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The rhizosphere is a dynamic environment in which multiple microbial activities

elicit phenotypical, physiological, and molecular crop responses. For a better

understanding of the rhizosphere microbiome, researchers are utilizing next-

generation sequencing to focus on microbiome regulations with an emphasis on

multi-functional microbes. There are two main concepts currently being focused

on: identifying microbial antagonists (between beneficial microbes and plant

pathogens) from predominant stocks of plant-growth-promoting microbes,

preferably with an aim towards bioprospecting soil-plant health; and secondly,

developing a more microbially active rhizosphere through a process called

rhizosphere hybridization (RH). The present review is focused on some recent

studies on the outcome of RH in citrus cultivars, showing renewed functional

corridors of the rhizosphere characterized by secondary metabolites providing a

load-supporting functional dichotomy through elevated nutrient-supply, activated

soil enzyme profiles, and improvements in root- shoot systems and plant defense

enzymes. These response trade-offs collectively contributed to higher quality yield

coupled with possibly a better shelf life of fruits. The rhizobiome of heritage trees

viz., Azadirachta, Ficus, Dendrocalamus, Populus, Sasa, Acer, Alnus, Quercus, and

Phyllostachys, could be effectively used in exercising RH. These observations on RH

mean the concept could be expanded in other fruit crops, with an emphasis on

developing a robust holobiont (climate-smart suppressive soils and engineering

rhizosphere microbiomes for microbially engineered plants) as a part of

regenerative agriculture.
KEYWORDS

antagonism, citrus, fruit crops, functional corridor, growth promotion, heritage trees,
holobiont, microbial niche
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1 Introduction

The soil region adhering to the plant root system, popularly

known as rhizosphere, is said to exhibit the greatest microbiome

diversity, responsible for changes in the soil bio-physico-chemical

properties influenced by root growth and their elevated activity

(Pinton et al., 2007). The term “Rhizosphere” was coined by the

German scientist Hiltner (1904) from two Greek words i.e. rhiza

(root) and sphere (field of influence). There are three broad

classifications (Prashar et al., 2013) describing three different tiers

of rhizosphere properties: i. root tissues enclosing endodermis and

cortical layers (endorhizopshere); ii. the root surface adhering to

soil particles and microbes (rhizoplane); and iii. soil immediately

adjacent to the root (ectorhizosphere).

Plant roots release various organic compounds through

exudation, secretion, and deposition, from seed germination

through to the growth of an adult plant, thereby biologically

transforming the rhizosphere (Moshiri et al., 2019; Raiesi et al.,

2022; Nourgholipour et al., 2022). In this process, plants recruit

active microbial communities within the rhizosphere along and

within the rootzone (Mousavi et al., 2018). Organic compounds

such as water soluble exudates, lysates, dead fine roots, and

inorganic ions are made up of gases released by living root

systems that are deposited into their surrounding environment

and are collectively called rhizodeposition (Whipps and Lynch,

1985). The nature and properties of rhizodeposition increase the

nutrient supply in the soil (Solanki et al., 2020). The carbon derived

from plants via roots have three different routes of transformation

(Cheng and Gershenson, 2007): i. root mass with living or dead root

cells; ii. rhizodeposits with plant-derived materials that are

effectively transformed by the rhizosphere; and iii. carbon dioxide

released by roots and microbial communities. Interestingly, the

microbial diversity of the rhizosphere changes in terms of its

composition, structure, and function depending on plant

developmental and health status, genotypes, and prevailing soil

conditions (Zhang et al., 2021a). The rhizosphere microbiota have

strong relationships with plant growth and health through nutrient

transformation, disease resistance, and substrate metabolism (Wei

et al., 2020). Studies on different plants have confirmed that

rhizosphere microbiota regulated by breeding and plant

domestication play pivotal roles in plant resistance to soil

pathogens (Berendsen et al., 2018; Yin et al., 2021). Such complex

microbial food webs (referred to as combined trophic interactions)

develop in the rhizosphere, linking different microbial communities

with environmental conditions and management practices (Jeffery

et al., 2010).

Acknowledging the rhizosphere as a unique niche of complex

microbial populations that governs soil-plant health-related issues

on one hand and sustaining crop production on the other hand

(Avis et al., 2008; Singh et al., 2018a) are the two major pillars of

sustainable crop production. Conventional plant hybridization

ensures plants inherit beneficial genes from both parents, but the

influence of such hybridization on the rhizosphere microbiome has

not been studied much. This area could potentially aid in

identifying promising microbial communities linked to multiple
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stress tolerance. This kind of attempt also showcases how the plant

and microbial gene pool could be integrated synergistically to

obtain a microbially engineered plant with an emphasis on

developing a hyper-diverse rhizosphere microbiome-driven

multiple plant tolerance.

In addressing this important issue, comparative studies (Zhang

et al., 2021b; Wang et al., 2023; Xie et al., 2024) on monoculture

versus intercropping cultivation patterns of fruit crops have

revealed significant differences in the reshaping of microbial

communities and the metabolism of both beneficial microbes and

microbial antagonists (Lu et al., 2019). Shen et al. (2024) observed

how growing almond mushroom (Agaricus blazei Murill)

intercropped with kiwifruit (Actinidia chinensis L.) aided in

identifying 95 bacteria genera and 79 soil metabolites. In another

study on intercropping sweet potato (Ipomoea batatas (L) Lam.) in

banana (Musa nava Lour.) orchard (Li et al. 2022), soil bacterial,

and fungal populations were shown to be significantly higher in

intercropped banana (476.0-511.7 and 154.3-198.3 colonies)

compared to monocropped banana (397.7-451.0 and 112.0-147.0

colonies). Likewise, studies on Pinto peanut (Arachis pintoi L.)

intercropped in litchi (Litchi chinensis Sonn.) orchard showed

improved metabolic activity of advanced bacterial communities,

leading to higher potassium supply that correlated to the resistance

of litchi root systems to soil borne-diseases (Zhao et al., 2022).These

studies provide ample evidence of microbial communities

undergoing mutational changes via different trophic interactions

when conditioned by root exudates of main crops and intercrops.

We propose the term “Rhizosphere Hybridization” (RH) to describe

this conceptual framework (Figure 1). RH is a concept that involves

combining the microbial diversity of different crop rhizospheres to

improve the rhizosphere function of targeted crops for improved

plant growth and development. In this paper, efforts were made to

collate the work done on the rhizosphere microbiomes of different

promising tree plants that could align with RH as well as put forth

some future lines of research on the concept.
2 Bibliometric analysis of rhizosphere
research

The authors sought to analyze various areas of rhizosphere

microbiome research by reviewing publications from varied

databases representing Web of Science, Google Scholar, Springer

Link, and Wiley-Blackwell databases using keywords such as

“rhizosphere” , “rhizosphere microbiota” , “rhizosphere

interactions”, and “rhizosphere hybridization”. The results

showed that 25320 publications on the rhizosphere were

published from 2000-2022: 18255 research articles, 2553 review

articles, and 4512 publications in the form of book chapters,

encyclopedias, and conference abstracts. Of these, a majority of

the 12082 publications were dedicated to agricultural and biological

sciences. One notable point is that the rhizosphere studies in the

subject areas of “Agricultural and Biological Sciences” and

“Environmental Science” began in 2010. These results aided in

understanding the process of RH and its agronomic impacts on
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crops. Only 1661 publications were dedicated to rhizosphere studies

published from 2000-2022. Finally, based on the main objectives of

the present study focusing on rhizosphere effects and RH, their

impact on different crops, and rhizosphere health, 48 research and
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14 review papers featuring issues such as fruit crop-based

intercropping systems and rhizosphere studies of heritage trees

were selected for onward discussion. Such a bibliometric analysis of

rhizosphere research facilitated in identifying the gaps in
FIGURE 1

Schematic representation of the RH process.
FIGURE 2

Bibliometric analysis of rhizosphere research highlighting the growing dynamics of rhizosphere-related issues over the past 22 years (2000-2022).
Rhizosphere microbiome research has been one of the core issues among researchers worldwide.
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rhizosphere research (Figure 2) and, at the same time, provided

strong clues towards the rising popularity of rhizosphere

research worldwide.
3 Rhizosphere, the seat of microbial
battle

The rhizosphere is considered a dynamic battlefield between

pathogenic and growth-promoting microorganisms, the outcome of

which is largely determined by suitable management practices. These

“battles” are where all active microorganisms interact among themselves

through beneficial (mutualistic), neutral (commensalism), or

detrimental (parasitic) relationships. Microbial build-up of the

rhizosphere plays a vital role in mediating health and fitness against

multiple stresses (Hacquard and Schadt, 2015; Zhang et al., 2021b) and,

responsively, the host forms its microbial assemblage (Sasse et al., 2018).

