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Introduction: Several postharvest strategies have been explored to prevent

postharvest losses of fruit and vegetables in small-scale production

environments that are caused by fungal spoilage during storage; however, the

losses remain persistent. In the bell pepper industry for instance, approximately

40% of the total global production is lost annually, highlighting a need to

understand pathogen dynamics at the preharvest stage that could contribute

to tissue breakdown at storage. This study therefore aimed to explore fungal

community shifts during bell pepper fruit development from flowering

to storage.

Methods: The samples of flowers, small fruits, mature fruits at harvest and

storage were processed to identify the fungal composition using next-

generation sequencing of the internal transcribed spacer region.

Results: The results showed that bell pepper harbored 346 fungal genera across all

fruit stages mainly from the phyla Ascomycota (83.9%) and Basidiomycota (15.3%).

The fungal community comprised both pathogenic and beneficial taxa:

Cladosporium, Alternaria, and Fusarium were among the most abundant

probable pathogenic taxa, while Aureobasidium, Filobasidium, and Sampaiozyma

represented potential biocontrol agents (BCAs). Trend and correlation analysis

showed an antagonistic relationship between the BCAs and pathogenic fungi,

possibly explaining their dynamic composition across the fruit stages.

Discussion: The analysis showed interaction likelihood between pathogenic taxa,

giving insights into co-infection, as well as among beneficial taxa with biocontrol

potential, highlighting their synergistic effect against pathogens. Based on

redundancy analysis, fruit physiological changes across the developmental

stages may have accounted for approximately 8.53% of the total microbial

variation observed and could favor growth of spoilage pathogens at storage.

The overall analysis confirmed that primary infection at the early fruit

developmental stage was the source of the bell pepper decay at postharvest.

This highlights the critical need to refocus postharvest spoilage management on

reducing preharvest infection, particularly those relating to quiescent infections.

The antagonistic characteristics in the bell pepper mycobiome can be harnessed
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for the development of biocontrol consortia targeting dual/multiple infections.

These findings offer a new approach to the management of postharvest losses

while aligning with sustainable agricultural production and food security by

promoting the use of naturally occurring beneficial microbes for crop protection.
KEYWORDS

fungal microbiome, postharvest decay, biological control consortia, latent infection,
food security
1 Introduction

Bell pepper (Capsicum annuum L.), a widely cultivated and

economically significant crop in the Solanaceae family, was

characterized by a rise in global production, from 29.63 million

tonnes in 2010 to 36.09 million tonnes in 2020 (Anaya-Esparza

et al., 2021; Krasnow and Ziv, 2022; Tridge, 2023). Its economic

contribution is estimated to be approximately USD 4.2 billion

which is projected to increase to USD 6.6 billion by 2028

(Business-Research, 2023). Despite this economic importance,

approximately 40% of the global produce is lost at postharvest

(Anaya-Esparza et al., 2021; Tiamiyu et al., 2023) due to fungal

spoilage which may be introduced during flowering and early fruit

developmental stages (Singh et al., 2021).

Common bell pepper fungal diseases reported globally include

black rot disease caused by Alternaria species, gray mold caused by

Botrytis cinerea Pers (Tiamiyu et al., 2023), anthracnose disease

caused by Colletotrichum spp. and Fusarium rots caused by

Fusarium spp (Frans et al., 2015). Although these pathogens

typically affect fruit at postharvest, latent infections occurs during

earlier stages of fruit development (Goudarzi et al., 2021; Morales-

Cedeño et al., 2021). Several control strategies have therefore been

developed to minimize postharvest bell pepper losses caused by

fungal pathogen infection (Tiamiyu et al., 2023). These strategies

involve both preharvest chemical treatments, e.g., boscalid,

azoxystrobin, cyprodinil, fludioxonil (Shim et al., 2023), or

postharvest non-chemical approaches, such as the use of edible

coatings, essential oils, hot water treatment, modified atmosphere/

active packaging, ultraviolet (UV-C) irradiations, and ozone gas

treatment (Glowacz and Rees, 2016; Rybak et al., 2021; Tiamiyu

et al., 2023). Despite these efforts, postharvest losses due to rot-

causing pathogens remain high (Anaya-Esparza et al., 2021). This

can largely be attributed to insufficient understanding of the

dynamic microbial interactions between microbes and the host

plant (Santos and Olivares, 2021). Consequently, there is a limited

grasp of the optimal intervention point to target these pathogens

(Liu et al., 2022).

