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protected conditions
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Postharvest spoilage of strawberry grown under protection, caused by Mucor

spp. and Rhizopus spp., has recently become more common in the UK, but there

is insufficient knowledge to develop and implement integrated management

against Mucor and Rhizopus. Field sampling was conducted to obtain field data

for developing models to predict the infection of Mucor and Rhizopus on

strawberry fruit. Fruits were exposed to naturally occurring inoculum for a

period of 24 hours before surface-sterilisation and incubation to estimate the

level of infection byMucor and Rhizopus. The observed incidence data, together

with climatic conditions and inoculum trap counts, were used analysed firstly

within the framework of (1) generalised linear model (GLM), and (2) classification

tree. Field sampling confirmed previous research that ripening/ripe strawberry

fruits are more susceptible to infection by Mucor and Rhizopus. Climatic

variability, particularly in vapour pressure deficit, appears to be more important

in influencing the rotting incidence of both Mucor and Rhizopus. However, the

predictability of both Mucor and Rhizopus, whether as a continuous variable

(incidence) in the GLM analysis or as a categorical risk in classification tree

analysis, is too low to be of practical value based on those predictors used in the

present study. Thus, current management may have to be based on scheduled

preharvest application of alternative products to reduce infection and local

pathogen inoculum as well as adopting management practice to minimise

pathogen inoculum in the planting. Future research is needed to develop

methods for rapid yet accurate in situ quantification of pathogen inoculum to

improve disease risk predictions.
KEYWORDS

strawberry soft rot, classification, recursive trees, fruit maturity, variability in
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1 Introduction

Postharvest strawberry losses are largely caused by Botrytis

cinerea, Mucor and Rhizopus spp (Bautista-Baños et al., 2003).

IPM research on strawberry diseases has been so far focussed on B.

cinerea that can infect almost every part of the strawberry plant

including leaves, petiole, flowers and fruit. Predicative models for B.

cinerea have been developed, implemented and used in practice (Xu

et al., 2000; Xu and Berrie, 2014; Cordova et al., 2018). Under

protected cropping systems, rapid removal offield heat immediately

after harvesting and subsequent cool-chain management are

sufficient to manage grey mould without the need to use

fungicides (Berrie et al., 2022), similar to managing grey mould

on protected raspberry crops (O'Neill et al., 2012). This is because

nearly all crop losses due to B. cinerea under protected cropping

result from post-harvest rot developing from preharvest latent

infections of flowers.

In recent years, postharvest spoilage of strawberry (grown

under protection to extend the length of the production season)

caused byMucor spp. and Rhizopus spp. has become more common

in the UK. In comparison, little research has been directed to

understand and manage fruit rotting caused by Mucor spp. and

Rhizopus spp. Infection by Mucor and Rhizopus lead to soft rot

disease (Dennis and Davis, 1977). Rhizopus spp. (mainly R.

stolonifer and occasionally R. sexualis) and Mucor spp. (mainly

M. piriformis, M. mucedo, and M. hiemalis) were reported as the

main species responsible for Rhizopus and Mucor rots, respectively

(Maas, 1998). Rhizopus stolonifer is one of the causal agents of soft

rot disease in strawberry (Romanazzi et al., 2013; Kwinda et al.,

2015). In the UK,M. piriformis was recently considered as the main

pathogen of strawberry but the exact Rhizopus species identities

causing strawberry decay is uncertain (Agyare, 2017). Postharvest

losses of strawberry due to Rhizopus rot can increase rapidly by the

contact spread from one fruit to another because of the production

of long extending hyphae colonising fruits (Harris and

Dennis, 1980).

We showed recently that that M. piriformis and Rhizopus had

very similar epidemiological characteristics on strawberry (Agyare

et al., 2020). Both pathogens are unable to infect flowers, and fruit

became increasingly susceptible from the green development stage

onwards. Spore germination under in vitro conditions requires

near-saturation humidity. Infection of attached ripe or close to

ripe fruit is affected by temperature and relative humidity, but not as

much as for B. cinerea. Post-infection rot development is not much

affected by temperature and humidity conditions that commonly

occur under field conditions in the UK. On attached ripe fruit, rot

symptoms can become visible within 3-5 five days of inoculation.