Although limited studies have highlighted the rhizosphere microbiomes

of tree species (Uroz et al., 2010, 2016; Gallart et al., 2018), knowledge on

the links between site factors, composition, and specificmicrobial niches

concerning tree health is still lacking. The rhizosphere ecosystem of fruit

trees is based on a fruit tree-soil-microbe relationship (representing the

phytobiome) and their interactions with environmental

attributes (Table 1).

Among subtropical fruit crops, citrus is one of the most

extensively researched worldwide (Srivastava and Hota, 2020). In

India, citrus microbiome studies have been undertaken from

various angles (Srivastava et al., 2015a), with a particular focus on

microbes-mediated soil fertility management (Srivastava and

Ngullie, 2009; Srivastava and Malhotra, 2017) to sustain both

production (Srivastava and Singh, 2008a) and fruit quality

(Shamseldin et al., 2010; Srivastava et al., 2015b), as well as to

invesitgate properties (Ngullie et al., 2015). Citrus is a highly

nutrient-responsive crop, due to the existence of a strong nutrient

sink (Srivastava and Singh, 2008b). However, regulating quality

production through exploitation of the citrus rhizosphere

microbiome has become a massive challenge (Srivastava and

Singh, 2009). Some initial attempts have shown that citrus, like

any other fruit crop, transforms the rhizosphere microenvironment

according to the prevailing soil fertility gradient (Srivastava and

Singh, 2009). These citrus rhizosphere-based microbes showed a

strong association with citrus root either alone (Srivastava, 2010) or

in combination with organic manure (Srivastava et al., 2002) and/or

in combination with chemical fertilizers (Srivastava et al., 2015b).

Likewise, changes in rhizosphere properties vis-à-vis fruit crops

have been studied, highlighting crops such as strawberries (Kumar

et al., 2020), apples (Soliman et al., 2023), citrus (Srivastava et al.,

2017), fig (Abid et al., 2022), and pear (Zhang et al., 2020).
3.1 Rhizosphere Microbiome of Heritage
Trees

It is common to see an unwarranted decline in the productivity

of perennial crops, especially in fruit crops, after attaining peak
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productivity (Srivastava and Singh, 2009). This is due to the specific

rhizosphere environment, popularly known as the “Negative

Rhizosphere Effect” (NRE). NRE is commonly observed in

crops like tea, apple, peach, and pear (Pandey et al., 2001;

Somera and Mazzola, 2022). NRE is often regarded as a “Replant

Disease” The underlying reasons for such a rhizosphere-driven

decline in productivity is still not understood. Is it a case of the

rhizosphere priming on microbial mining or nutrient mining?

Sustaining the peak productive life of fruit trees is perhaps the

most formidable challenge in agriculture. Researchers worldwide

are still working hard to come up with well-conceptualized

mechanisms associated with NRE. Modifications in the structural

and functional microbial fabric of the rhizosphere due to

continuous cropping is often regarded as the root cause of NRE.

Sui et al. (2024), while comparing BT (perennial Poplar big trees)

and CK (replanting the Poplar seedlings in soil after continuous

cropping) groups of Poplar trees, reported no change in Bacillus

(2.2-2.41%), while Inocybe and Geopora were 35.3 and 26.2%

higher, respectively, in BT than CK groups, suggesting the

rhizosphere microbiome was modified in the most effective way

to ward off any NRE arising from continuous cropping. Dijkstra

et al. (2013) proposed three nutrient-centered hypotheses: i.

microbial mining causing a positive rhizosphere priming effect

under low soil nutrient availability, ii. preferential substrate

utilization inducing a shift in action from decomposing soil

organic matter to utilizing rhizodeposition under high soil

nutrient availability, and iii. competition causing a negative

rhizosphere priming effect due to nutrient-limited microbial

growth and decomposition (Weller et al., 2002).

Studies on the rhizosphere microbiome composition of f

heritage trees have opened new avenues for identifying and

isolating elite microbes with plant growth-promoting potential

and antagonistic properties, as well as inoculation into the

rhizosphere of targeted fruit crops. Due to their extended life

cycle and non-deciduous nature, heritage trees are far less

sensitive to biotic and abiotic stresses such as drought, salinity,

herbivores, and pathogen attacks (Rodriguez et al., 2019; Zamora

Ballesteros et al., 2019; Oliva et al., 2020; Pagán et al., 2022),

meaning there is little threat against tree health (Reddy et al.,

2013). The occurrence of a strong relationship between a

rhizosphere microbiome and plant traits is a prerequisite to plant

resistance against soil-borne pathogens (Bora and Bora, 2020a; b)

and can be particularly helpful in heritage/forest trees. In a recent

study on the rhizosphere microbiome of forest trees, Yu et al. (2022)

observed considerable inhibitory effects of bacterial families (such

as Propionibacteriaceae, Phycisphaeraceae, and Rokubacteria) on

fungal pathogens of rhizosphere microbiota of seven forest tree

species with the differential ability of recruiting key rhizosphere

microbes as a function of root exudates. This strengthened the tree-

microbial association, with significant differences amongst tree

varieties. Hence, optimizing the microbial community of fruit tree

rhizospheres with the rhizospheres of heritage trees (e.g. different

species of Ficus, Azadirachta etc) could be an effective approach for

improving growth and yield and developing resistance against soil-

borne pathogens in fruit crops.
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TABLE 1 Microbial diversity of the rhizosphere associated with different fruit crops: a snapshot.

Sl no. Crop details Diversity of microbes Remarks Reference

pulation dynamics of different bacterial
ecies depended on specific crop rhizospheres,
espective of geographical location.

Wemedo and Onolleka (2012)

rganically treated trees harboured higher
icrobial diversity within the rhizosphere
mpared to a conventional fertilizer-
ated rhizosphere.

Kumar et al. (2021)

ver cropping influenced the soil bacterial
mmunity, altered fungal guilds, enhanced the
thotrophic fungi, and reduced the
protrophic fungi.

Wei et al. (2021)

tercropping with either mango or mandarin
date palm plantations promoted the
icrobial diversity by diversifying the
ricultural outcome due to variation in root
udate composition.

Abouziena et al. (2010)

cillus amyloliquefaciens NJN-6 isolated from
e suppressive soil proved to be a potential
o-control agent, reducing Panama wilt disease
cidence by 68.5%.

Xue et al. (2015)

iseased soil samples showed higher OUTs
an disease-free soil samples, without any
nificant difference in species diversity.
isease-free soil samples showed higher indices
abundance-based coverage estimator, Chao
hness estimator, and Shannon diversity.

Zhou et al. (2019)

all roots as rhizosphere environments
owed a higher abundance of important
cterial taxa compared to primary and
condary roots.

Pervaiz et al. (2020)
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1. Mango and Almond (Location: Southern Nigeria) The mango rhizosphere registered a total bacterial count of 3.9-4.6 x 105

CFU g-1, which was comprised of 25% Bacillus, 5% Arthrobacter, 15%
Corynebacterium, and 10% Klebsiella. Total bacterial count in the almond
rhizosphere was observed as 3.9-6.9 x 105 CFU g-1, consisting of 25%
Bacillus, 15% Corynebacterium, 5% Flavobacyerium, 5% Streptococcus, and
5% Azomonas.

P
sp
ir

2. Mango (Location: Lucknow, Uttar Pradesh, India) The rhizosphere microbial composition consisted of Glycomyces,
Chitinophaga, Lysobacter, Udaeobacter, and Bacillus.

O
m
co
tr

3. Mango (Location: Hainan Province,
Southern China)

The rhizosphere consisted of major bacterial phyla, viz., Chloroflexi
(24.77%) followed by Proteobacteria (24.26%), Actinobacteria (17.55%), and
Acidobacteria (15.51%). Dominant fungal phyla included Ascomycota
(79.38%), Sordariomycetes (36.69%), Eurotiomycetes (18.96%),
Dothideomycetes (15.33%), Basidiomycota (11.28%), and
Agaricomycete (9.50%).

C
co
pa
sa

4. Date palm, Mango, and Mandarin (Location:
Salheia Destricat, Sharkia Governorate, Egypt)

Date palm + mango registered a much higher rhizosphere fungal diversity
(Aspergillus humicola, Aspergillus niger, Fusarium sp, Gliocladium sp.,
Penicillium sp., Phycomycetes fungi, Rhizoctonia solani, Rhizopus nigricans),
followed by date palm + mandarin and date palm alone in decreasing order
with corresponding fungal counts of 118.32 x 103 CFU g-1, 16.00 x 103 CFU
g-1, and 21.17 x 103 CFU g-1, respectively.

In
in
m
ag
ex

5. Banana (Location: Hainan province, China) The core microbiome from the disease-suppressive soil was dominated by
Bacillaceae, followed by Hyphomicrobiaceae, Gaiellaceae, Bradyrhizobiaceae,
Sphingomonadaceae, Rhodospirillaceae, Paenibacillaceae, Nitrospiraceae, and
Streptomycetaceae, representing a total of 121 OTUs covering 21.44% of
total microbiome diversity.

