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Insect pest and plant disease 
management in horticultural 
crop production: recent insights 
provide opportunities for 
improved control 
Peter S. Ojiambo* 

Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North 
Carolina State University, Raleigh, NC, United States 
With the world population projected to increase to approximately 8 billion 
people by 2030, tremendous efforts are needed to produce enough food to 
feed the population with a decreasing land available for agricultural production. 
Horticultural crops, characterized by very diverse production systems, continue 
to play a significant role in food security and safety. However, plant pests and 
plant diseases continue to negatively impact the production of healthy and safe 
food in horticultural cropping systems, by affecting produce quality, quantity, and 
safety. Furthermore, the emergence and re-emergence of pests and pathogens 
coupled with the rapid development of resistance to available pesticides further 
exacerbate the challenges of pest and disease control in horticultural systems. 
Given the recognized need to mitigate climate-change risks, novel pest and 
disease management strategies are required to achieve net-zero emissions for 
more sustainable horticultural production. This perspective highlights some 
recent research insights that could provide opportunities for the improved 
management of insect pests and plant diseases in horticultural crop 
production systems. 
KEYWORDS 

artificial intelligence (AI), endophyte, Internet of Things (IoT), integrated pest 
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Introduction 

Insect pests and diseases in horticultural cropping systems are primarily controlled 
through an integration of control strategies for a more effective outcome. Most of these 
strategies rely on monitoring, detection, and decision support systems that evaluate the 
need to apply pesticides and fungicides based on the anticipated risk of disease or pest 
outbreak (Gent et al., 2013; Wallhead and Zhu, 2017). These weather-driven decision 
support systems have placed informed decisions on pesticide and fungicide application in 
growers’ hands. Pests and diseases also cause superficial damage to fruits and vegetables, 
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which is unacceptable to consumers, and there is a tremendous 
desire for no pesticide residue in and on the produce (Xu, 2022). 
This need to balance aesthetics, food safety, and improved yields in 
the presence of pests and diseases necessitates the development and 
use of new and emerging solutions that will ensure plant health and 
the production of safe fruits and vegetables. In this perspective, we 
highlight below some recent research insights that could provide 
opportunities to improve the control and management of insect 
pests and plant pathogens in horticultural crop production systems. 
Where appropriate, we highlight how these insights provide a path 
toward achieving net-zero emission in an effort to mitigate risks 
associated with climate change for a more sustainable horticulture 
production system. 
Nanomaterials and nanotechnology 

Management and control of insect pests and plant pathogens is 
of primary importance in several fruit and vegetable production 
systems. Pesticides and fungicides are perhaps one of the most 
common options used to control pests and pathogens in the field 
and greenhouse settings in commercial horticulture crop 
production. While pesticide application is effective, there are 
concerns about its ecological impact on the environment and 
beneficial microorganisms. Furthermore, pests and pathogens are 
continually developing resistance, rendering pesticides less effective 
following their introduction to the market. The production of 
insecticides and fungicides is energy-intensive, and greenhouse 
gases are emitted during the process (Rose and Gabrielli, 2023). 
Pesticide resistance and climate change impacts are expected to lead 
to increased needs in pesticide use (Deutsch et al., 2018), creating a 
vicious cycle between chemical dependency and intensifying global 
warming (Choudhury and Saha, 2020). Thus, approaches that 
improve farming efficiency by accurately delivering pesticides to 
improve pest and disease control while mitigating emissions from 
pesticide use are receiving increasing attention. 