Microbiome studies have provided some insight into the

interactions between microbiota and their plant host, revealing the

potential for microbiome-driven disease management (Enespa and

Chandra, 2022). With the possibility of quiescent preharvest
02
infections being the major cause of bell pepper spoilage at storage,

this study aimed to provide an overview of the bell pepper

mycobiome dynamics across the different fruit developmental

stages, including storage, how these trends could be influencing the

development of decay at postharvest and to elucidate the possible

pathogen entry points for timely intervention.
2 Materials and methods

2.1 Study location and sample collection

The study was conducted at two representative smallholder bell

pepper farms located in the Tshwane (farm E), and Germiston

(farm G) regions of Gauteng Province, South Africa. The province

falls in the summer rainfall area and receives 600–700 mm of rain

per annum. It has average annual maximum temperature ranges of

22 and 25°C with an altitude between 1350 and 1800 m above sea

level (Dyson, 2015). Production in the selected farms were under

shade nets. Asymptomatic bell pepper samples were collected

during the September 2022 to April 2023 growing season for four

different stages of fruit development. The samples included flowers

(FL; n=3 composite samples, each comprising of 15 individual

flowers), small fruits (SF; n=3 composite samples of five fruits

each), mature fruits at harvest (MF1; n=3 composite samples of

three fruits each), and fruits that completed 10 days of storage (ST;

n=3 composite samples of three fruits each), resulting in a total of

n=24 samples. All samples were randomly collected within the

central rows under the shade nets (Figure 1). The samples were

transported in cooler boxes containing ice packs to the Plant

Pathology laboratory at the University of Pretoria for processing.

A selection of fruit was stored in the collection boxes at room

temperature for 10 days to simulate postharvest storage. All samples

were processed within 24 hours after sampling.
2.2 Assessment of fruit physiological
attributes and analysis

Physiological characteristics were measured at SF, MF1, and ST

fruit stages, and included total soluble solids (TSS), pH, and
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defense-related phytochemicals; total phenolic content (TPC), total

flavonoid content (TFC), and ascorbic acid (AA). The TSS content

(% Brix) of the fruit was measured using a hand digital

refractometer (PR-32, Atago, TSS 0–32%, Palette, Japan)

following the method described by Nisansala et al. (2015). The

fruit pH was measured as described by Abudi et al. (2020), using a

Jenway 3510 pH meter (Bibby Scientific Ltd., Stone, UK) with a flat

surface electrode combination (Extech Instruments, Waltham,

MA, USA).

Plant material (fresh weight) from each fruit stage was prepared

for the assessment of defense-related phytochemicals by cutting the

samples into small pieces and snap-freezing them in liquid nitrogen.

The frozen samples were then aseptically ground to powder form

using a sterile electric coffee blender (Kambrook) packaged in sterile

resealable bags and stored at −80°C until use. To test for TPC, the

extraction was done as described by Boeing et al. (2014) with some

minor modifications: sample powder (1 g) was suspended in 5 mL

acetone water (Minema Chemicals, Johannesburg, South Africa)

(1:1 v/v). This was followed by vigorous mixing using a vortex

before incubation of the mixture for 6 hours at room temperature.

The mixture was then centrifuged at 3000 × g for 10 mins, after

which the supernatant/plant extract was transferred into clean tubes

and used for fruit total phenolic estimation following the Folin-

Ciocalteu method (Sellamuthu et al., 2013). In triplicates, the

supernatant (9 µL) was mixed with 109 µL of 10% Folin-

Ciocalteu reagent (Sigma-Aldrich, Darmstadt, Germany) and

incubated at room temperature for 3 mins. This was followed by

adding 180 µL of 7.5% sodium bicarbonate solution (NaCO3)

(Minema Chemicals), and the reaction mixture was incubated at

50 °C for 5 mins. The optical density was measured at 760 nm using

an ultraviolet (UV) spectrophotometer (ThermoScientific,

Multiskan Go, Waltham, MA USA). The absorbance values of the

samples were then corrected using the corresponding blank

readings prior to concentration calculations. Gallic acid (Sigma-

Aldrich) was used as the standard, and results were presented as mg

of gallic acid equivalent (GAE)/100 g of bell pepper fruit powder.

