dimensions and filter sizes;

therefore, both the weight-sided accelerator and FLEXNPU can

leverage weight sparsity and provide up to 24.7× speed-up for

Mixed.7a.branch3x3.2.conv, Layer Id: 72 (not shown in figure).

Although act_splayer for this layer is 78%, FLEXNPU cannot provide

FIGURE 16

Comparison of layerwise compute acceleration of FLEXNPU and Weight-sided (one-sided) sparse accelerator over dense accelerator (no sparsity

support) benchmarked with (1) ResNet50, (2) MobileNetV2, (3) GoogLeNet, (4) InceptionV3. Few representative layers are presented for each DNN.
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any additional speed-up for this layer. However, there are many

other layers with activation sparsity higher than weight sparsity,

allowing FLEXNPU to leverage both. As depicted in Figure 16.4,

FLEXNPU provides a high level of compute acceleration. Among

such layers with sparsity skewed toward activations, the maximum

speed-up is 11.3×. Therefore, the proposed design can take the

best of both worlds and give better savings than the weight-

sided accelerator. Across all layers, FLEXNPU is up to 4.3×

faster than the weight-sided accelerator, clearly demonstrating

superior performance.

5.3.4 MobileNetV2
MobileNetV2 is a compact and lightweight model compared

to the other benchmarks discussed earlier. Although sparse

MobileNetV2 consists up to 70% weight_splayer , the maximum

speed-up provided by the weight-sided accelerator is only 3.3×

(last linear layer). Interestingly, the weight sparsity of all conv

layers, except features.18.0, Layer Id: 51 is < 50% leading to a

low overall speed-up. However, FLEXNPU leveraging activation

sparsity (maximum act_splayer = 74%) in addition to weights can

provide up to 4.1× acceleration. Figure 16.2 indicates that even for

compact models with small layer sizes, FLEXNPU is superior to the

weight-sided accelerator by 3.9×.

5.3.5 Overall network acceleration
The compute acceleration obtained by dense, weight-sided

and our proposed accelerator for the entire end-to-end network

inference, depicted in Figure 17.1 reveal a significant acceleration

advantage conferred by FLEXNPU across all evaluated networks.

Here, the y-axis represents the acceleration, whereas the x-axis

represents benchmarks. The dense accelerator does not provide

any acceleration as it cannot leverage weight or activation

sparsity, denoted by values 1. Evidently, the speed-up for

weight-sided accelerator is proportional to the overall network

weight sparsity. Across all these networks, the weight-sided

accelerator provides 1.01×–1.79× speed-up. On the contrary, the

acceleration obtained in FLEXNPU is proportional to the relative

distribution of weight and activation sparsity. For ResNet50,

weight_spnetwork, act_spnetwork = 61%, 55% and FLEXNPU takes

advantage of them to provide 3.11× speed-up. MobileNetV2

and GoogLeNet has weight_spnetwork, act_spnetwork = 52%, 30%

and weight_spnetwork, act_spnetwork = 24%, 58%, respectively. These

results in 1.81× and 2.63× speed-up in FLEXNPU, respectively.

Clearly, even with these two networks with low sparsity on one

side, FLEXNPU provides a significant amount of computation

due to two-sided sparsity support. Finally, InceptionV3 has

weight_spnetwork, act_spnetwork = 61%, 63% contributing to 3.3×,

which is the maximum across the 4 networks. As evident from

these results, our accelerator consistently outperforms both dense

and weight-sided architectures in terms of compute acceleration.

This substantial improvement, 2.6× vs. dense and 1.8× vs.

weight-sided accelerator (geomean), underscores the efficacy of

our proposed approach in enhancing overall network speed-

up, demonstrating its superiority in accelerating DNN inference

computations. Furthermore, the observed acceleration benefits are

valid across the various architectural complexities and model sizes

FIGURE 17

Comparison of (1, 3) compute acceleration and (2, 4) energy e�ciency for full network inference in FLEXNPU over dense and weight-sided

accelerator benchmarked with 4 CNNs and 4 transformers.
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represented by the diverse DNNs considered in our evaluation. This

robust performance underscores the versatility and effectiveness

of two-sided sparsity acceleration support in FLEXNPU across a

spectrum of DL models.