The application of nanotechnology and nanomaterials in 
horticulture is now providing an opportunity to improve the efficacy, 
accuracy, and targeting of insecticides and fungicides (An et al., 2022; 
Atanda et al., 2025). Nanopesticides utilize nanomaterials engineered 
within 1–200 nm in size to serve as carriers for pesticide active 
ingredients. Wang et al. (2022) synthesized literature and identified 
two major types of nanopesticides. Type 1 nanopesticides are metal-

based (e.g., Ag, Cu, and Ti) products that have a strong antimicrobial 
activity rendered by adhesion, dissolution, cytotoxicity, and oxidative 
stress. Type 2 nanopesticides include materials in which the active 
ingredient is encapsulated by nanocarriers such as polymers and clays 
and zein nanoparticles (Wang et al., 2022). Thus, nanosized particles, 
with their unique shape and properties, are being explored in 
nanocarrier-based pesticide formulations. These innovative 
formulations utilize a variety of materials, such as silica, lipids, 
polymers, copolymers, ceramics, metals, and carbon (Agostini et al., 
2012). They can be transported in dissolved and colloidal states, a 
mechanism that accords them different behavior than those for 
conventional solutes of the same particles (Kumpiene et al., 2008). 
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The delivery of pesticides via nanomaterials also reduces runoff 
and alleviates concerns about negative ecological impacts on the 
environment and beneficial microorganisms (Li et al., 2021). 
Furthermore, pesticide delivery via nanomaterials improves 
the bioavailability of active ingredients and, thus, reduces the 
opportunities of sublethal doses that can encourage the development 
of insecticide and fungicide resistance. These nanopesticides have been 
found to control plant pathogens such as Ralstonia solanacearum that 
causes bacterial wilt in tomato (Liang et al., 2022) and  Macrophomina 
phaseolina that affects beans (Kumar et al., 2016). Nanopesticides have 
also been used to improve the efficacy of microbial pesticides against 
the larvae of the potato leafworm moth Spodoptera litura (Hersanti 
et al., 2020) and several sucking insects (Usman et al., 2020). 
Researchers are now paying special attention to the field of 
nanopesticides and nanocarriers based on smart pesticide delivery 
systems (Jiang et al., 2024; Singh et al., 2021) (Figure 1). 

Attract-and-kill through pheromones is one of the most potent 
approaches to insect pest control that requires the continuous 
release of pheromone active substances during the pest capture 
period (Gregg et al., 2018). Nanomaterial-loaded pheromones with 
environment-friendly properties have shown excellent properties in 
field conditions compared to traditional pheromone traps for 
agricultural pests (An et al., 2022). Production costs, evaluation 
standards, and registration policy are some of the factors that 
influence the production of nanomaterials for insect pest and 
plant disease control. Promoting awareness and enactment of 
policies that facilitate testing and registration of nanopesticides 
could promote the use of this technology for the effective control of 
insect pests and diseases. Robots are also being developed to reduce 
pesticide use and improve farming efficiency by accurately 
delivering pesticides, thereby reducing emissions associated with 
pesticide use (Jacquet et al., 2022). Autonomous robots can perform 
temporal and spatial high-resolution monitoring to detect disease 
or pest outbreak early and deliver pesticides to treat only the 
affected areas before pests and diseases become widespread. Early 
detection and intervention provides growers time to select their 
control options and, when effective, limit insect pest and plant 
disease pressure from reaching undesirable thresholds. While 
promising in improving the efficacy, accuracy, and targeting of 
pesticides, there are concerns on how nanopesticides may affect the 
environment and public health (Atanda et al., 2025; Zainab et al., 
2024; Usman et al., 2020). Future research should focus on 
understanding nanopesticide toxicity, developing robust risk 
assessment frameworks, and promoting sustainable agricultural 
practices. Furthermore, high production costs make the use of 
nanopesticides in agriculture a low-margin industry (Younis 
et al., 2021) and, thus, a major constraint to their large-
scale application. 
Precision tools, smart farming, and 
Internet-of-Things 