There are small, though statistically significant, differences among

cultivars in their susceptibility to the two pathogens. The levels of

infection under field conditions varied greatly during the summer

and autumn in the UK (Agyare, 2017).

Unlike B. cinerea on strawberry grown under protection, pre-

harvest management intervention may be necessary for Mucor and

Rhizopus under moderate to high predicted disease risks as both the

pathogens can infect fruit and rapidly lead to visual pre-harvest fruit

decaying. Tunnel ventilation management can greatly affect
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humidity and temperature at the canopy level, which may affect

inoculum dispersal and fruit infection. Fungicides and alternative

products (including biopesticides) tested so far do not have high

efficacies against the two pathogens (Agyare, 2017). There has been

insufficient knowledge to predict and manage the infection of

Mucor and Rhizopus on strawberry.

There were too few combinations of climatic variables in our

previous study (Agyare et al., 2020) to develop predictive models;

thus we conducted field sampling to develop models to predict the

risk of infection of strawberry fruit by Mucor and Rhizopus.

Specifically, fruit in commercial and experimental plantings were

exposed to naturally occurring inoculum for a period of 24 hours.

Levels of fruit infection within each 24 h period was estimated,

together with weather conditions and inoculum trapping data. Then

we applied regression analysis and recursive tree analysis to the data

to develop predictive models.
2 Materials and methods

Field determination of fruit infection by Mucor and Rhizopus

spp. was based on recent findings that fruits become susceptible to

Mucor and Rhizopus spp. from ‘pale yellow/white’ onwards with the

susceptibility increasing with increasing fruit ripeness and infection

can complete within a few hours (Agyare, 2017). To relate the

incidence of fruit infection under field scale fruit productions to the

inoculum level and weather conditions, the shorter the period of

fruit exposure to pathogen inoculum, the better it is.
2.1 Sampling fruit

Field sampling was conducted in 2018, 2019 and 2023 at three

sites in Kent, England; the three sites were within 10 km from each

other. Table 1 gives the summary of field samples collected in each

year. During the fruiting period in the summer and autumn, about

100 fruit trusses (depending on the availability) with all fruits not

beyond the stage of pale yellow/white were bagged with paper bags.

Thus, at the time of bagging all fruit in the selected trusses were

unlikely to be already infected byMucor or Rhizopus. Two weeks after

bagging, the bags were removed at 9 am to expose fruit to naturally

occurring inoculum. All exposed fruit trusses were collected and

taken to the lab 24 h after exposure. During the 24 h exposure period,

no fungicidal products (including biopesticides) were applied to the

planting. The exposed fruits were immediately surface sterilised with

5% sodium hypochlorite solution and washed several times with

sterilised distilled water (SDW). The fruits were then divided into two

maturity classes (yellow and red/ripe), kept on seeding trays

containing paper tissue, covered with a plastic bag, and incubated

at ambient conditions (ca. 20-25°C) for 3-7 days. Individual fruits

were placed far apart from each other. Fruit was assessed daily for

visible rotting; rot pathogens growing on the fruits were identified

based on morphological characteristics (Agyare, 2017). Thus, each

batch of sampled trusses generated two data points: one for yellow

(immature) and the other for red/ripe fruit. This process was repeated

to obtain as many samples as possible (Table 1).
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Weather data [temperature, relative humidity (RH) and dew

temperature (DewT)] were captured by USB502 data logger

(www.mccdaq.com) at an interval of 20 min. Vapour pressure

deficit (VPD) was then calculated from temperature and RH.
2.2 Trapping Mucor and
Rhizopus inoculum

Inoculum during each 24 h exposure period was trapped based on

theMYA-K selective media method (Agyare, 2017). The basal medium

MYA (malt yeast agar) was prepared (malt extract 20 g l-1, yeast extract

2 g l-1 and agar 15 g l-1), autoclaved at 121°C for 15 mins and kept in

50°C water bath for addition of chloramphenicol and ketoconazole.