We further validate the generality of our approach on

Transformer-based architectures, as illustrated in Figure 17.3. For

models such as T5 and MobileBERT, our proposed accelerator

achieves 1.4× speed-up, even in scenarios with relatively modest

activation sparsity. In DETR-ResNet50, the benefits increase

to 2.2× due to presence of high activation sparsity, while

DistilBERT demonstrates the highest acceleration of 4.15×,

primarily due to pronounced 50% structured weight sparsity.

Notably, while weight-sided acceleration saturates in DistilBERT,

FLEXNPU still provides further gains by leveraging concurrent

activation sparsity. On average, our accelerator achieves 2.1×

speed-up over dense baselines and 1.4× over weight-sided designs,

highlighting its adaptability to both CNNs and Transformers.

These results establish that our method not only sustains its

efficacy across conventional CNNs, but also seamlessly scales

to Transformer workloads—a critical requirement for modern

AI deployments.

5.3.6 Energy e�ciency improvement
Figure 17.2 presents the improvement in energy efficiency of

3 different accelerator architectures (y-axis) while evaluating 4

DNN benchmarks (x-axis) on the ImageNet validation dataset. We

considered dense accelerator energy consumption as the baseline.

As evident in the figure, these results largely correlate with overall

network compute acceleration in Figure 17.1 since the accelerator

circuits are active for a reduced amount of time. Furthermore,

compared to the weight-sided accelerator, FLEXNPU allows for

substantial reduction in memory cycle count as ZVC compressed

data flows through the different memory hierarchies, resulting

in reduced memory energy consumption. This is enabled by the

sparsity-aware load and drain path, as explained in Section 3.4.

Note that DRAM transactions are not considered in these results.

Across all 4 benchmarks, FLEXNPU is 2.4× and 1.7× more energy

efficient than the dense and weight-sided accelerators, respectively.

We observe a similar trend in energy efficiency across

Transformer models, as shown in Figure 17.4. For instance,

FLEXNPU achieves 1.9× energy efficiency improvement over dense

baselines and 1.4× over weight-sided accelerators. DistilBERT

shows the highest gain, reaching 3.6×, due to pronounced weight

sparsity. Even models like T5 and Mobilebert, which have lower

absolute sparsity show 1.35× efficiency gains, demonstrating the

versatility of the proposed sparsity-aware datapath. These results

underscore the robustness of our energy savings, not only across

diverse CNNs but also across modern Transformer architectures—

establishing FLEXNPU as a generalized solution for efficient DNN

inference across modalities.

In conclusion, our comprehensive evaluation showcases not

only the substantial compute acceleration achieved by our proposed

accelerator, but also its remarkable energy efficiency improvements

compared to existing dense and weight-sided architectures. This

underscores the pivotal role of our approach in addressing the dual

challenges of performance enhancement and energy conservation

in DNN accelerators, paving the way for sustainable and efficient

AI hardware solutions.

6 Related work

The design of DNN accelerators has evolved around optimizing

data movement, which remains the primary bottleneck in both

energy consumption and performance on edge devices. Most

accelerator architectures rely on a fixed dataflowmodel, hardwiring

their compute and memory hierarchies to a single pattern of data

reuse. This limits their adaptability to the heterogeneity present

across different layers of modern neural networks, especially when

layer-wise reuse profiles vary significantly.

Among the earliest and most influential dataflow paradigms is

the weight stationary (WS) model, which aims to maximize the

reuse of weights by statically holding them in local buffers while

streaming activations and accumulating outputs. This strategy

forms the basis of designs such as DaDianNao (Chen et al., 2016a),

Origami (Cavigelli and Benini, 2016), Cambricon-X (Zhang et al.,

2016), EIE (Han et al., 2016), Samsung’s NPU (Jang et al., 2021),

NeuFlow (Farabet et al., 2011), ISAAC (Shafiee et al., 2016), and

the Google TPU (v1–v3) (Jouppi et al., 2017; Norrie et al., 2021;

Jouppi et al., 2020). These architectures frequently employ systolic

or spatially tiled compute topologies, where the reuse pattern is

baked into the interconnect and register allocation. In this work,

we group these designs under the term TPU-like, using them as a

canonical baseline for WS execution models.