B
th
bi
in

6. Banana (Location: Hainan, China) Ascomycota and Zygomycota were the most abundant fungal phyla in soil
samples of diseased and disease-free rhizospheres, respectively, which
consisted of Fusarium, Pseudallescheria, Nectriaceae, Mortierella, Aspergillus,
and Penicillium as dominant species. Regarding bacterial phyla,
Proteobacteria, Acidobacteria, Chloroflexi, Firmicutes, Actinobacteria,
Gemmatimonadetes, Bacteroidetes, Nitrospirae, Verrucomicrobia and
Planctomycetes were dominant phyla with Bacillus, Lactococcus, and
Pseudomonas as major genes.

D
th
si
D
of
ri

7. Peach (Location: Nebraska, USA) Rhizosphere microbial diversity was predominantly composed of
Bradyrhizobium spp., Steroidobacter spp., Saccharibacteria spp., Gp16.,
Actinoplanes spp., Rhizobium spp., Massilia spp., Sphingomonas spp.,
Burkholderia spp., Rhizobium spp., and Pseudomonas spp.
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TABLE 1 Continued

Sl no. Crop details Diversity of microbes Remarks Reference

a
esponse than
., and
ity
x 104 CFU

Klebsiella sp. and B. vietnamiensis inhibited
mycelial growth of Fusarium culmorum by 76-
78% compared to inhibition of mycelial growth
of the fungus Pestalotia sp. by 62-68%, besides
maximum IAA production (180 µg/mL) with
Leclercia sp.

Melo et al. (2018)

ens (MTCC
0),
i (MTCC

These bacteria species showed antifungal
activity against Colletotrichum gloeosporioides
and Curvularia carica papayae. However, ethyl
acetate fraction of P. aeruginosa (MTCC 7904)
and P. monteilii (MTCC 9796) culture filtrate
exhibited complete suppression of mycelial
growth of C. gloeosporioides at 100
ppm concentration.

Girish and Prabhavathi (2019)

d 545 OTUs, Root rot-induced changes in the distribution of
bacterial taxa within the community showed an
increasing relative abundance of
Pseudomonadales and Burkholderiales, whilst
reduced abundance of Actinobacteria, Bacillus
spp., and Rhizobiales was
predominantly observed.

Solıś-Garcıá et al. (2021)

ctinobacteria
%),
omycota

Comparative abundance of fungal and bacterial
microbiota of vineyards showed 82.9% and
58.7% of bacterial and fungal OTUs,
respectively, were shared between vineyards,
demonstrating the existence of a “core” grape
phylogeny, independent of
geographical location.

Berlanas et al. (2019)

teria (34.1%),
bia (12.1%),
.

Higher abundance of Acidobacteria,
Proteobacteria, and Planctomycetes were
observed in organic manure-treated
rhizosphere, while Verrucomicrobia and
Chloroflexi were most responsive under
fertilizer-treated rhizospheres.

Sharaf et al. (2021)

etter outcomes of RH.
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8. Papaya cv. Golden (Location: Sooretama, Espıŕito
Santo, Brazil)

The organic farming system (Burkholderia cepacia, Burkholdei
vietnamiensis, Klebsiella sp. and Leclercia sp) showed a better r
the conventional farming system (Enterobacter sp., Klebsiella s
Burkholderia vietnamiensis) with a contrasting microbial diver
comprising bacterial counts of 14–21 x 104 CFU g-1 and 10–17
g-1, respectively.
.

9. Papaya (Location: Mandya, Karnataka, India) Microbial diversity was characterized by Bacillus amyloliquifac
10439), Bacillus cereus (MTCC 9017), Erwinia sp. (MTCC 276
Pseudomonas aeruginosa (MTCC 7904), Pseudomonas monteil
9796), and Pseudomonas marginalis (MTCC 2758).

10. Avocado (Location: San Carlos, USA and
Huatusco, Veracruz, Mexico)

The bacterial and fungal diversity was observed to have 888 an
respectively, in asymptotic plants against 810 and 574 OTUs in
symptomatic plants.

11. Grape (Location: Aldeanueva del Ebro, La Rioja,
Olite, Navarre, Spain)

Microbial diversity consisted of Proteobacteria (26.1-28.1%), A
(18.5-24.1%), Acidobacteria (13.7-16.4%), Bacteroidetes (5.2-6.1
Ascomycota (66.6-69.9%), Basidiomycota (11.5-20.1%), and Zyg
(8.9-15.2%).

12. Apple (Location: Agricultural Research and
Extension Center, Winchester, USA)

Microbial diversity of the rhizosphere was defined by Acidobac
Proteobacteria (14.3%), Planctomycetes (12.5%), Verrucomicro
and Chloroflexi (9.9%) in decreasing order of their dominance

The rhizosphere microbiome of these exemplary fruit trees provide strong clues about their richness in diversity that could be effectively utilized for b
r

p
s

i

i
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As many as 40% of plant photosynthates are reported to be lost

by root systems, resulting in a nutrient-enriched rhizosphere that

harbors a greater diversity of microbiome (Nannipieri et al., 2007)

and has diversified roles in plant growth and development. Soil

health with respect to physical and chemical properties depends on

the biological activity of the rhizosphere (Srivastava and Singh,

2001) to be involved in the maintenance of soil health and quality.

The microbiome diversity within a crop rhizosphere is, therefore, a

product of crop variety or cultivar, rootstock-scion combination,

age of plant, root architecture, management practices (Srivastava

et al., 1994; Gupta et al., 2008), and soil properties (Srivastava and

Singh, 2002). Various relationships of different microbial

communities within the rhizosphere of a plant take place through

the enhancement of plant growth nutrient availability and soil

health and the suppression of the pathogenicity of disease-causing

pathogens (Pinho et al., 2020).
4 Crops with unique rhizosphere
properties

Soil microbial activities and their population dynamics are

significantly affected in the presence of living roots, popularly

known as the “rhizosphere effect”, which regulates the accumulation

pattern of different nutrients and ecosystem functioning in terrestrial

ecosystems (Yuan et al., 2020). Interestingly, the phylogenetic distance

of plant hosts and associated bacterial communities are closely related

(Lei et al., 2019). Sinha et al. (2009) proposed the rhizosphere

properties rhizosphere microbial index, dehydrogenase, basal soil

respiration/microbial biomass carbon ratio, electrical conductivity,

phenol oxidase, and active microbial biomass carbon as the most

critical in defending the rhizosphere of tree species such as Aegle

marmelos, Azadirachta indica, Bauhinia bauhinia, Butea

monosperma, Eugenia jambolana, Moringa oleifera, Dalbergia sissoo,

Tamarindus indica, Morus alba, Ficus religiosa, Eucalyptus sp., and

Tectona grandis.

The rhizobiome of tree species such as banyan (Ficus

benghalensis L.), bamboo (Dendrocalamus strictus (Roxb.) Nees),

Neem (Azadirachta indica A. Juss), which possess inherent abilities

for high biomass production, higher microbial activity, and broad

geographic adaptability makes them preferable choices as bio-

inoculants (Table 2). But, an in-depth investigation of microbial

diversity and functions to identify multi-functional microbes

followed by co-evolutionary changes as a result of the

introduction into the rhizosphere of target crop(s) is imperative

to redefine the microbial networking of new rhizospheres, called

“hybridized rhizosphere”. Evidence for such novel possibilities can

be easily drawn from crop-specific rhizosphere microbiome traits

and their reshaping in response to crop management inputs.

Nimoni and Pongslip (2009) observed a large number of indole

acetic acid (IAA) forming bacterial diversity in Ficus religiosa.

Isolation and characterization of isolates showed 91% similarity

with Rhizobium spp. Brevibacterium, an endophytic bacterium,

isolated and characterized from the rhizosphere of F. religiosa.

Studies on the efficacy of synthesizing IAA in Raphanus sativus
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by inoculating the bacterial species isolated from 18 soil and 10 new

isolates from the roots of Brassica oleracea showed an elevated

response on root and shoot development than the control. These

observations showed the potential of inter-rhizosphere microbiome

interactions at different trophic levels toward better crop response.

Peter and Pandey (2014) collected the rhizosphere samples of

bamboo and isolated two strains of Pseudomonas spp. out of a total

of 22 isolates. The morphological and biochemical tests confirmed

the isolates as P. fluorescence (59% diversity) and P. auruginosa

(40.9% diversity). The abiotic stress tolerance activity showed that

these two species thrived up to 10°C at a wide pH range of 5-9,

having a tolerance level of salt concentration from 2–6 ppm. P.

fluorescence and P. auruginosa were also observed to inhibit

Fusarium oxysporum, Rhizoctonia solani, and Alterneria solani by

59.5-64.3%, 42.0-45.9%, and 50.0-52.5%, respectively. Kanse et al.