Chloramphenicol (0.25 g) was dissolved in 5 ml 98% absolute ethanol,

and filter sterilised with 0.22 µm sterile acrodisc filter

(GelmanSciences). Ketoconazole (0.25 g) was dissolved in 2 ml 95%

absolute ethanol and filter sterilised with the 0.22 µm sterile acrodisc

filter. The prepared chloramphenicol and ketoconazole solutions were

added to the 50°C molten MYA medium (500 ml). The medium was

then thoroughly mixed and poured into 90 mm Petri plates.
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Sterile filter papers (90 mm Fisherbrand 11566873) were placed

in 90 mm Petri plate lids in a sterile flow cabinet. A pipette was used

to add 1 ml of SDW onto the paper to stabilise the paper on the lid.

The lids were covered with the inverted Petri plates. One plate was

exposed at each of three randomly selected positions within each

planting. The same positions for inoculum trapping were

maintained during all 24 h exposure periods in the same planting.

The filter papers containing trapped spores were transferred to

MYA-K selective media with the exposed paper surface facing up

using sterile forceps in a flow cabinet. These were then incubated at

21°C for 4-7 days and inspected daily for fungal growth. The fungal

colonies growing on the selective media-contained paper were

identified based on morphology and counted (Figure 1).
2.3 Data analysis

Two statistical approaches were used to model the relationships

of disease incidence with weather conditions and inoculum strength.

Firstly, data were analysed within the GLM (generalised linear model)

framework, in which residual errors were assumed to follow a
FIGURE 1

MYA-K selective medium showing colony growth of trapped spores from filter-paper inoculum sampling.
TABLE 1 Number of samples of strawberry fruit at the white and ripe stage obtained to determine the level of fruit infection by Mucor and Rhizopus
spp. within a period of 24 h exposure to natural pathogen inoculum in 2018, 2019 and 2023 [only those samples with the total number of fruits of at
least 20 were included].

Site Cultivar
2018 2019 2023

White Ripe White Ripe White Ripe

Clockhouse Farm Elizabeth 8 8

Zara 8 32

East Malling Amesti 19 19

Olivia 5 9

Malling Centenary 12 12

Driscol’s 31 30

Hatchgate Farm Amesti 23 22
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quasibinomial distribution and the logit was used as the link function.

Secondly, the incidence data were transformed into three categories:

low, moderate and high, and then subjected to classification tree

analysis, which was conducted with the rpartScore package in R

(Galimberti et al., 2012). The criteria for classifying disease incidences

into the three categories were based primarily on the need to have

enough cases in the categories of moderate and high risks, but also

considered the minimum sample size in the present study. The

rpartScore package was designed specifically for building

classification trees for ordinal responses within the general

framework of classification and regression tree (CART) analysis. In

the present study, classification trees were built on the generalised

Gini impurity function and their predictive performance was assessed

based on the misclassification costs. There is an in-built capability of

cross-validation in rpartScore; in the present study, a 10-fold cross-

validation was used. Fitted trees were pruned based on the rule of one

standard error of predictive performance (one-se-pr) (Breiman et al.,

1984), namely the final tree was the smallest/simplest tree with the

average relative predictive performance within one-se-pr of the

minimum average relative predictive performance of all tree sizes.

The goodness of fit was statistically assessed by the linear-by-linear

association test (implemented in the R coin package (https://

rdocumentation.org/packages/coin/versions/1.4-3).