The total flavonoid content was measured by a colorimetric

assay, as described by Zhishen et al. (1999). Plant extraction was
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done according to Alipieva et al. (2010) with a few modifications,

where 1 g of the sample was suspended in 5 mL of 60% methanol

(Sigma-Aldrich). The mixture was then incubated at 50°C in a water

bath for 30 mins before centrifuging at 3000 × g for 10 mins. In

triplicates, the resultant supernatant (0.15 mL) was added to 1 mL

of distilled water, followed by the addition of 0.15 mL of 5% sodium

nitrite (NaNO2) (Minema Chemicals). After 5 min, 0.15 mL of 10%

aluminium chloride (AlCl3) (Sigma-Aldrich) was added to the

solution and left to stand for 6 min at room temperature, before

adding 0.5 mL of 1 M sodium hydroxide (NaOH) (Minema

Chemicals) and vortexing. The absorbance was determined at 510

nm and the sample reading corrected using the respective blanks

before calculating the concentrations. Catechin (Sigma-Aldrich)

was used as the standard for the calibration curve and TFC was

expressed as mg of catechin equivalent (CE)/100 g of bell pepper

fruit powder.

Ascorbic acid was determined using the indophenol method

described by Nielsen (2017) with minor modifications. Fruit

powder (4 g) was mixed with 8 mL of metaphosphoric acid

(HPO3) (Sigma-Aldrich), vortexed and incubated at room

temperature for 10 mins. The mixture was then centrifuged at

6000 × g for 10 mins, and the resultant supernatant was used for the

ascorbic acid assay. In triplicates, 2 mL of the supernatant was

mixed with 5 mL HPO3 in volumetric flasks and titrated against the

prepared 2,6-dichloroindophenol dye (Sigma-Aldrich) until a light,

but distinct rose-pink color persisted for more than five seconds.

The initial and final burette readings were recorded before and after

each titration to calculate the amount of the dye used. The same

procedure was repeated for standard ascorbic acid and the blank

solutions. Ascorbic acid was calculated as described by Nielsen

(2017) (Supplementary Material 1).

The data collected was analyzed using R statistical software

version 4.3.1 in RStudio (R Core Team, 2023). Means and standard

errors for TPC, TFC, AA, TSS, and pH were calculated, and analysis

of variance (ANOVA) at a 95% confidence interval was used to test

for significant differences of the means. Post hoc analysis was

performed using the least significant difference (LSD) test for

pairwise comparison.
FIGURE 1

Shade net structure under which bell peppers were produced (Farm E).
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2.3 Bell pepper sample preparation, DNA
extraction and Illumina sequencing analysis

The collected flower and fruit samples were suspended in sterile

double-distilled water containing 0.1% Tween 80 (Sigma-Aldrich)

to remove microfloral epiphytes. This was followed by sonication in

an ultrasonic water bath (Labotech, Johannesburg) for five minutes,

as described by Gomba et al. (2016). These micro-floral washes were

filtered through a cellulose nitrate filter paper (0.45 µm pore size;

Sartorius, Gottingen, Germany), and the filters containing wash

residue (microflora epiphytes) aseptically stored at −20 °C before

DNA extraction for the total epiphyte metagenomic DNA.

Total metagenomic DNA extractions of samples at the different

pepper developmental stages were done using the Quick-DNA™

Fungal/Bacterial Miniprep kit (Zymo-Research, California, USA),

following the manufacturer’s instructions. The DNA concentrations

were quantified using a Nanodrop ND2000 Spectrophotometer

(Thermo Fischer Scientific, Dreieich, Germany). DNA were

stored as aliquots at −20°C, with a separate aliquot prepared for

submission to Molecular Research LP (MR DNA; Texas, USA) for

paired-end (2×300 bp) high-throughput Illumina MiSeq (Illumina,

Inc. USA) sequencing, using the bTEFAP® method (Dowd et al.,

2008). The internal transcribed spacer (ITS) region was targeted,

using primers ITS1F (5’-CTTGGTCATTTAGAGGAAGTAA-3’)

and ITS2R (5’-GCTGCGTTCTTCATCGATGC-3’), as described

by Tedersoo et al. (2015).

Raw sequence data received from MR DNA were processed

using the Quantitative Insights Into Microbial Ecology 2 (QIIME 2)

platform (Bolyen et al., 2019) on VirtualBox version 6.1.32 (Oracle

Corporation, 2022). This involved demultiplexing, quality filtering

by adapter trimming, denoising, paired read merging and chimera

removal using the DADA2 analysis pipeline (Callahan et al., 2016).

Feature tables were then generated from the cleaned amplicon

sequence variants (ASVs) and taxonomic classification was done

using a self-trained classifier database developed from the UNITE

QIIME release version 9.0 (Abarenkov et al., 2023) at a 99%

sequence similarity threshold.