(2015) isolated six phosphate-solubilizing fungi, tentatively

identified based on colony morphology as Talaromyces,

Aspergillus, and Rhizobium. One isolate, SLS8, based on 8s RDNA

sequence, was confirmed as T. funiculosus, showing maximum

phosphate-solubilizing ability compared to others. The study also

suggested T. funiculosus SLS8 as a promising inoculant (seed

inoculant) for maintaining good soil phosphate levels in saline soil.

Soil respiration is an indirect measurement of the autotrophic

microbial load of soil, which in turn is an indicator of ecological

sustainability. In a study on in-situ measurement of soil respiration

by Prasad and Baishya (2019), the highest annual soil respiration

was observed under the canopy of F. religiosa (18.72 µmol CO2 m
-2

s-1year) and lowest under A. indica (4.58 µmol CO2 m2/s/year)

during rainy and winter seasons, respectively. Different tree species

showing a decreasing order of soil respiration were observed to be F.

religiosa > A. lebbeck > P. juliflora > V. leucophloea > M.

pinnata > C. fistula > A. indica. The higher soil respiration under

the canopy of native over non-native species further suggested the

importance of the interactive effects of soil moisture and

temperature in the ecosystem of heritage trees that could be used

well in the process of RH. The uniqueness of rhizosphere properties

in terms of microbial diversity and functions needs to be upscaled to

utilize RH successfully.
4.1 Rhizosphere properties of citrus (as a
case study)

Soil microorganisms in the citrus rhizosphere play a decisive

role in improving soil ecology through changes in soil properties,

thereby helping improve the nutrient supply chain for the

betterment of citrus growth and development (Srivastava and

Malhotra, 2017; Srivastava and Singh, 2002; Ortas, 2012). In

response to the rhizosphere as a biological indicator for soil

fertility, soil microorganisms are major contributors to defining

the production sustainability of citrus orchards (Srivastava et al.,

2008). Citrus trees are considered highly dependent on arbuscular

mycorrhizal (AM) symbiosis as citrus roots are characterized by

short and poorly distributed root hairs (Graham and Syvertsen,

1985). Van Heerden et al. (2002) reported an abundance of various
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fungi in the citrus rhizosphere, consisting of Aspergillus fumigatus,

Absidia corymbifera, Penicillium diversum, Emericella nidulans,

Rhizomucor pusillus, Paecilomyces variotii, Thermomyces

lanuginosus, and Talaromyces thermophilus. Some arbuscular

mycorrhizal fungi (AMF), including Glomus, Gigaspora,

Entrophospora, Scutellospora, and Acaulospora species, have been

reported to occur frequently in citrus orchards (Wu and Srivastava,

2012). In a fungal diversity study of Citrus unshiu Marc. trees

grafted on Poncirus trifoliata, Sun et al. (2017) reported 579 and 566

operational taxonomic units (OTUs) of fungi in plant roots and

rhizosphere soil, respectively. Out of these, 462 OTUs intersecting

between the roots and rhizosphere soil of citrus indicated that plant

roots are favorable sites for the growth and development of those

fungi rather than rhizosphere soil. Considering the phylum,

Ascomycota was the dominant fungal species in soil and roots.
Frontiers in Horticulture 08
Kohli et al. (1997) reported that microbial populations in soil play a

crucial role in increasing the fruit yield of Nagpur mandarin with

plant-available nutrients. The correlation values of Azotobacter

count (r = 0.692, p= 0.01), ammonifiers (r= 0.512, p= 0.01), and

phosphate-solubilizing bacteria (r = 0.618, p= 0.01) showed a

stronger connection with fruit yield than plant-available nitrogen

(r = 0.489, p= 0.01), phosphorous (r= 0.316, p= 0.05), and

potassium (r= 0.321, p= 0.05) in soil, signifying the potential of

the population density of microbes as a bio-indicator of elevated

fruit yield.

He et al. (2002) reported that soil microbial biomass nutrients

viz., microbial biomass carbon, (Cmic 1.62-3.16 mg/kg), microbial

biomass nitrogen, (Nmic 19.0-35.2 mg/kg), and microbial biomass

phosphorous, (Pmic 20.2-42.3 mg/kg) constituted only 1.61-2.60%,

1.2-2.5% and 2.4-8.4% of total organic carbon, respectively, in citrus
TABLE 2 Nature and properties of rhizosphere microbiomes of different worldwide wild forest species.

Sl No Tree species Potential rhizospheric microbes Reference

1.
Bo tree (Ficus religiosa L)

Abundance of Deinococcus ficus sp. nov., a Gram-positive, non-motile, non-spore-forming,
rod-shaped, and aerobic bacteria possessing high survival under UV light at 243 nm.

Lai et al. (2006)

2. Bamboo (Dendrocalamus
strictus (Roxb.) Nees)

Bacterial isolates were observed as Gram negative, rod-shaped aerobic and non-endospore
forming in nature.

Niveditha et al. (2008)

3.
Bo tree (Ficus relegiosa L.)

Distribution of ten plant-growth-promoting rhizobacteria, out of which eight strains showed
the ability to produce IAA and siderophores and solubilize zinc and potash.

Shilpkar et al. (2009)

4.
Eastern cottonwood
(Populus deltoids)

Rhizosphere bacterial communities (Proteobacteria, Acidobacteria, and Verrucomicrobia in
increasing order) and fungal communities (Ascomycetes within Pezizomycotina and
Basidiomycetes within Agaricomycotina in decreasing order) showed contrasting
distribution patterns.

Gottel et al. (2011)

5.
Bo tree (Ficus religiosa L.)

Different microbial communities viz., Rhizobium, Azotobacter, and Yeast were observed to be
more abundant compared to other microorganisms during the pre-monsoon period.

Pathak and
Keharia (2013)

6.
Bamboo (Sasa borealis L.)

An abundance of Phyllostachys bambusoides, Phyllostachys nigra var. henonis, Sasa borealis,
and Phyllostachys nigra f. punctate were predominantly observed.

Lee and Whang (2014)

7. Banyan tree (Ficus
benghalensis L.)

Distribution of seven Gram-positive, endospore-forming, and rod-shaped endophytic bacterial
strains (Bacillus subtilis and Bacillus amyloliquefaciens) was observed.

Rodge et al. (2016)

8.
Neem (Azadirachta
indica A.Juss)

As many as six microbes viz., Aspergillus sp., Fusarium sp., and Penicillium sp., were observed
in abundance with Aspergillus niger displaying the maximum anti-microbial activity against
E. coli.

Rani et al. (2017)

9. Banyan (Ficus
benghalensis), Cluster fig
(Ficus racemose), and Bo
(Ficus religiosa)

Predominant distribution of seven endophytic fungi viz., Aspergillus, Trichophyton, and
Coccidioides species belonging to the Eurotiomycetes sub-class were observed.

Jariwala and Desai (2018)

10.
Sugar maple (Acer
saccharum Marsh)

Plant-associated bacterial communities were dominated
by different phyla viz., Proteobacteria, Acidobacteria, Actinobacteria, and Bacteroidetes; the
main fungal taxa were Ascomycota.

Wallace et al. (2018)

11. Formosan alder (Alnus
formosana Burkill)

Resistance against drought and salt stress was observed with the inoculation of specific
Frankia strains.

Lee and Tsai (2018)

12. Neem (Azadirachta
indica A.Juss)

Abundance of Azotobacter paspali and Azotobacter vinelandii. Hala and Ali (2019)

13.
Oak tree (Quercus)

Proteobacteria, Actinobacteria, and Acidobacteria as well as Basidiomycota, Ascomycota, and
Zygomycota were observed as the main colonizers within the oak rhizosphere.

Pinho et al. (2020)

14. Moso
bamboo (Phyllostachys
edulis L.)

Presence of Flavobacterium, Bacillus, and Stenotrophomonas facilitated higher absorption
of nitrogen.

Yuan et al. (2021)
• The rhizosphere microbiome of these forest species could be introduced into the rhizosphere of targeted fruit crops with an objectivity of expanded microbiome diversity to enhance
crop response.
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orchards in Zhejang province, China. The phosphorous-

solubilizing capacity of Bacillus subtilis, Bacillus polymyxa,

Trichoderma viridi, and Aspergillus terreus found on citrus

growing belts of India is reported to be 13.30-81.68% P2O5

through insoluble tricalcium phosphate (Bhattacharya et al.,

1999). Not only the bacterial species but also the mycorrhiza

species like Glomus caledonium, Glomus mosseae, and Glomus

clarum are abundantly observed in citrus growing belts of Italy

(Palazzo et al., 1992). In eastern Spain, Glomus mosseae and Glomus

intraradices are commonly observed mycorrhizal fungi in citrus

rhizosphere soils, which can be inoculated back into soils through

agronomic practices like crop rotation with aromatic plants viz.,

Thymus vulgaris, Lavandula vera, L. angustifolia, and Rosmarinus

officinalis (Camprubi and Calvet, 1996a, b). In Japan, citrus

orchards are reported to be richly abundant in Gigaspora,

Scutellospora, and Glomus AM fungi (Ishii and Kadoya, 1996).