Each 24-h period was divided into day (9:00 am to 20:59 pm)

and night (21:00 pm to 8:59 am next day). Average temperature,

RH, VPD, and DewT were calculated for each day and night period;

similarly, the coefficient of variation (CV) of each of the four

variables was also calculated for each time period. Furthermore,

24 h (daily) average of each of the four variables was calculated,

together the corresponding CVs. The cross product between log-

transformed 24 h inoculum counts and each of the four daily

average variables was calculated to represent the interaction

between inoculum and weather conditions. Inoculum counts were

logarithmically (on the natural base) transformed as ln(x+1.5)

instead of the usual ln(x+1.0) to prevent zero values when

inoculum was multiplied by other predictors. Table 2 give the

summary of all predictors used in modelling. Two sets of

predicators were used for developing GLM and classification tree

models – (1) all predictors and (2) all predictors with those

inoculum-related variables excluded.

All analyses were carried out in R version 3.6.0 (Team, 2019).
3 Results

3.1 Observed fruit infection and
weather conditions

A total of 266 samples of strawberry fruit at the white or ripe

stage were obtained in the three years. Only 238 of the 264 samples

were retained for statistical analysis (Table 1) because the remaining

26 samples had fewer than 20 fruit and hence were excluded.

Figure 2 shows the average daytime and nighttime values of
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TABLE 2 Summary of all predictors used to develop models for
incidence of strawberry fruit rotting caused by Mucor and Rhizopus in
24-h exposure periods.

Variable Definition

Mucor_I
Daily trapped Mucor colony counts
logarithmically transformed

Rhizopus_I
Daily trapped Rhizopus colony counts
logarithmically transformed

TM_Day Average daytime temperature (9:00 am to 20:59 pm)

TM_Night Average nighttime temperature (21:00 pm to 08:59 am)

TCV_Day
Coefficient of variation (CV) in daytime temperature (9:00
am to 20:59 pm)

TCV_Night CV in nighttime temperature (9:00 am to 20:59 pm)

RM_Day Average daytime relative humidity (9:00 am to 20:59 pm)

RM_Night Average nighttime relative humidity (21:00 pm to 08:59 am)

RCV_Day CV in daytime relative humidity (9:00 am to 20:59 pm)

RCV_Night CV in nighttime relative humidity (9:00 am to 20:59 pm)

VM_Day
Average daytime vapour pressure deficit [VPD] (9:00 am to
20:59 pm)

VM_Night Average nighttime VPD (21:00 pm to 08:59 am)

VCV_Day CV in daytime VPD (9:00 am to 20:59 pm)

VCV_Night CV in nighttime VPD (9:00 am to 20:59 pm)

DM_Day Average daytime dew temperature (9:00 am to 20:59 pm)

DM_Night Average nighttime dew temperature (21:00 pm to 08:59 am)

DCV_Day CV in daytime dew temperature (9:00 am to 20:59 pm)

DCV_Night CV in nighttime dew temperature (9:00 am to 20:59 pm)

TM_Daily Average daily (24 h) temperature

TCV_Daily CV in daily temperature

RM_Daily Average daily relative humidity

RCV_Daily CV in daily humidity

VM_Daily Average daily VPD

VCV_Daily CV in daily VPD (9:00 am to 20:59 pm)

DM_Daily Average daily dew temperature

DCV_Daily CV in daily dew temperature

MI_Daily_VPD Product of average daily VPD with Mucor_I

MI_Daily_Temp Product of average daily temperature with Mucor_I

MI_Daily_RH Product of average daily relative humidity with Mucor_I

MI_Daily_Dew Product of average daily dew temperature with Mucor_I

RI_Daily_VPD Product of average daily VPD with Rhizopus_I

RI_Daily_Temp Product of average daily temperature with Rhizopus_I

RI_Daily_RH Product of average daily relative humidity with Rhizopus_I

RI_Daily_Dew Product of average daily dew temperature with Rhizopus_I
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temperature, RH, VPD and DewT for all 24 h exposure periods.

Overall, weather conditions were less variable and moister in 2023

than in 2018 and 2019.