Comprehensive fungal community and statistical analysis,

including visualization of the generated datasets, were performed

in R statistical software version 4.3.1 in RStudio (R Core Team,

2023). Fungal community structure and alpha diversity were

calculated from non-rarefied sequences, while sequences rarefied

to a minimum library size of 38–231 reads were used to determine

beta diversity as described by Cameron et al. (2021). The alpha

diversity indices measured at genus level included the Chao1

richness index, Shannon, and Gini-Simpson diversity indices.

These were visualized using boxplots generated using the ggplot2

function in R.

The Shapiro–Wilk normality test was used to determine the

distribution of the dataset for downstream statistical testing based

on fruit developmental stage and sample origin (González-Estrada

et al., 2022). Where normal distribution was observed, an analysis of

variance (ANOVA) was carried out, followed by a post hoc Tukey’s

Honestly Significant Difference (HSD) test for pairwise comparison

(Sawyer, 2009). Alternatively, the Kruskal–Wallis test was used for
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samples not normally distributed, followed by a post hoc Dunn’s test

(MacFarland and Yates, 2016). Beta diversity was determined using

the Bray-Curtis dissimilarity matrix and visualized through principal

coordinates analysis (PCoA) ordination (Xia and Sun, 2023).

Statistical differences in beta diversity between fruit developmental

stages and origin were inferred with permutational multivariate

analysis of variance (PERMANOVA, 999 permutations) using the

adonis function (Xia and Sun, 2023).

To assess ecological importance, common fungal taxa were

determined at a minimum detection threshold of 1% relative

abundance at a minimum sample prevalence of 0.9 (de Souza

et al., 2016). Interaction of common mycobial organisms

occurring in at least 90% of the total samples was determined

using Spearman rank correlation by carrying out a sparse

correlation for compositional data (SPARCC) using the phyloseq

package in R (Kurtz et al., 2015; Neu et al., 2021). The fungal co-

occurrence network generated was visualized using the igraph

package (Csardi and Nepusz, 2006). To assess the postharvest

pathogen profile, ITS amplicon sequence data of taxa with

putative pathogenic nature based on literature were extracted

from the processed files and their identity confirmed using NCBI

BLASTn (Altschul et al., 1990). The abundance trends of potential

pathogen and biological control taxa across the fruit developmental

stages were evaluated using ggplot package in R. A redundancy

analysis (RDA) was carried out on Hellinger transformed data to

determine the influence of fruit physiological parameters on

common fungal composition across the fruit developmental

stages (Legendre and Gallagher, 2001). The RDA plot was

generated using the ggplot.
3 Results

3.1 Assessment of bell pepper quality from
small fruit to storage

Fruit physiological parameters (TPC, TFC, AA and TSS)

increased with fruit maturity (SF-ST) in farm E (Table 1), while

fruit pH, decreased with maturity. The changes in physiological

parameters were significantly different between the small fruits and

mature fruits at harvest and storage (p < 0.05, Table 1). Farm G’s

fruits also depicted a general increase in TPC and TFC

concentrations between the small fruits and mature fruits at

storage, despite a notable drop at MF1 stage (Table 1). Ascorbic

acid concentration and % brix (TSS) significantly increased with

fruit maturity, while fruit pH declined (p < 0.05, Table 1).
3.2 Fungal community composition,
diversity and interactions

A total of 1,552,622 fungal reads (max. number of reads

=101,632, min. number of reads = 38,231, and avg. number of

reads = 64,692.58) were retrieved from the 24 bell pepper samples.

Data processing yielded a total of 1,778 ASVs comprising of five
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phyla, 24 classes, 64 orders, 158 families and 346 genera. Alpha

diversity measures at genus level ASVs across all the developmental

stages (Figure 2a; Table 2) for farm E showed that small fruits had a

significantly lower mean Chao1 ASV richness compared to the

flowering stage (ANOVA, p = 0.00153). The ASV richness,

however, increased with fruit maturity (SF-MF1). Similarly, for

farm G, the ASV richness dropped from the FL to SF stage and

again peaked with fruit maturation. Despite the variance in ASV

richness for farm G, the values were not significantly different across

the fruit developmental stages. In both farms, there was a drop in

ASV richness at storage (Figure 2a; Table 2).

Farm E had a similar trend in Shannon and Simpson diversity

as the ASV richness, where the floral stage had a significantly higher

diversity compared to the other fruit developmental stages

(ANOVA, p = 0.0023, and p = 0.0307 respectively). According to

the two indices, the diversity decreased at the small fruit stage,

increased with fruit maturation, and decreased at fruit storage

(Figure 2a; Table 2). In contrast, farm G had a linear increase in

Shannon diversity from floral stage to fruits at storage. Diversity

according to the Simpson index increased from FL to SF with a

slight decrease towards maturity and subsequent increase in

storage. Despite the observed variations, there was no statistical

difference in diversity across the developmental stages in farm G

(ANOVA, p > 0.05, and p >0.05) for Shannon and Simpson

diversity indices respectively (Figure 2a; Table 2).