Automation of expert tasks in entomology and plant pathology 
is gaining interest in insect pest and disease monitoring, pest and 
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disease detection, and plant disease measurement. Advances in 
artificial intelligence (AI) and machine learning (ML) coupled 
with the connectivity of network products based on the Internet 
of Things (IoT) are fueling the application of precision tools in 
horticultural crop production (Ali et al., 2023; Vidya Madhuri et al., 
2025). The use of decision support systems has been instrumental to 
allow growers make decisions such as when to apply pesticides and 
in what areas within their fields where early onset of disease or 
insect infestation has been detected. Decision support systems 
utilizing AI/ML technologies have been developed to control 
anthracnose (Colletotrichum acutatum) and  Botrytis (Botrytis 
cinerea) fruit rots in strawberry (Hu et al., 2021) and codling 
moth (Cydia pomonella) and pear leaf blister moth (Leucoptera 
maifoliella) in apple (Cirjak et al., 2022). The increasing interest of 
ML is primarily due to the difficulties associated with pest and 
disease diagnosis, challenges associated with early disease detection, 
and the need to improve the accuracy of disease assessments using 
robotics and autonomous systems. Hyperspectral measurements 
coupled with drone technology have been used for the early 
detection  of  early  (Alternaria  solani) and  late  blight
(Phytophthora infestans) in potato (Gold et al., 2020). Electronic 
nose (E-nose) systems combined with fluorescence imaging are also 
being used to predict the severity of gray mold (B. cinerea) and early 
blight (A. solani) in tomato (Sun and Zheng, 2024). Many diseases 
of horticultural crops exhibit common symptoms and signs 
produced by the leaves, stems, or roots that are caused by 
different pathogens. Furthermore, disease images often do not 
possess sufficient details to assist in the diagnosis and can 
potentially lead to an incorrect diagnosis. There is thus a need to 
incorporate ML in disease detection and measurement with 
traditional integrated disease management for effective diagnosis 
and timely pest and disease control. With the increasing number of 
ML approaches, there is a need to establish which techniques are 
Frontiers in Horticulture 03 
appropriate to specific systems and how they perform when 
compared to traditional approaches to justify the additional 
investment needed to use these technologies (Omaye et al., 2024). 
System-specific ML approaches are critical, given the diverse nature 
of commercial horticultural production systems. In this regard, AI 
can integrate critical spatiotemporal data into models describing the 
effects of weather and/or climate on emerging pest and disease risk, 
generate maps of geographic priorities for surveillance and 
mitigation strategies, and translate these analyses into practical 
decision support systems for farmers and crop consultants 
(Garrett et al., 2022). 

With the help of modern digital and Internet-assisted tools and 
smart applications, the IoT is now assisting farmers’ decision-
making by readily availing information related to insect pest and 
disease monitoring, thereby enabling farmers to adopt 
precautionary measures and customize their pest management 
approaches (Kanuru et al., 2021). As such, IoT and smart farming 
techniques can help simulate and predict yield production under 
forecasted climatic conditions and, thus, assist farmers in decision-
making for various crop management practices such as insecticide 
and fungicide applications. A typical IoT, for example, disease 
control in strawberry production, would consist of the following: 
i) measurement device (powered sensor for disease detection), ii) 
data transmission, iii) data storage and analytics (algorithms for 
disease threshold), iv) feedback and implementation, and v) project 
structure and support. The device layer consists of a sensor to 
measure the parameter of interest (e.g., anthracnose fruit) and the 
electronics necessary to support its functions. Devices would be 
arranged in a topology and connected to a gateway using a 
communication protocol in the data transmission layer. A broad 
coverage of cellular networks would allow for frequent and, in some 
cases, near real-time, data transmission. Individual or aggregated 
measurements are then received by a server where they can be 
FIGURE 1 