There were large differences in both Mucor and Rhizopus

incidences among the three years (Figure 3). Overall, Mucor

incidence was 2.2%, 5.0% and 7.2% for 2018, 2019 and 2023,

respectively; the corresponding values for Rhizopus were 4.3%,

19.3% and 3.4%. On average, disease incidence was higher on ripe

fruit than on white fruit: 12.1% vs 2.8% (Rhizopus) and 6.4% vs 1.4%
Frontiers in Horticulture 05
(Mucor). Incidences on white fruit were mostly close to zero,

particularly for Mucor (Figure 3). The incidence varied greatly

among individual 24 h exposure periods. For Rhizopus, incidence

was zero in 64 of the 132 ripe fruit samples, and in 69 of the 106

white fruit samples. ForMucor, no rotting was observed in 50 of the

132 ripe fruit samples, and in 78 of the 106 white fruit samples.

Trapped inoculum counts were variable, particularly in 2018;

inoculum counts were lower in 2023 than in the other two

years (Figure 3).
FIGURE 2

Average day (9:00 am to 20:59 pm; red) and night (21:00 pm to 8:59 am next day; blue) values of temperature, humidity, vapour pressure deficit and
dew temperature for all 24 h periods (x-axis) in which strawberry fruit were exposed to natural inoculum in strawberry plantings under protection.
frontiersin.org
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3.2 GLM analysis of fruit rot incidence

Both Pearson and Spearman correlation (r) of rotting

incidences with other variables is given in Supplementary Table 1.

Pearson correlation of the Rhizopus rotting incidence with

summary weather variables was low, ranging from -0.161 to

0.317, but statistically significant (P < 0.05) for TM_Night (r =

-0.161), TCV_Day (r = 0.260), RM_Night (r = 0.135), RCV_Day

(r = 0.285), VM_Night (r = -0.145), VCV_Day (r = 0.317),

TCV_Daily (r = 0.142), and VCV_Daily (r = 0.252). For the
Frontiers in Horticulture 06
Mucor rotting incidence, Pearson correlation ranged from -0.162

to 0.105 and statistically significant (P < 0.05) for TM_Day (r =

-0.146), RCV_Night (r = -0.143), VM_Day (r = -0.145) and

RCV_Daily (r = -0.162). Daily trapped inoculum counts were not

significantly corelated with the disease incidence for both

pathogens. Pearson correlation of inoculum counts with weather

variables was also low: from -0.132 to 0.148 and from -0.148 to

0.206 for Mucor and Rhizopus, respectively.

For both Mucor and Rhizopus, GLM models fitted the data

poorly (Figure 4). For Mucor, the best model consisted of four
FIGURE 3

Observed incidence of infection of strawberry fruit by Mucor and Rhizopus spp. during individual 24 h exposure periods (x-axis) under protection,
and the corresponding trapped inoculum counts based on selective media.
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predictors: fruit stage (P < 0.01) and three variables describing daily

CV in RH (RCV_Daily, P < 0.001, slope = -8.09), temperature

(TCV_Daily, P < 0.05, slope = 6.32) and DewT (DCV_Daily, P <

0.05, slope = -6.71). However, the Pearson correlation between

fitted and observed values was only 0.37. After the four predictors

were included, there were still large significant differences among

the three years.

For Rhizopus, the best GLM model consisted of four predictors:

fruit stage (P < 0.001) and three variables describing daytime CV in

RH (RCV_Day, P < 0.001, slope = 9.01), temperature (TCV_Day, P <

0.01, slope = -8.26) and VPD (VCV_Day, P < 0.001, slope = 3.87).

The Pearson correlation between fitted and observed values was only

0.48. After the four predictors were included, the differences among

the three years were no longer statistically significant.