Beta diversity analysis using PCoA ordination showed clear

clustering of the fungal community based on fruit development

stage (Figure 2b). Floral and small fruit fungal communities from

both farms clustered together except for EFL, which was separate

and sparsely distributed from the rest. Fungal communities from

mature fruit stages also clustered together, except for those from

EMF1, which formed a slightly separate group (Figure 2b). A total

of 47% of the variation in the fungal community was accounted for

within the first two PC’s in the dataset, with a strong and significant

developmental stage influence (PERMANOVA: R2 = 0.3760,

F=4.0164, P=0.001) on the fungal microbiota between early and

late fruit maturity (28%).
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Further analysis at genus level showed that 57 (19.1%) of the

total taxa in farm E were shared across the four fruit stages. A total

of 91 (30.5%), 9 (3.0%), 28 (9.4%), and 23 (7.7%) of the taxa

identified were exclusive to EFL, ESF, EMF, and EST stages,

respectively. Farm G samples indicated that 54 (25.7%) of the

total taxa were shared across the four fruit stages. The GFL, GSF,

GMF1 and GST samples exclusively accounted for 16 (7.6%),

7 (3.3%), 51 (24.3%), and 19 (9.0%) of the taxa respectively.

Ascomycota and Basidiomycota were the most abundant phyla

across all samples, accounting for 83.9% and 15.3% of the total fungal

community, respectively. The remaining 0.8% of the total fungal

community population was accounted for by Chytridiomycota

(0.08%), Mortierellomycota (0.02%), Incertae sedis/uncultured fungi

(0.4%), and unclassified fungi (0.3%). Cladosporium (37%) and

Alternaria (16%) were ranked as the most abundant genera across

all four different fruit developmental stages. These were distantly

followed by Fusarium, accounting for 5% of the total relative

abundance (Figure 3). Other common and abundant genera

included Sampaiozyma, Psedopithomyces, Naganishia, Filobasidium,

Plectospharella, Aureobasidium, Hohenbuehella, Sporobolomyces,

Exserohi lum, Acremonium, Coprine l l ius , Rhodotorula

and Xenodidymella.

Among the common genera across all the fruit developmental

stages were Alternaria, Cladosporium and Fusarium, previously

reported as pathogens of bell pepper (Supplementary Material 2).

The abundance and distribution of Alternaria were almost similar in

both farms while Fusarium was more abundant in farm G (Figure 3).

Colletotrichumwas also present at all fruit developmental stages in farm

G and only present on mature fruits (MF1 and ST) in farm E.

According to the NCBI BLASTn taxonomy database, the species-

level identity for Alternaria ASVs were mainly A. alternata, A.

arborescens, A. cinerarie, A. japonica, A. solani, and A. sonchi.

Fusariam comprised of F. oxysporum, F. graminearum, F. equiseti, F.

domesticum, F. dimerum, F. delphinoides, F. citri, F. solani, F.

tricinctum, F. proliferatum, F. penzigii, and F. chlamydosporum.

Colletotrichum ASVs included C. gloeosporioides, C. truncatum and

C. cirnanams.
TABLE 1 Changes in the polyphenol (TPC), flavonoid (TFC), ascorbic acid (AA), total soluble solids (TSS), and pH content across the bell pepper fruit
developmental stages: SF, small fruit; MF1, mature fruit at harvest; and ST, mature fruit after storage for 10 days; letters E and G in the fruit stage
represent farms.