Bhattacharya et al. (1999) reported that the Glomus population was

higher in the juvenile phase (1-5-year-old orchards) as compared to

the reproductive stage (5-10-year-old orchards).

Ngullie et al. (2015) evaluated 15 citrus varieties, namely four

limes/lemons, three mandarins, and eight sweet oranges, at the pre-

bearing stage on Alfisol. The trend in the growth of canopy volume

of different citrus cultivars supported the changes in bacterial count

(CFUg-1) of 7.3 x 108, 4.9 x 106, 4.5 x 106, and fungal count (CFUg-1)

of 7.7 x 107, 3.1 x 105, and 2.2 x 105 in limes/lemons, sweet oranges,

and mandarins, respectively. Similarly, soil microbial biomass

nutrients were also observed to be higher in lime/lemons as

compared to sweet oranges and mandarins, indicating the greater

affinity of lime/lemon rhizosphere to reproduce microbial biomass

and maintain a better nutrient pool of soil. Citrus rootstocks having

greater root volume reflected their vigorousness crop phenology in

terms of canopy volume, a pre-requisite for ensuring higher fruit

yield. The response of different fruit crops to microbial inoculation

in terms of parameters related to soil fertility changes and crop

response established their strong responsive nature (Table 3).

Of late, culture-independent metagenomic studies aided the

identification of newer microbial species and established a strong

foundation for developing artificially constructed microbial

communities known as artificial microbial consortia or synthetic

communities (SynComs) using core microbiomes to recreate more

robust structures and functions of the microbiome and representing

different microbial niches. A great advantage of SynComs studies

lies in the fact that members can be added, eliminated, or

substituted as needed (Vorholt et al., 2017), in addition to

elucidating spatial microbial interactions (Amor and Bello, 2019).

Two main approaches are usually employed to artificially select the

microbiomes: top-down (modifying the existing microbiome) and

bottom-up (starting from individual microorganisms to build

engineered microbiomes). In the top-down approach, selected

environmental variables (e.g., pH, temperature, and redox

potential) are used to manipulate the existing microbiome

through ecological selection (Lawson et al., 2019). Although this

approach is widely used for bioremediation (Atashgahi et al., 2018)

and wastewater treatment (Demarche et al., 2012), it has the

disadvantage of working with a complex community. In contrast,
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the bottom-up approach offers the biggest advantage of simplifying

microbial interactions by building artificial communities from pre-

selected individual organisms (Raaijmakers and Kiers, 2015).

Microbial taxa that are highly connected and more influential

on the community in a pre-existing or artificially constructed

microbiome are given maximum preference (Banerjee et al., 2018)

for microbial screening followed by isolation and whole-genome

sequencing to determine their functional capabilities (Kong et al.,

2022). Consequently, their role in regulating the growth and

function of other members of the microbiome can be effectively

exploited to enhance specific desired functions. Such a concept of

assembling SymComs is quite different from known and well-

studied bacteria. Hence, it is possible to increase the number of

desired bacterial strains while decreasing the number of undesired

strains (Cloutier et al., 2023; Ma et al., 2022; Kugarajah et al., 2023)

using the strong functional relationship between plant metabolites

and the bacterial community diversity of the rhizosphere. In one of

the recent incubation studies spanning 28 days, three different plant

metabolites, namely benzoxazolinone, gramine, and quercetin, were

added to the soil (Schutz et al., 2021) and showed that the bacterial

diversity was significantly reduced by the first two metabolites

only. Consequently, plants producing one or more of these

metabolites are suggested to have a specific effect on the soil

bacterial community.
5 Agronomic and microbial response
of RH (our experiences)

While chemical or synthetic fertilization can improve fruit yield

and quality, long-term use has failed to sustain the same yield

expectancy due to erosion in soil carbon stock, culminating in the

emergence of multiple nutrient deficiencies. Such unprecedented

loss of soil fertility is likely to bring changes in microbial

communities within the rhizosphere (Srivastava et al., 2008),

coupled with reoriented production dynamics. Artificially, the

rhizosphere could be reconstructed depending upon the need of

the plant to enhance physiological efficiency through rhizosphere

engineering, popularly known as RH. This is synonymous with

creating an artificial environment for plant growth-promoting

microorganisms to provide another protective layer against the

pathogenic microbes (Rhizosphere fortification). By and large, trees

react and acclimate to antagonistic soil environments, and this can

happen through different strategies, including changes in root

exudation and rhizo-deposition, which bring variable changes in

rhizosphere soil properties (Gargallo-Garriga et al., 2018).

RH is a relatively recent introduction to rhizosphere research to

modify rhizosphere ecology and create an environment for plant

growth-promoting microbes to positively influence plant agronomy

(Keditsu and Srivastava, 2014). The concept of RH is, therefore, put

forward to demonstrate the value-added benefits of nutrient-microbe-

plant synergy, in addition to the expected dynamism to microbial

diversity in harmony with a wide range of fruit crops (Srivastava et al.,

2015b, 2021). Studies were carried out in the past (Cheke et al., 2018a;

b) on the inoculation response of rhizosphere soils of three perennial
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TABLE 3 Associative responses of fruit crops with microbial inoculants reported through worldwide literature.

Sl No Crop Microbial species Experimental details Response attributes Reference

y from dry root rot of diseased trees,
zation of Fusarium solani, and
ld and fruit quality.

El-Mohamedy and
Ahmed (2009)

ed germination, seedling growth, root
c carbon along with plant available P Singh et al. (2018b)

and fruit physico-chemical attributes and
growth of nematode,
netrans.

Shamseldin et al. (2010)

it yield and fruit quality (increase in fruit
juice weight %, T.S.S: acid ratio, vit. C,
it acidity), total bacteria count (Bacillus
egaterium, and Azotobacter chroococcum),
nitrates, collectively leading to better

El-Shazly et al. (2015)

ight, canopy volume, leaf area, and
ots plant-1, in addition to improvement in
tration in index leaves and fruits.

Shamshiri et al. (2012)

ield, 9.09% leaf N, 20.62% leaf P, and
control treatment. Mohamed et al. (2009)

height, number of leaves, stem diameter,
mass at 150-days after germination.

Giassi et al. (2016)

height, number of leaves, root:shoot ratio,
iomass, chlorophyll content, and leaf Yadav et al. (2012)

toms of canker and expressed salicylic
hway and increase in ROS of treated plant. Riera et al. (2018)

th, diameter, flesh thickness, fresh weight,
r tree, and oil quality compared to

Tadayon et al. (2025)

relative abundance of Enterobacteriaceae
t disease (ARD) rhizoplane and increased
t in roots than ARD soil

Hauschild et al. (2024)
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1
Mandarin (Citrus
reticulate Blanco)
cv. Baladi

Humic acid + Bacillus megaterium
var Phosphatircum

Sandy soil, Beheria Governorate, Egypt Increase in recover
reduction in colon
improvement in yi

2
Rough lemon (Citrus
jambhiri Luch)

Azospirillum-AM fungi consortium
(Funneliformis mosseae, Gigaspora margarita,
and Acaulospora laevis).

Typic Ustochrept, with alkaline (pH 8.1) and EC
(0.36 dSm−1), Punjab, India.

Improvement in se
growth, and organ
and K.

3
Sweet orange (Citrus
sinensis Osbeck)
CV.Washington navel

Pseudomonas fluorescens (strain 843) Silty clay soil, Delta Nile Valley, high pH (8.9) and
EC (3.28 dsm-1), at Al–Menoufia
Governorate, Egypt.

Increased fruit yiel
reduced population
Tylenchulus semipe

4

Mandarin (Citrus
reticulata Blanco)
cv. Balady

50% compost (N-equivalent)- 250 ml of
biofertilizer mixture (Bacillus circulans (4 x
107 cfu ml-1) Bacillus megaterium (6 x 107 cfu
ml-1) Azotobacter chroococcum (5 x 105 CFU
mL-1))- 5 kg of natural mineral compound ore
tree-1 year-1.

Clay loamy soil, EC 0.32 dsm-1and pH 7.97, of El
Kalubia Governorate, Egypt

Improvement in fr
size, peel thickness
and decrease in fru
circulans, Bacillus
and plant available
crop response.

5
Mandarin (Citrus nobilis
Lour. × Citrus deliciosa
Ten.) cv Kinnow

AM fungi Glomus manihotis- Glomus
mosseae- Gigaspora gigantia.

Alkaline loam soil with moderate fertility, New
Delhi, India

Increase in plant h
number of new sh
leaf nutrient conce

6
Mandarin (Citrus
reticulata Blanco)
cv. Balady

Azotobacterchroococcum-Azospirillum
liposerum- Bacillus megaterium- Bacillus
circulans (250 g tree-1 year-1).