A schematic representation of nanomaterial (e.g., zinc oxide, ZnO)-based pesticide delivery systems (PDS) for multifunctional delivery and application 
of pesticides for a more effective and precise control of insect pests and plant pathogens. 
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queried, cleaned, and analyzed. Relevant insights are fed back to an 
end user or other IoT devices to inform decisions and prompt 
actions (e.g., fungicide application). While smart farming and IoT 
have the potential to transform the horticultural sector, with it 
comes a series of various challenges to crop advisors and farmers 
(Idoje et al., 2021). Data security is one of the major problems 
associated with IoT (Jia et al., 2020). The IoT devices accumulate 
huge data from an agricultural IoT system, which can be viewed or 
accessed by an unauthorized personnel due to the lack of the 
necessary security protocols by some of the IoT providers 
(Neshenko et al., 2019). Hence, collected data may be prone to 
manipulation or present other ownership-related problems. 
Furthermore, various countries pose a series of regulations and 
paperwork for the farmers who are willing to adopt new 
technologies (Ali et al., 2023).  While this serves to ensure

compliance, it may also deter potential adopters of these new 
technologies. Development and enactment of policies that 
promote data security, addressing regulations that hinder the 
adoption of technology, and promoting grower education will be 
vital to fully exploit the potential of precision tools, smart farming, 
and IoT in horticultural crop production. 
Microbiome and soil health in insect 
pest and disease management 

The plant microbiome consists primarily of the rhizosphere, 
phyllosphere, and endophytic microbial communities. Beneficial 
microbes, a key group in the plant microbiome, can suppress plant 
diseases by initiating the plant immune system, inducing the synthesis 
of antibiotic compounds, and competing with pathogens for nutrient 
resources (Wang et al., 2023). Endophytic microbes are ubiquitous, 
and their potential in pest and disease management in horticulture 
crop production is increasingly being recognized (Lastochkina et al., 
2022). Microbial endophytes can activate defense mechanisms against 
a variety of postharvest diseases in fruits and vegetables including 
tomato, pepper, apple, and cucurbits (Lastochkina et al., 2019; Tran 
et al., 2019). For example, endophytes have been demonstrated to 
prevent the growth of postharvest gray mold caused by B. cinerea on 
grape berries (Nifakos et al., 2021). It has also been shown that Bacillus 
subtilis reduces potato late blight (caused by P. infestans) severity and  
associated symptoms in stored potato tubers (Lastochkina et al., 2022). 
Some endophytes have been reported to control insects in potato, and 
these operate through the production of alkaloid and neurotoxins that 
result in insect behavioral disorders and mortality (Song et al., 2020; 
Tooker and Giron, 2020). 

Microbial endophytes have the potential to replace some 
synthetic pesticides in horticulture, but exploiting these microbes 
to increase crop resilience against insect pests and diseases is a 
challenge. Identifying the most effective strain or combination of 
strains is still the main bottleneck with the use of microbial 
endophytes. More than 80% of endophytes are not detected when 
cultured on conventional nutrient media (Lastochkina et al., 2022), 
which creates difficulties in obtaining a pure culture, identifying and 
using many potentially effective strains. Furthermore, many 
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artificially unculturable microbial resources within plant tissues 
may play an equally important role in increasing crop resilience 
against pests and diseases. Recent studies on alternative agar 
substitutes provide promising options for culturing unculturable 
microorganisms (Demin et al., 2024). The efficacy of endophytes 
also depends on their compatibility and interaction with their plant 
hosts since endophytes isolated from one plant species may not 
interact with plants from another species. Thus, research on the 
intricate relationships between plants, insect pests, pathogens, and 
microbial communities is required to better harness the potential of 
beneficial microorganisms for pest and disease control. The most 
relevant studies on plant-associated microbes for biocontrol have 
focused on rhizosphere microbial communities (Wang et al., 2023), 
and a systematic understanding of the structure and function of 
endophytic microbial communities under pathogen invasion is not 
well known and needs to be established. 
IPM adoption and implementation at 
different spatial scales 