Fruit stage TPC (mg/100 g GAE) TFC (mg/100 g CE) AA (mg/100 g) TSS (%Brix) pH

ESF 44.73 ± 3.5c 49.31 ± 17.3b 11.63 ± 1.3b 2.73 ± 0.2d 6.81 ± 0.02a

EMF1 88.36 ± 10a 86.14 ± 13.8b 27.6 ± 1.9a 3.93 ± 0.1c 5.07 ± 0.04d

EST 104.1 ± 15.7a 188.61 ± 105.3ab 28.57 ± 0.7a 5.03 ± 0.2b 5.02 ± 0.04d

GSF 83.29 ± 3.7ab 255.98 ± 21.5ab 3.19 ± 0.3c 2.93 ± 0.1d 6.88 ± 0.01a

GMF1 52.35 ± 11.6bc 152.22 ± 42.2b 15.69 ± 4b 5.67 ± 0.2a 5.46 ± 0.01c

GST 89.41 ± 10.4a 378.89 ± 115.5a 26.99 ± 3.5a 5.73 ± 0.3a 5.56 ± 0.02b

F Value 5.267 3.177 19.32 52.57 984.6

p Value 0.00865 ** 0.0468 * 2.29e-05 *** 9.59e-08 *** 3.02e-15 ***
Significant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. Different superscript letters within a column indicate statistically significant differences between means (p < 0.05), based on post-hoc
multiple comparison tests.
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Upon analysis of the trends at genus level across the fruit

developmental stages, Cladosporium, Filobasidium, Acremonium,

and Plectosphaerella had increased abundance from flowering to

storage. Alternaria, Sampaiozyma, Fusarium, Naganishia,

Aerobasidium, Hohenbuehelia, Rhodotorula, and Xenodidymella had

fluctuating abundance over the fruit developmental stages, which

differed by farm. Alternaria abundance in farm E, for instance, was

highest at the small fruit stage, reduced with fruit maturity, and

increased at storage. Alternaria abundance in farm G was highest at

the floral stage and reduced as the fruit matured. Fusarium in both

farms had the highest abundance at the small fruit stage, reduced

towards harvest and increased at storage. In both farms, the

abundance of Sampaiozyma increased as Alternaria decreased

(Table 3) with a Pearson correlation analysis showing significant
Frontiers in Horticulture 06
negative correlation between the two taxa across the fruit

developmental stages (r = −0.63, p< 0.05, Supplementary Material

3). The abundance of Hohenbuehelia and Exserohilum were inversely

proportional to that of Sampaiozyma across the fruit developmental

stages (r = −0.6, p <0.05). Sporobolomyces and Exserohilum decreased

in abundance from flowering to storage (Table 3). Sporobolomyces in

farm E peaked at the small fruit stage, while flowers recorded the

highest abundance in farm G. Exserohilum in both farms had reduced

abundance from flowering to stored stages.

Co-occurrence network analysis based on statistical correlation

showed the positive (green arrows) and negative (red arrows)

correlations between the fungal ASVs in the community

(Figure 4). Strong positive correlations were observed between

Alternaria and the genera; Exserohilum, Hohenbuehelia,
FIGURE 2

Diversity of fungal communities from the different bell pepper fruit developmental stages: FL, flowering; SF, small fruit; MF1, mature fruit at harvest;
and ST, fruit stored for 10 days. (a) Alpha diversity showing the Chao1 richness index, Shannon, and Gini-Simpson diversity indices. Tukey HSD
analyses with significant p values indicate the 95 % confidence level. (b) The principal coordinates analysis using the Bray-Curtis dissimilarity of the
bell pepper epiphytic fungal community are shown, categorized by developmental stage. PC1 and PC2 accounted for 28.1% and 19% of the variance
respectively. Letters E and G in the fruit stage represent farms.
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Pseudopithomyces, Sporobolomyces , Xenodidymella and

Aureobasidium. On the other hand, Alternaria had a strong

negative correlation with Sampaiozyma and moderate negative

correlation with Coprinellus and Filobasidium (Figure 4).

Fusarium was depicted to have a strong positive correlation with

Acremonium, Plectosphaerella and a moderate positive correlation

with Sporobolomyces. It had a strong negative correlation with

Aureobasidium, Coprinellus and Filobasidium (Figure 4).

Acremonium had a strong negative correlation withAureobasidium,

Corprinellus. Plectosphaerella had a strong positive correlation with

Acremonium and a strong negative correlation with Aureobasidium.

The network also depicted that Cladosporium positively correlated with

almost all taxa around it with Pseudopithomyces interaction being the

only negative, albeit weak, correlations. Naganishia also had a strong

positive correlation with all the surrounding taxa; Aureobasidium,

Coprinellus, Filobasidium and Sampaiozyma.

Aureobasidium, Coprinellus, Filobasidium, and Sampaiozyma were

also included in this positive correlation hub. However, they additionally

showed negative correlations with selected ASVs. For instance,

Coprinellus negatively correlated towards Pseudopithomyces and

Sporobolomyces. It also had a positive correlation towards

Aureobasidium, Cladosporium, Filobasidium, Naganishia and

Sampaiozyma. Sampaiozyma on the other hand strongly correlated
TABLE 2 Chao1, Shannon and Simpson fungal ASV community richness
and diversity using estimated marginal mean (EM mean).