A second widely studied approach is the row stationary

(RS) dataflow, pioneered by Eyeriss (Chen et al., 2016c) and

later extended in SCNN (Parashar et al., 2017) and AMD’s

xVDPU (Jia et al., 2024; Rico et al., 2024). RS attempts to

minimize total data movement—including inputs, weights, and

partial sums—by balancing reuse across all three tensor domains.

This is accomplished through carefully choreographed mapping

strategies that exploit on-chip storage locality and inter-PE

communication, often within a hierarchical memory system. RS

dataflows are particularly effective in reducing accesses to global

buffers and DRAM, and Eyeriss remains one of the most cited and

architecturally foundational RS accelerators.

Alternatively, there exists a third major dataflow strategy is

output stationary (OS), which holds the output activations (or

partial sums) in local accumulators for the duration of a kernel

operation. OS excels in scenarios with low input channel counts

or spatially sparse computations, such as depthwise separable

convolutions. Architectures such as ShiDianNao (Du et al., 2015),

NVDLA (Zhou et al., 2018), Intel’s Core Ultra 1 (Meteor Lake)

(Intel, 2024), Core Ultra 2 (Lunar Lake) (Intel, 2024), Movidius

VPU2 (KeemBay), and NullHop (Aimar et al., 2018) employ OS

scheduling to minimize output writeback bandwidth and leverage

accumulator locality in sparse execution patterns. Though less

emphasized in academic taxonomies, OS remains a key strategy in

production-grade embedded inference pipelines.

Despite their architectural diversity, all of these accelerators are

fundamentally limited by rigid PE array microarchitectures that

are tightly bound to a single dataflow model. These processing

elements are not schedule-aware, and lack the capability to adapt

to different reuse-optimal execution orders. As a result, when
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the data reuse pattern required by a layer deviates from the

hardware’s fixed dataflow, developers must either accept non-

optimal reuse (leading to increased memory accesses and reduced

PE utilization) or resort to software-based data reshaping, which

is costly in energy and often impractical on resource-constrained

platforms. Programmable platforms such as FPGAs offer some

level of dataflow flexibility, but suffer from coarse-grained

reconfiguration granularity—once programmed, the dataflow

remains fixed throughout the DNN execution (Mousouliotis and

Petrou, 2018). Their general-purpose routing and logic fabric

also yield lower energy efficiency than ASIC-based accelerators,

especially for high-throughput convolutional operations. Recent

efforts have sought to introduce some level of configurability

into fixed-function accelerators. For example, Gemmini (Genc

et al., 2021) provides compile-time configurable systolic mappings,

enabling weight and output stationary dataflows. However, it

lacks support for row stationary execution and therefore cannot

adaptively optimize reuse across all three data domains.

While prior efforts—including recent reconfigurable

accelerators (Du et al., 2023)—have attempted to introduce

mode-switching capabilities, these architectures typically support

only a small number of coarse-grained hardwired schedules, such as

toggling between weight and output stationary modes. In contrast

to these architectures, FLEXNPU provides fine-grained, compiler-

defined control over dataflow at the granularity of individual

layers. Each layer is compiled into a custom dataflow schedule that

specifies loop ordering, spatial tiling, and memory access patterns,

enabling the PE array to execute the optimal schedule—be it

weight, input, output stationary, or a hybrid variant—based on the

layer’s shape, reuse profile, and sparsity structure. Beyond dataflow

flexibility, FLEXNPU incorporates FlexTree, a reconfigurable

partial sum (psum) accumulation network that dynamically

adjusts its depth and reduction structure according to the input

channel partitioning factor (ICP) of each layer. This allows the

compute pipeline to maintain high utilization and balanced fan-in

across layers with varying reduction dimensions—capabilities not

available in prior accelerators. Furthermore, FLEXNPU uniquely

supports two-sided unstructured sparsity in both activations and

weights, leveraging zero-aware compute skipping and compressed

memory access to improve energy and memory efficiency in

sparse workloads. Together, these features establish FLEXNPU as a

more expressive and efficient design than existing reconfigurable

accelerators, making it especially well-suited for deployment in

energy-constrained, workload-diverse edge environments.