Soil characteristics pH 7.91 and EC 1.11 dSm-1,
Assiut University, Egypt

Increase in 27.1%
42.85% leaf-K over

7

Swingle citrumelo (Citrus
paradisi Macfad cv.
Duncan × Poncirus
trifoliata (L.) Raf.)

Bacillus spp (Isolates BM16 and CPMO4) at
107 CFU mL-1

Seedlings were grown under unsterilized growth
medium of vegetable origin, Sylvio Moreira
Citriculture Centre, Brazil.

Increase in seedlin
shoot, and root dr

8
Acid lime (Citrus
aurantifolia Swingle)

Azotobacter chrococcum Sandy soil, alkaline pH, high EC, Jhalawar,
Rajasthan, India

Increase in seedlin
leaf area, seedling
nitrogen content.

9
Grapefruit (Citrus
paradisi Macfad)
cv. Duncan

Pseudomonas geniculata strain 95 (108 CFU
mL-1) isolated from Valencia orange.

Ustipsamment (Sandy soil, acidic pH), Lake
Alfred, Florida

Reduction in symp
acid- signalling pa

10

Olive (Olea europaea)
cv. Zard

Pseudomonas fluorescens (1.7×108 Cells mL-1),
Bacillus subtilis (2×108 Cells ml-1), and
mycorrhizal powder inoculum (Arbuscular
mycorrhizal fungi, Rhizophagus irregularis)
(105 Cells gr-1 propagule)

Silty loam calcareous soil, EC 2.42 dSm-1, pH 8.85,
Fars province, Iran

Increased fruit len
dry weight, yield p
chemical fertilizers

11
Apple (Malus
domestica Borkh)

Bacillus velezensis FZB42 or Pseudomonas
sp. RU47

Loamy sand soil, pH 5.6, soil organic carbon 17
gkg-1, Ellerhoop, Germany

Inoculants reduced
in the apple replan
phytoalexin conten
i
e

i

d

u
,

m

e
o
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g
y

g
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TABLE 3 Continued

Sl No Crop Microbial species Experimental details Response attributes Reference

soil organic matter 25.37 gkg-1;
China

Bacillus velezensis 18, B. velezensis 20, and Rahnella
aquatilis 5 emerged as consistently effective performers over
the two-year period, demonstrating the ability to optimize
growth and yield.

Shi et al. (2024)

soil, pH 7.9, soil organic carbon 0.8%,
Iran

The combined use of P. fluorescens and G. mosseae improved
quality production of pomegranate under salinity stress.

Ziatabar Ahmadi
et al. (2024)

n-ovulo embryo cultured plantlets of
notypes for biohardening; IARI, New
dia

All AMF-treated plants showed increased vegetative growth,
chlorophyll content, proline content, and total phenol
content, hence proving their efficacy in mitigating adverse
effects of transplanting shock and enhancing survival.

Singh et al. (2017)

il derived from weathered volcanic rocks,
n exchange capacity,
ga, Cameron

Significant improvements in acid phosphatase and urease
activity in plantain rhizosphere, in addition to control of crop
pests and diseases

Olougou et al. (2024)

C 0.23 dSm-1, 0.4% OC, 251.3 kgha-1

N, 32.4 kgha-1 Olsen-P, 76.8 kgha-1

-K, Solan, India

Increased the yield efficiency and quality attributes like TSS
and Ascorbic acid content of the guava by improving
microbial population and micronutrient concentration.

Ashwini et al. (2022)

oil, pH 4.92; 275 kg/ha KMnO4-N, 15 kg/
-P, 165 kg/ha NH4OAc-K; Kerala, India

Increased the yield and qualitative aspect of fruits including
carotenoid, ascorbic acid, and total sugar

Bindu and Renjan (2024)

C 0.21 dSm-1; 5.8 g/kg OC, 135.7 mgkg-1

N, 9.2 mgkg-1 NaHCO3-P, 11.4 mgkg-1

-K; Azotobacter chroococcum (12.2 × 106

Pseudomonas sp. (8.6 × 105 CFUg-1) and
zers (9.1 × 104 CFUg-1); Himachal
India

Increased resident microbe survival, total chlorophyll content,
and root:soil ratio in seedlings. A. chroococcum increased
microbial biomass 2.59% more than the untreated control.
Acidic phosphatases, dehydrogenases, and alkaline
phosphatases also increased in the rhizosphere.

Kumar et al. (2024)
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12

Grape (Vitis vinifera L.) B. velezensis (1.8×109 CFU/mL) and B.
velezensis (1.5×109 CFU/mL); B. megaterium
(1.3×109 CFU/mL); P. aryabhattai (1.3×109

CFU/mL); R. aquatilis (1.6×109 CFU/mL)

pH 6.21,
Nanning,

13
Pomegranate (Punica
granatum L.)

Pseudomonas fluorescens and Glomus mosseae Silty loam
Gorgan,

14

Mango (Mangifera
indica L.)

Consortium of Glomus mosseae, G.
fasciculatum and Gigaspora margarita

In vitro i
mango ge
Delhi, In

15
Plantain (Musa
paradisiaca L.)

Arthrobacter sp., Bacillus spp., Sinomonas sp.,
Paenibacillus spp.,and Kosakonia radicincitans
DSM16656, Beauveria, Trichoderma,

Acidic so
low catio
Akonolin

16
Guava (Psidium
guajava L.)

Phosphorus-solubilizing bacteria (PSB) @ 10
ml/plant + A. chroococcum @ 10 g/plant

pH 6.7; E
KMnO4-
NH4OAc

17
Papaya (Carica papaya L.)
cv. Surya

FYM + Vermicompost + AMF + PGPR Mix +
Pseudomonas fluorescens

Laterite s
ha Olsen

18

Litchi (Litchi chinesis
Sonn.) cv.

AM fungi + Azotobacter chroococcum (2:1) pH 6.9, E
KMnO4-
NH4OAc
CFUg-1),
K-mobili
Pradesh,
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heritage trees, namely Ficus racemosa L. (Common name: Umber

tree), Ficus benghalensis L. (Common name: Banyan tree), and Ficus

religiosa L. (Common name: Pipal tree), into the rhizosphere of sweet

orange trees (Citrus sinensis Osbeck). The inoculation response of F.

recemosa showed the best response on rhizosphere properties of sweet

orange trees, associated with a net increase of 18.0 g kg-1 Walkley-C,

62.2 kg ha-1 KMnO4-N, 19.0 kg ha-1 Olsen-P, and 95.6 kg ha-1

NH4OAc-K, in addition to a 2.34 times increase in microbial

biomass nitrogen (Nmic), 4.23 times increase in microbial biomass

carbon (Cmic), and 2.81 times increase in soil alkaline phosphatase

over rhizosphere of sweet orange trees alone. The magnitude of these

responses was, however, significantly lower when compared with the

rhizosphere of F. recemosa alone, with an increase in Walkley-C by

11.2 g kg-1, KMnO4-N by 32.2 kg ha-1, Olsen-P by 11.2 kg ha-1, and

NH4OAc-K by 28.2 kg ha-1, in addition to 1.34 -folds, 2.23-folds, and

1.62-folds increase in Nmic, Cmic, and soil alkaline phosphatase,

respectively. Hence, microbially hybridized soil proved to be

biologically highly active for better agronomic crop response

(Figure 3). Later, another mode of RH (Dzuvichu et al., 2023) was

studied by inoculating the rhizosphere of highly productive Khasi

mandarin (Citrus reticulata Blanco) trees into lesser productive trees;

after two seasons, significant improvements in fruit yield and soil

fertility changes were observed (Table 4). The Rhizosphere III

treatment observed significantly higher bacterial and fungal counts

of 38 X 105 and 32 X 104 CFU g-1 soil, respectively, compared to other

rhizosphere treatments, recording bacterial counts of 08 X 104–38 X
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105 CFU g-1 soil and fungal counts of 04 X 103–22 X 104 CFU g-1 soil.

These microbial changes with Rhizosphere III treatment were

associated with 1.54 times (10.68 Mg ha-1) higher fruit yield

compared to other rhizosphere treatments (6.93-9.73 Mg ha-1) as a

function of significantly higher soil nutrients pool maintained with the

Rhizosphere III treatment. Against the backdrop of such observations,

how shall we identify the microbial hot spots featuring the

development of elite microbial spp. within an orchard and

rationalize the spatial distribution of microbes to optimize fruit yield

without sacrificing the quality? These RH-based observations paved

the way for the inoculation of soil rhizospheres or endosphere

microbes for elevating micronutrient concentration in various plant

parts viz., roots, leaves, and fruits (Ku et al., 2019), to sustain

production on a long-term basis.