Fruit
stage

Chao1
Shannon
diversity

Simpson's
diversity

EM mean EM mean EM mean

EFL 310a 3.46a 0.919a

ESF 162b 2.5b 0.835ab

EMF1 190b 2.7ab 0.852ab

EST 172b 2.07b 0.723b

GFL 146b 2.37b 0.809ab

GSF 121b 2.7ab 0.879ab

GMF1 200ab 2.7ab 0.796ab

GST 174b 2.86ab 0.849ab

F value 5.96 5.488 3.05

p Value 0.00153** 0.00233** 0.0307*
Significant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. Different superscript letters within a
column indicate statistically significant differences between means (p < 0.05), based on post-
hoc multiple comparison tests.
Developmental stages: FL, flowering; SF, small fruit; MF1, mature fruit at harvest; and ST, fruit
stored for 10 days; letters E and G in the fruit stage represent farms.
FIGURE 3

Taxonomic relative abundance of fungal ASVs at genus level identified on bell pepper flower and fruit surfaces at four different developmental
stages. The listed genera met the threshold of at least 1% of the total abundance in the specific sample. Others- aggregated ASVs of all taxa
accounting for less than 1 % of the total community abundance per sample. Developmental stages: FL, flowering; SF, small fruit; MF, mature fruit;
and ST, fruit stored for 10 days; letters E and G in the fruit stage represent farms.
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negatively towards Alternaria, Exserohilum, Hohenbuehelia,

Pseudopithomyces and Sporobolomyces but had strong positive

correlations with Cladosporium, Filobasidium and Naganishia

(Figure 4). Filobasidium was strongly negatively correlated towards

Alternaria, Exserohilum, Fusarium, Hohenbuehelia, Pseudopithomyces,

Sporobolomyces and Xenodidymella, and positively correlated with

Cladosporium and Naganishia. Despite Auerobasidium having a

strong negative correlation towards Acremonium, Fusarium and

Plectosphaerella, it interestingly had a strong positive correlation with

Alternaria, Cladosporium, Exserohilum , Hohenbuehelia

and Xenodidymella.
3.3 Influence of fruit physiological
attributes on microbial composition

The redundancy analysis showed that fruit physiological

attributes (AA, TPC, TFC and TSS) had a significant influence on

fungal composition, contributing to 8.53% of the total variance

(ANOVA, Variance = 0.085335, F = 4.2068, p = 0.001, Table 4).

Total flavonoid content (TFC) had the highest influence on fungal

composition (ANOVA, Variance = 0.021337, F= 5.2594, p =
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0.0002) while TPC had the lowest effect (ANOVA, Variance =

0.009587, F= 2.3631, p = 0.066, Table 4).

The ordination (Figure 5) indicated that 58.61% of the observed

variance was captured in RDA1 and RDA2. The taxa Acremonium

and Plestospharella clustered closer to TFC, TPC and TSS. Fusarium

was shown to strongly correlate with the changes in fruit pH.

Cladosporium and Filobasidium depicted a strong positive

correlation to the increase in ascorbic acid and was also

negatively correlated to TFC, and TSS increase. Alternaria,

Aureobasidium, Exserohilum, Naganishia, Sporobolomyces,

Rhodoturula and Xenodidymella had moderate correlation with

all the tested physiological attributes (AA, TFC, TPC, TSS and

pH), as shown by their central positioning (Figure 5).
4 Discussion

4.1 Bell pepper microbial composition and
diversity

The main objective of the present study was to characterize the

bell pepper mycobiome across different fruit developmental and
TABLE 3 Changes in absolute abundance trends of the top common fungal genera across the fruit developmental stages: SF, small fruit; MF1, mature
fruit at harvest; and ST, mature fruit after storage for 10 days; letters E and G in the fruit stage represent farms.

Farm E Farm G

Genus EFL ESF EMF1 EST Trendline GFL GSF GMF1 GST Trendline

Cladosporium 20277 75056 57923 155026 63674 57119 86847 80237

Alternaria 34197 68868 12108 31777 63747 25839 8663 9724

Sampaiozyma 135 219 42252 12743 219 170 4496 6003

Fusarium 1080 3258 392 1877 12002 33929 2765 21506

Naganishia 349 11889 7980 5994 2299 1270 1978 1059

Filobasidium 177 326 12563 13160 166 139 1473 1254

Aureobasidium 1447 23093 3117 1307 526 413 1474 569

Hohenbuehelia 6045 14965 74 63 472 297 41 34

Plectosphaerella 54 137 173 162 533 4436 1887 15387

Sporobolomyces 182 563 379 178 8190 3395 223 237

Exserohilum 7922 3004 57 47 732 263 36 43

Acremonium 34 15 25 46 365 586 45 6883

Rhodotorula 302 2106 1796 342 1364 1226 1822 842

Xenodidymella 762 564 257 517 756 1003 267 1222
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storage stages. This understanding can help identify possible