Insect pests and pathogens significantly reduce crop productivity 
and thus pose a challenge to achieving global food security. The tenet 
of integrated pest management (IPM) is the use of various pest and 
disease control strategies (e.g., cultural, biological, genetic, physical, 
legislative, and mechanical constraints) into one program to keep pest 
levels below a certain economic threshold (Prokopy and Kogan, 2009; 
Oguh et al., 2019). This approach has the intention of reducing 
pesticide use and managing pesticide resistance using strategies that 
are practical and affordable and minimize damage to the 
environment (Dara, 2019; Oguh et al., 2019). Studies have shown 
that IPM-managed pests rarely reach economic threshold, resulting 
in 95% lower insecticide use (Pecenka et al., 2021). However, 
significant challenges remain toward improving IPM adoption 
(Magarey et al., 2019) to exploit its full potential. Efforts to increase 
IPM adoption have been hindered by poor coordination and 
prioritization of IPM strategies, lack of a clear methodology to 
measure the environmental and economic benefits of IPM 
(Greitens and Day, 2007), and lack of communication with the 
general public (Magarey et al., 2019). A study conducted in the UK 
reported positive correlations between IPM adoption and farmed 
area and familiarity with IPM (Creissen et al., 2021). As such, policies 
that promote awareness of IPM approaches and encourage farmers to 
greater levels of engagement with pest issues should be expected to 
promote IPM adoption (Lane et al., 2023; Creissen et al., 2021). 

The IoT is improving farmers’ decision-making by readily 
providing information related to pest and disease monitoring, and 
this represents a significant advancement in IPM. A novel approach 
that integrates automatic pest management is being developed by 
combining the rational behavior of intelligent agents and IoT 
technologies (Ahmed et al., 2024). This approach allows real-time 
information acquisition through electronic traps connected to a 
wireless sensor network, enabling efficient spatiotemporal 
monitoring of pests and diseases, for the identification and 
location of infestation hotspots in the field. The precise and 
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focused detection capacity of such systems reduces the need to 
apply pesticides throughout an area, thus optimizing the use of 
resources and minimizing the environmental impact of pesticide 
use. Lewis et al. (1997) proposed a “total system approach” as an 
alternative to the “silver bullet” solutions for pest control to 
counteract the increasing environmental consequences of pest 
control in agriculture. However, a compartmentalized approach is 
still prevailing, where IPM projects focus on one or two critical 
control strategies rather than its entirety (Falkenberg et al., 2022). 
Regenerative agriculture based on sustainable intensification (Giller 
et al., 2021) is now providing an avenue to integrate the various 
compartmentalized approaches to IPM into a more holistic One 
Health framework (Falkenberg et al., 2022). 

Conclusion 

Horticulture crop production is now at a technological crossroads, 
fighting climate change while simultaneously feeding the world. 
Advancements in horticulture production systems are important to 
maximize crop protection, productivity, and food quality and safety 
especially under changing environmental conditions. In this 
perspective, some selected emerging, affordable, fast, eco-friendly, 
and effective approaches that can contribute to the successful 
management of pests and diseases in horticultural crop production 
were highlighted. The exogenous use of beneficial strains of endophytic 
microbes and nanoparticles, in particular, has a huge potential to 
replace some agrochemicals, and they are used in plant protection 
formulations to increase plant resilience, crop productivity, and quality. 
Robotics and autonomous systems are now emerging as next horizon 
technologies with considerable potential to transform diverse 
horticultural activities including minimizing on-farm greenhouse 
emissions and food and farm waste and improving the efficiency of 
decision support systems. While promising, certain challenges still exist 
and need to be addressed to fully harness the potential of these 
emerging technologies in pest and disease control. Global 
coordination of multidisciplinary researchers, investors, consumers, 
farmers, and policy regulators will be vital for driving a paradigm 
shift in net-zero agriculture and to increase IPM adoption. The use of 
IoT in conjunction with the current pest management techniques 
Frontiers in Horticulture 05 
opens new opportunities for IPM to achieve a new milestone in 
horticultural crop production. 
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