Hota et al. (2021a), in their comprehensively planned study,

successfully developed a hybridized soil (BbNByR) by using the

rhizospheres of banyan (Ficus benghalensis L), neem (Azadirachta

indica A.Juss), and bamboo (Dendrocalamus strictus (Roxb.) Nees)

trees inoculated into rhizosphere of acid lime as the host fruit tree.

This treatment showed significantly higher shoot growth

parameters (30.4 cm seedling height, 3.0 mm seedling diameter,

5.8 branches seedling-1, and 38.9 leaves seedling -1) and root growth

parameters (14.5 cm taproot length and 17.3 number of secondary

roots seedling -1) over single rhizosphere effect of the control

treatment involving host tree alone (Table 5). Synonymous to a

hybridized rhizosphere response, the microbial consortium
FIGURE 3

Diagrammatic representation on response of RH in sweet orange (Citrus sinensis Osbeck) grafted on Rangpur lime (Citrus limonia Osbeck) rootstock
for improved rhizosphere health indicators (microbial biomass nitrogen, Nmic; microbial biomass carbon, Cmic; alkaline soil phosphatase; and acid
soil phosphatase) and soil fertility changes (the inner most circle represents organic carbon, followed by KMnO4-N, Olson-P, and NH4OAc-K as we
move on from the inner circle). Hybridized soil (URS + SRS) involving inoculation of rhizosphere of F. recemosa (URS) into the rhizosphere of sweet
orange trees (SRS) proved to be far superior over either of the two alone. Source: Based on data generated through studies by Cheke et al. (2018a,
b) and Srivastava et al. (2021).
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(Paenibacillus alvei Cheshire and Cheyne (MF113275),Micrococcus

yunnanensis Cohn (MF113274), Bacillus pseudomycoides

Nakamura (MF113272), Aspergillus flavus Link (MF113270), and

Acinetobacter radioresistens Nishimura (MF113273)) displayed a

much greater magnitude of response in mature acid lime trees

through an increase in microbial biomass load of the rhizosphere,

thereby adding additional rhizosphere resilience by reducing the

mortality of new seedlings/buildings once planted in a new field

(Hota et al., 2021b).

Studies onmicrobe-mediated rhizosphere fortification in acid lime

(Hota et al., 2020a, b, 2021b) showed that the application of

vermicompost combined with a microbial consortium increased the
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canopy volume, improved leaf phenotypical features, and enhanced

fruit yield and fruit quality parameters (such as juice content, TSS, and

acidity). These observations showed that the process of RH in acid

lime improved the yield and quality, as well as qualitatively improving

the carrying capacity of hybridized rhizosphere with value-added

efficient microbial traits. Root exudates stimulate the microbial

community in the rhizosphere by providing soil microbes with the

desired nutrient forms and easily degradable energy sources from root

exudates and dead root cells (Kaksonen et al., 2006). The microbial

diversity of heritage trees like Ficus (Rodge et al., 2016), Neem (Biswas

et al., 2016), and Bamboo (Tu et al., 2014) have been studied in-depth

to replicate their behavior in a conducive environment. Thus,
TABLE 5 Evaluation response of different treatments of RH on agronomic performance of acid lime (Citrus aurantifolia Swingle).

RH
treatments

Seedling
height (cm)

Seedling
diameter
(mm)

Number of
branches seedling -1

Number of
leaves seedling-1

Tap root
length (cm)

Number of
secondary

roots seedling-1

T1, Control 61.7hi 5.3ij 4.0gh 60.1j 23.2j 18.5i

T2, MC 83.2cd 6.5de 7.0cd 88.4de 32.8d 30.8de

T3, AlRW 76.9e 6.9cd 8.1bc 89.0d 31.6de 31.1cd

T4, BbR 85.3bc 7.2bc 9.0ab 95.5bc 36.0bc 32.1c

T5, BbRW 67.6gh 6.2fg 4.6fg 71.6gh 28.5gh 25.6g

T6, NR 70.7fg 5.9hi 6.6de 75.9g 30.3fg 25.6g

T7, NRW 65.6 fg 6.0gh 5.1f 65.8i 26.4hi 22.3h

T8, ByR 86.9ab 7.5b 9.0ab 97.3ab 36.3ab 33.6ab

T9, ByRW 72.4ef 6.3ef 6.8d 82.2f 31.3ef 29.5ef

T10, BbNByR 92.1a 8.3a 9.8a 99.0a 37.7a 35.8a

CD (P=0.05) 7.1 0.5 1.0 4.9 2.8 2.5
MC, microbial consortium; AlRW, water extract of acid lime rhizosphere; BbR, rhizosphere soil of bamboo; BbRW, water extract of bamboo rhizosphere; NR, rhizosphere soil of neem; NRW,
water extract of neem rhizosphere; ByR, rhizosphere soil of banyan; ByRW, water extract of banyan rhizosphere, and BbNByR, rhizosphere soil of bamboo, neem, and banyan. CD stands for
critical difference. Different alphabets denote significant differences amongst treatments using Duncan’s Multiple Range Test. Treatment T10 (combination of the rhizosphere soils of bamboo,
neem, and banyan tree) produced the best response on root-and shoot growth-related parameters over the other RH treatments.
Source: Hota et al. (2020a, 2021a).
TABLE 4 Yield response of RH in Khasi mandarin (Citrus reticulata Blanco) grown on acid Alfisols.

Treatments

Microbial population
(CFU g-1 soil)

Leaf nutrients concentration

Fruit yield (Mg ha-1)

Bacterial count. Fungal count.
Macronutrients* Micronutrients**

N P K Fe Mn Cu Zn

Rhizosphere-I 08x104d 04x103d 2.13bc 0.06b 1.12c 209.2 81.1d 10.1d 19.4cd 6.93d

Rhizosphere-II 32x104c 18x103c 2.03d 0.06b 1.01d 216.2 92.3c 11.2c 20.0c 8.53c

Rhizosphere-III 67x105a 32x104a 2.34a 0.10a 1.72a 218.4 115.3a 18.4a 24.2a 10.68a

Rhizosphere-IV 38x105b 22x104b 2.21b 0.08ab 1.52b 204.2 102.8b 13.3b 22.2b 9.73ab

SEm ± 1.60 1.80 0.03 0.01 0.03 4.73 1.73 0.33 0.46 0.80

CD (P=0.05) 4.20 6.70 0.10 0.04 0.10 NS 5.2 1.00 1.40 1.11
* and ** expressed in percentage and mg kg-1 dry matter, respectively. SEm and CD stand for standard errors of means and critical difference, respectively. Different alphabets denote significant
differences amongst treatments using Duncan’s Multiple Range Test.
Treatment involving the inoculation of rhizosphere soil (Rhizosphere-III) of healthy trees into the rhizosphere of another set of low-producing trees of Khasi mandarin showed changes in soil
microbial load, leaf nutrients composition, and fruit yield, significantly higher than rest of the other treatments. Such responses suggested the role of microbial hot spots within the same orchard
in the presence of elite microbes. However, we could not carry out studies on changes in culture-independent microbes to obtain more insights about such responses featuring RH.
Source: Dzuvichu et al. (2023).
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rhizosphere properties defined in terms of the microbial pool have a

strong influence on plant growth depending upon the diversity and

evenness of different microbial communities within the rhizosphere of

different tree species (Figure 3).

Various interactions among diverse microbial communities

promote key processes associated with plant growth and soil

health. Some soils are naturally suppressive to many soil-borne

pathogens, although this suppression relates to agro-pedological

features of the soil. In most agro-systems, the biological

components are primarily important in disease suppression,

paving the way for biological control of plant pathogens to be

brought into the ambit of sustainable issues relating RH (Weller

et al., 2023). A typical beneficial response is achieved with the

‘mycorrhiza-helper-bacteria’, a term coined by Garbaye (1994) for

those bacteria widely known to stimulate mycelial proliferation of

mycorrhizal fungi. Soil microorganisms are known to synthesize

molecules capable of increasing the root exudation, which, in turn,

stimulate mycorrhizal mycelia abundance in the rhizosphere (Wu

and Srivastava, 2012). The establishment of the mycorrhizal fungus

in the root cortex is known to change many key processes associated

with plant physiology (Zou et al., 2016). These key functions

comprise the mineral nutrient composition of plant tissues,

hormonal balance, and the patterns of carbon allocation to

different plant parts (Srivastava et al., 2021). Microbial

communities are known to play key roles in soil carbon

stabilization by incorporating organic carbon into their cellular

materials and products, are stabilized by mineral associations and

supply enzymes catalyzing the decomposition and transformation

of plant and soil carbon (Kögel-Knabner, 2002), even though

organic matter is ultimately decomposed microbially (Srivastava

et al., 2015a; Srivastava, 2010).