Goodness of fit failed to improve when GLM analysis was

applied to only ripe fruit data. Three CV variables in daily RH

(RCV_Daily), temperature (TCV_Daily) and DewT (DCV_Daily)

were included for Mucor, and only the daytime CV of RH

(RCV_Day) was needed for Rhizopus. However, the Pearson

correlation between fitted and observed values were only 0.27 for

Mucor and 0.38 for Rhizopus.
3.3 Classification trees

For Mucor, risk for a given 24 h exposure period was classified

as ‘low’, ‘moderate’ and ‘high’ when the observed incidence was <

1%, in the range of 1% to 7.5%, and ≥ 7.5%, respectively. Similarly,

for Rhizopus, it was classified as ‘low’, ‘moderate’ and ‘high’ when

the observed incidence was < 5%, in the range of 5% to 15%, and ≥

15%, respectively. There were 144, 53 and 41 cases whenMucor risk

was in the low, moderate and high category; the corresponding

values for Rhizopus were 159, 41 and 38.

The classification tree for Mucor when all predictors were

included had three splits and four terminal nodes (Figure 5). The
Frontiers in Horticulture 07
first split was determined by fruit development stage – all white fruit

samples were given the low risk. The next split level was determined

by the product of inoculum counts with average daily VPD

(MI_Daily_VPD): values higher than 0.716 led to low risks.

Average nighttime RH (RM_Night) determined the final split: RH

higher than 87.3% led to moderate risks and otherwise high risks.

The classification tree for Mucor when inoculum-related

predictors were excluded had five splits at four levels and six

terminal nodes (Figure 6). The first split was also determined by

fruit development stage – all white fruit samples were given the low

risk. The 2nd and 3rd level splits were determined by variability in

weather conditions (Figure 6), initially by the CV in daily VPD

(VCV_VPD) and then by the CV in nighttime VPD (VCV_Night).

The final split was determined by daily average RH (RM_Daily).

Lower variability in VPD coupled with high RH led to high disease

risks. However, extreme high daily variability in VPD (CV > 98.1%)

also led to moderate disease risks, compared to the risk under

moderate variability in VPD (CV in the range of 74.3% to

98.1%) (Figure 6).

Both sets of predictors (all, and those excluding inoculum-

related predictors) produced the same tree for Rhizopus. This

simple tree only had two splits and three terminal nodes

(Figure 7). The first split occurred at the condition of whether the

daytime CV of VPD (VCV_Day) was < 0.39. If this condition was

satisfied, a low risk was predicted. If the condition was not satisfied,

a low risk was also given for white fruit and a moderate risk for ripe

fruit. Thus, this decision tree did not generate any prediction of high

risks (Table 2).

Although all fitted risk values were highly associated with

observed values for all three trees, there were misclassifications

for many samples (Table 3). TheMucor tree based on all predictors

correctly predicted the risk level for 163 out of the total 238 samples

(68.5%), whereas the weather-only tree gave correct predictions for

160 cases (67.2%). For the Rhizopus, the tree correctly predicted

risks for 155 cases (65.1%).
A B

FIGURE 4

Fitted incidence of fruit rotting caused by (A) Mucor and (B) Rhizopus spp. in 24 h exposure periods. GLM was used to relate observed incidences to
weather conditions and trapped inoculum during the exposure periods.
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4 Discussion

The present study confirmed previous research that ripening/

ripe strawberry fruits are more susceptible to infection by Mucor

and Rhizopus. It is primarily the variability of vapour pressure

deficit that appears to be the important weather conditions affecting

rot development for both Mucor and Rhizopus. However, the

predictability of both Mucor and Rhizopus based on the current

set of predictors is too low to be of practical value.

White/yellow fruit were much less susceptible to Mucor and

Rhizopus than ripe fruit, agreeing with previous research (Agyare

et al., 2020). The classification tree model for Mucor gives low risks
Frontiers in Horticulture 08
for white fruits. However, for several samples the incidence of

Rhizopus on white fruits reached > 15%. Indeed, the fitted

classification tree for Rhizopus did not have the fruit age as the

first split criterion. Thus, for predicting and managing soft rot

development on white fruits, infection by Mucor may be ignored

but not Rhizopus.