7 Conclusion

In this paper, we proposed a flexible schedule-aware DNN

accelerator FLEXNPU, which can adapt its internal dataflow to

the optimal schedule of each layer in DNNs. Our proposed

solution maximizes data reuse at each memory level, resulting in

significant energy savings arising from optimal data reuse. Note

that flexibility works seamlessly on top of existing performance-

enhancing features such as sparsity acceleration and low-precision

logic, and it does not diminish their impact in any manner. It

is evident that this flexibility comes at the cost of additional

area overhead compared to fixed dataflow accelerators, but it

also enables us to achieve significant energy savings on average

across a myriad of DNN layers. Furthermore, we propose a

novel approach to improve throughput and reduce energy usage

in the FLEXNPU architecture. Taking advantage of fine-grained

sparsity in both activation and weight tensors, we optimize the

inference engine within the hardware accelerator. Experimental

results demonstrate significant improvements in both performance

and energy efficiency compared to existing DNN accelerators. This

research contributes to ongoing efforts to develop more efficient

hardware accelerators for executing deep neural networks.
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Appendix A: Schedule examples
demonstrating FlexNPU flexibility

This appendix presents two worked examples that demonstrate

FlexNPU’s flexible scheduler and dataflow engine. Each example

highlights how FlexNPU efficiently maps irregular-shaped layers to

its 2D PE array while maintaining high MAC utilization.

Example A1: ResNet layer with
non-power-of-two dimensions

We consider a layer from ResNet50 with the

following configuration:

• Activation: OX= 56, OY= 56, IC= 64.

• Weight: OC= 256, FX= FY= 1.

Fixed dataflow accelerator schedule:

• Inner loop: OX/1/14, OY/1/14, IC/64/1, OC/1/1.

→ Each PE processes 64 ICs for a 1×1 XY tile; 14×14 = 196

PEs used.

• Outer loop: OC/256/1, OX/4/1, OY/4/1.

MAC utilization:∼77% (196 out of 256 PEs active)

FlexNPU schedule (Matrix × Matrix Template):

• Inner loop: OX/2/4, OY/2/4, OC/4/16, IC/16/1.

→ All 256 PEs are active, each PE computes 2×2×4

partial sums.

• Outer loop: IC/4/1, OC/4/1, OX/7/1, OY/7/1.

MAC utilization: 100%

Example A2: Low-channel, high-spatial
layer (early CNN stage)

This example considers a challenging layer with small input

channels and large spatial dimensions:

• Input activation: OX= 112, OY= 112.

• Filter: FX= 7, FY= 7, IC= 3, OC= 64.

FlexNPU schedule (vector × matrix template):

• Inner loop: IC/1, OC/4/16, OX/4/4, OY/1/4.

→ 16 PEs process a 4×4 spatial tile across 64 OCs.

Each PE receives 3 inputs and 4 weights→ 12 MACs used per

PE (out of 16).

• Outer loop: FX/7, FY/7, OX/28, OY/112.

MAC utilization: 75%

Commentary: This is a particularly difficult case for fixed

accelerators, which often:

• Require SIMD-friendly IC counts (e.g., 4, 8, 16), wasting

compute on zero-padding.

• Fail to map large spatial extents efficiently.

FlexNPU, in contrast, dynamically configures the compute

template, loop blocking, and PE-level data mapping to maximize

MAC utilization despite low IC and high FX/FY. These examples

demonstrate how FlexNPU can consistently adapt to diverse layer

shapes using its flexible architecture, loop scheduler, and modular

PE configuration.
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