Research on the microbiome of hybridized soil still needs to

establish to what extent major microbial communities function as a

collective entity, since biofilm formation in the rhizosphere is an

important trait that prevents microorganisms from being detached

from plant roots by various natural processes (Velmourougnane

et al., 2017). Do such hybridized soils develop biofilms? Biofilms

consist of syntrophic communities of microorganisms where cells

stick to each other in a self-produced matrix of extracellular

polymeric substances (Rana et al., 2021). Such a matrix provides

the structural and functional protection through which microbes

chemically link with each other by quorum sensing and function as

one unit (Tan et al., 2015; Vlamakis et al., 2013). In soils, microbial

communities such as bacteria and fungi develop biofilms on abiotic

surfaces such as ore (minerals), water-air interfaces, and dead

organisms (Rekadwad and Khobragade, 2017). In recent years,

biofilmed biofertilizers (BBs) (biofertilizers containing microbial

communities capable of forming biofilms) have emerged as a new

inoculant strategy to improve biofertilizer efficiency and sustain soil

fertility amid detrimental nutrient mining over time (Sharma et al.,

2023). The idea behind BBs is that biofilm formation creates a more

suitable environment for microorganisms to compete with resident

organisms and negotiate with the heterogeneity of biotic and abiotic

factors in soil (Unal et al., 2019).
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5.1 Soil enzymes and RH

RH facilitates the development of a physiologically more active

rhizosphere. Therefore, the processes and reactions taking place

within the rhizosphere are influenced by the stage of root

development, diversity and functionality of rhizosphere

microorganisms, degree of root-microorganism association, and

profile of rhizosphere enzymes— key driving factors responsible for

creating rhizosphere environments conducive to positive crop

responses. The enzymes are more concentrated in the rhizosphere

than in bulk soil, as the rhizosphere soil is richer in organic-C

substrates (Gianfreda, 2015). The balance of microbial activities,

especially enzymes activities, is, therefore, responsible for the

development of resilient soil health. The enzymes that are present in

the rhizosphere, both through their interactions with plants and their

functions in decomposition of organic compounds coupled with

nutrient cycling, play a crucial role in ecological fitness and

functioning of the host plant (Nannipieri et al., 2012). Furthermore,

activities of rhizosphere enzymes (Table 5) are valuable indices of

changes taking place in the microbial functioning within the

rhizosphere soil (Gianfreda, 2015). In addition, various management

practices also dictate the rhizosphere enzymatic profile of different

fruit crops (Table 6).
5.2 RH and holobiont paradigm

Over the years, important components defining the rhizosphere

function such as soil, microbes, and plants have been extensively

studied in isolation, including pathogenic or symbiotic microbial

interactions. Ecological approaches have only recently been

developed, possibly in relation to the emergence of molecular

tools and, to a lesser extent, understanding of the complex

environment of the rhizosphere (Lundberg et al., 2012). In this

situation, the plants and associated microbes are no longer seen as

individual but rather as an association, a part of a phytobiome.

Hence, the holobiont paradigm (a physiological unit of plant-

microbe associative relationship) has emerged in the plant world

(Zilber-Rosenberg and Rosenberg, 2008; Rosenberg et al., 2010;

Vandenkoornhuyse et al., 2015), with microbes playing a key role in

plant adaptation to changing environments. Crucially, the

holobiont should be viewed as the unit of selection in the

evolutionary process (Rosenberg et al., 2010) and, as a

consequence, modification of any component of the holobiont

could have a cascading effect on other components. A recent

study demonstrated that the domestication of plants has affected

the fabric of microbial communities, both within the rhizosphere or

endosphere (Pérez-Jaramillo et al., 2016). Viewing the plant as a

superorganism—representing an independent ecosystem—add a

new dimension to efforts to engineer the rhizosphere microbiome,

exploit the microbial gene pool, and develop microbially engineered

plants. Any breakthroughs in the near future should take into

account the plant-associated numerical diversity of microbial

communities and their function. Hence, a better knowledge of
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phytobiomes is strongly advocated. This implies a better description

of plant-associated microbiota associated with either one fruit

cultivar or different species of the same cultivar, or both at

different growth stages of development, with all these issues

currently understudied. In addition, most of the physiological

experiments aiming at physiological and genotypic screening are

performed in the absence of the associated microbiota

(Nogales, 2015).
6 Conclusion and futuristic viewpoints

The structure of indigenous microbial communities is reported

to exert a multi-fold influence on the composition of plant-

preferred microbiota. However, this raises another question: Is

large microbial diversity or functional redundancy more

important in enabling distinct microbiomes with equivalent or

variable functionality? This opens up another counter question: is

a rootstock-scion combination that prefers an optimal microbiome

in one soil operationally effective in another soil? Do crop breeding

techniques need to be highly contextual and individually tailored to

specific soil types and management practices? The impacts of

rhizosphere microbiomes on nutrient cycling need to be

quantified through plant–soil system and relevant methods of

evaluation need to be found.
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The plant roots release compounds that serve as a source of

energy for microorganisms. A high concentration of root exudates

deposited into the rhizosphere attracts more metabolically active

microorganisms to the roots than to other parts of the rhizosphere.

Concerns over the excessive use of chemical/synthetic inputs have

meant organic farming has become increasingly popular, promoting

bio-preparations developed from rhizosphere microorganisms

responsible for stimulatory responses to plant growth and

development. Large-scale applications of plant growth-promoting

microbes is likely to reduce the use of inorganic fertilizers to put fruit

crops elevate functional corridors. A conceptual framework that

exploits rhizosphere-endosphere-phyllosphere microbial diversity

for bioprospecting soil-plant health to develop a revisited fruit

production system has been proposed as a case study (Figure 4).

The process of RH also needs to be viewed as a way to develop

climate-smart soil with disease -suppressive abilities that can produce

microbially engineered fruit crops. These futuristic viewpoints would

lay a better foundation for understanding nutrient-microbe synergy

for exploiting the productivity potential of growing, much nearer to

natural farming. Rhizosphere microorganisms, apart from the activity

in promoting plant growth, also offer the possibility of

bioremediation of rhizospheres contaminated with pesticide

residues and antagonism to different phytopathogens. Despite

numerous studies on rhizosphere microorganisms, there still exists

a strong need for a more elaborate understanding of the principles of
TABLE 6 Changes in enzymatic activities of rhizosphere soil of different fruit crops in response to soil managements practices.

Crop Enzyme Experimental details Results Reference

Mango (Mangifera indica) L. Dehydrogenase Effect of farmyard manure, vermicompost,
mulching, microbial inoculants
(Azotobacter, PSM, and Trichoderma
harzianum), and substrates (N, P, K)

Higher activity of
dehydrogenase in vermicompost, microbial
inoculants and mulching treatments

Adak
et al. (2014)

Trifoliate orange Substrate b-glucosidase,
catalase, peroxidase,
and phosphatase, with a
decrease in activity of
polyphenol oxidase

Effects of arbuscular mycorrhizal fungus
(Funneliformis mosseae) on glomalin-
related soil protein production and soil
enzyme activities

Increase in activity of substrate b-
glucosidase, catalase, peroxidase, and
phosphatase, but a decrease in activity of
polyphenol oxidase

Wu
et al. (2015)

Apple (Malus domestica) Urease, phosphatase,
and invertase

Effect of corn-apple rotation on enzyme
activity in rhizosphere soil of apple trees

Continuous cropping of apple reduced soil
enzyme activities

Qian
et al. (2014)

Peach (Prunus Persica) Urease,
dehydrogenase,
and phosphatase

Effect of soil fumigation, SSP, PGPR,
and biocontrol along with control
(recommended package of practices)

Highest activity in the rhizosphere with
combined treatment, and the lowest value
obtained in in-situ grafted plant with the
recommended package of practices.

Thakur and
Sharma (2018)

Citrus cultivar Huangguogan
(Citrus reticulata ×
Citrus sinensis)

Antioxidant enzymes,
superoxide dismutase,
guaiacol peroxidase,
and catalase

The physiological effects of nitrogen
supplementation (0 to 2.72 kg/year) on
the plant

Both excessive and deficient N decreased
the activities of antioxidant enzymes, while
the activities of antioxidant enzymes
increased under an appropriate amount
of N.

Liao
et al. (2019)

Grape (vinifera) indica – Five treatments, namely no fertilization
with the typical chemical fertilization years,
increased organic fertilizer (cow manure),
reduced chemical fertilizer, increased
organic fertilizer, and reduced chemical
fertilizer in sandy soil.

Application of organic fertilizer with
reduced chemical fertilizer for two years
showed the greatest effect on the bacterial
community and activity of the
rhizosphere soil.

Wu
et al. (2020)
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rhizosphere ecology, describing microorganism function and

diversity. Such candid understanding of the dynamics and

composition of microbial communities developing out of RH as a

newly proposed field of research could help decode microbial

communication with fruit trees.
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FIGURE 4

Conceptual framework for exploiting citrus phytobiome (citrus infected with Huanglongbing, HLB disease as a case study) by bioprospecting soil-
plant health for developing a microbe-mediated citrus production system.
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