The present study suggested that it is the variability in climactic

conditions, particularly vapour pressure deficit, rather than the

absolute level, which appears to be more important in influencing

infection of strawberry fruit by Mucor and Rhizopus. The

importance of variability in climatic conditions on rot incidences

may be explained by two reasons. Firstly, substantial changes in air
FIGURE 5

Classification trees of categorical risks of strawberry fruit infection by Mucor in a 24-h exposure period. All weather and inoculum-related predictors
were included. There were three levels of risks: low, moderate and high, corresponding to a nominal numeric value of 1, 2 and 3, respectively. The
thick horizontal line is the predicted risk, and the box plot represents observed data under each terminal node. Refer to Table 2 for definition
of predictors.
FIGURE 6

Classification trees of categorical risks of strawberry fruit infection by Mucor in a 24-h exposure period. Only weather predictors were included.
There were three levels of risks: low, moderate and high, corresponding to a nominal numeric value of 1, 2 and 3, respectively. The thick horizontal
line is the predicted risk, and the box plot represents observed data under each terminal node. Refer to Table 2 for definition of predictors.
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moisture may increase inoculum mortality and/or reduce spore

germination/infection. Spore germination is more affected by

relative humidity than by temperature (Agyare et al., 2020).

Secondly, substantial changes in weather conditions may increase

spore dispersal from the ground to the canopy. Spreading plant

pathogens by water splash is an important mechanism of fungal

inoculum dispersal (Fitt et al., 1989; Madden, 1997). However,

under protected production without overhead watering, aerial

inoculum dispersal is the main mechanism for fungal inoculum

movement. Initial dislodging of spores from sporing bodies on the

ground level into air to reach sufficient height (around 1 m for the

table-top production of strawberry in the sampled planting) may be

increased under rapid/large changing climatic conditions (e.g.
Frontiers in Horticulture 09
changes in relative humidity/vapour pressure deficit) in addition

to disturbance by fruit picking and other management practice.

In both GLM and classification tree models for bothMucor and

Rhizopus, only once was an inoculum-related variable included –

this is the interaction (product) term between logarithmically-

transformed inoculum and daily average vapour pressure deficit

in theMucor classification tree model. A high value (> 0.716) of this

interaction term led to lower risks. For this term, high values may

result from high vapour pressure deficit and/or high inoculum.

However, high inoculum leading to low disease risks does not sound

biologically plausible. It is thus more likely that high vapour

pressure deficit (drier conditions) is responsible for this

classification criterion. Interaction terms are in general difficult to
FIGURE 7

Classification trees of categorical risks of strawberry fruit infection by Rhizopus in a 24-h exposure period. All predictors (including inoculum-related
ones) were included. There were three levels of risks: low, moderate and high, corresponding to a nominal numeric value of 1, 2 and 3, respectively.
The thick horizontal line is the predicted risk, and the box plot represents observed data under each terminal node. Refer to Table 2 for definition
of predictors.
TABLE 3 Summary of classification tree analysis of daily risks of strawberry fruit infection by Mucor and Rhizopus.

Fitted values

Observed values

Mucor Rhizopus

All predictors Weather predictors Both predictor sets

Low Moderate High Low Moderate High Low Moderate High

Low 129 40 16 125 32 8 135 21 8

Moderate 9 10 4 19 20 18 24 20 30

High 6 3 21 0 1 15 0 0 0

Statistical test (linear-by-linear association test)

Z-value 7.4 9.37 -8.08

Probability < 1.3E-13 < 2.22E-16 < 6.5E-16
frontier
Statistical testing was based on thelinear-by-linear association test.
sin.org

https://doi.org/10.3389/fhort.2024.1373717
https://www.frontiersin.org/journals/horticulture
https://www.frontiersin.org


Xu et al. 10.3389/fhort.2024.1373717
interpret biologically for field observational data as for

interpretation of inter-correlated predictors in GLM. Another

issue may affect the interpretation of this interaction term (also

the general model performance) is the temporal pattern of

inoculum availability and weather conditions within a 24 h

period. Unlike in controlled inoculation studies, there is no

synchrony between inoculum arrival (hence inoculation) and

specific weather condition, which always presents problems for

evaluating disease predicative models under commercial conditions.

Whether the incidence is modelled as a continuous variable or

an ordinal variable, the present study showed low predictability of

soft rot incidences on strawberry fruits. This low predictability may

be explained by several reasons in addition to the aforementioned

asynchrony between inoculation and specific weather condition.

Firstly, this low predictability is consistent with the conclusion from

our previous artificial inoculation research under controlled

conditions that climatic conditions are unlikely to be the main

factor limiting infection of fruit by M. piriformis and Rhizopus for

the main strawberry production season in the UK (Agyare et al.,

2020). Secondly, inoculum may have not been accurately quantified

in the present study, which probably explains the lack of

relationship of disease incidence with inoculum strength. We

used a selective media method that relies on passive inoculum

impaction and hence does not sample equal air volume among

sampling periods unlike Burkard trap, a commonly used spore

sampler (Frenz, 1999; Blanco et al., 2004). Accurate differentiation

of fungal colonies in the media based on morphology may not be

always possible and relies on specific expertise. Finally, varietal

differences in disease susceptibility, although contributing far less to

fruit rotting than fruit age (Agyare et al., 2020), may be included

into the model to improve model performance. Including varietal

information into a model may improve its predictive performance

but also limits its applicability because of the rapid cultivar turnover

in commercial strawberry production.

A number of alternative products when applied preharvest were

found to have significantly reduced strawberry post-harvest rotting,

including Mucor and Rhizopus (Romanazzi et al., 2016). A few

biocontrol agents were effective against Mucor and Rhizopus, but

the efficacy varied largely with strawberry cultivars (Błaszczyk et al.,

2022). Given the low predictability of soft rot infection, scheduled

application of these products may be necessary at least for now

instead of based on predicted disease risks. Other management

strategies may include suppressing inoculum and cool-chain

management. Under protected cropping systems, rapid removal

of field heat immediately after harvesting and subsequent cool-

chain management are sufficient to manage grey mould without the

need to use fungicides for strawberry (Berrie et al., 2022) and

raspberry (O'Neill et al., 2012). Such a cool chain is more likely to

have some effects against Rhizopus than Mucor since the latter can

survive and grow under temperature in the range of 0-4°C better

than Rhizopus. However, it should be noted that cold-tolerant

Rhizopus strains were found to cause strawberry soft rots in New

Zealand (Siefkes-Boer et al., 2009).

Soil management under protection for table-top strawberry

production may be still necessary because population dynamics of

Mucor piriformis in pear orchards is affected by soil moisture and
Frontiers in Horticulture 10
temperature (Spotts and Cervantes, 1994). Practical management

practices include using cover crops to ensure good ground

vegetation. To investigate the effectiveness of these measures as

well as to quantify inoculum strength for predicting disease risks,

there is an urgent need to develop methods for rapid yet accurate in

situ quantification of pathogen inoculum. Recently, qPCR

quantification has been combined with Burkard samplers to

quantify airborne inoculum (Cao et al., 2016; Pizolotto et al.,

2022). Other approaches include detection and quantification

based on immune response (Meyer et al., 2000; Yucel et al., 2005)

and pathogen specific volatiles (Jiang et al., 2023).

In summary, fruit are more susceptible to Mucor and Rhizopus

at the ripe stage than at the white/yellow stage. Variability in

climatic conditions, particularly in vapour pressure deficit,

appears to be the most important factor influencing soft rot

development. However, the overall predictability of infection of

fruit byMucor and Rhizopus is low. Future research should focus on

developing (1) tools for accurate and rapid in situ inoculum

quantification and (2) strategies for minimising local inoculum.
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