pathogen entry points guiding timely intervention to reduce

postharvest decay and spoilage. The study showed Ascomycota

and Basidiomycota as the most abundant phyla across all bell

pepper fruit developmental stages, accounting for a cumulative

99% of the total surface fungi. This agrees with the study findings by

Khwantongyim et al. (2021), which showed that these two phyla

were the most abundant on apple fruits, accounting for 77.6% and

22.1% of the total counts, respectively. The dynamics of

Ascomycota are specifically important as this dominant phylum

includes the pre- and postharvest pathogenic genera, namely,

Alternaria, Fusarium and Colletotrichum, as identified in the

current study. The dominance of Ascomycota could also be

associated with their intrinsically higher genomic potential for

resource utilization, competition, and tolerance to stress when

compared to saprobic Basidiomycota (Egidi et al., 2019). The

consistent presence of Basidiomycota such as Sampaiozyma,

Filobasidium, Naganishia, Hohenbuehelia suggests a key, yet

lesser-understood role of this phylum in fungal dynamics,

potentially influencing rot development during storage.

Genus-level analysis revealed further insights into the dynamic

shifts in fungal communities across developmental stages. For

instance, less than 26% of the observed genera on each farm were

shared across all fruit developmental stages, indicating that most of

the observed fungal genera were unique to specific stages of

development. During the early stages, the bell pepper community

was dominated by fungal genera such as Cladosporium, Alternaria,

and Fusarium, which are typically associated with leaf blight
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diseases on several hosts (Ghoneem et al., 2025; Manathunga

et al., 2024). At maturity and during storage, Cladosporium

became more prominent. The increase in Cladosporium counts

on mature fruits supports the finding by Swett et al. (2019) that fruit

susceptibility increases with maturity. In their study, Cladosporium

infection of raspberry increased from 2.5% at preharvest to over

50% after harvest, compared to the present study where the relative

abundance increased from 26.7% at preharvest to 47.7% after

harvest. At postharvest, Alternaria and Fusarium also slightly

increased, while populations of some taxa, for instance

Aureobasidium, Naganishia and Rhodoturula, declined. This

reinforces a potential link between microbial competition, the role

of these fungi in temporal community dynamics and their

contribution to the onset of decay during storage (Verma et al.,

2022; Fink and Manhart, 2023). This can also be associated with the

observed decline in community diversity at storage as the

pathogenic taxa possibly outcompeted other fungal genera in the

community (Zhang et al., 2021). Zhang et al. (2021) reported that

fungal communities are more sensitive to rot, resulting in a

significant decline in abundance during fruit decay. Fungal

community structure in terms of genus types was similar in the

two farms but only varied in abundance across the developmental

stages. For instance, Fusarium were slightly more in farm G

compared to farm E and this could be attributed to farmer

agronomic practices ranging from seed sources, planting substrate

and routine management practices.

PCoA ordinations support the observed alpha diversity trends

by clearly distinguishing fungal communities between early and
FIGURE 4

Co-occurrence network of significantly abundant bell pepper fungal microbiota. Nodes represent genera, while edges denote correlations with a
threshold of >0.3. Green = positive correlation, red = negative correlation. The color intensity of the arrow indicates a stronger correlation.
Generated using SPARCC (5–000 permutations).
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later bell pepper development stages. The distinction could be a

result of the physiological changes in fruit over time, as indicated by

the tested physiological parameters and the RDA analysis in the

current study. Previous studies have shown that physiological

changes during fruit development result in biochemical shifts,

which in turn influence microbial community assembly or

colonization patterns and may further affect the entire plant

holobiont (Lone et al., 2024; Zhimo et al., 2022). According to

Baglioni et al. (2024) and Pang et al. (2021), plant secondary
Frontiers in Horticulture 10
metabolites shape the endophyte and epiphyte microbial

composition by acting as defense compounds against some

microbes and as signaling molecules or source of energy for

other microbes.

The RDA analysis showed that plant microbes associated

differently with the changes in fruit physiological attributes. These

differences in fungal association with specific fruit physiological

stages and metabolic compounds suggest that fungal taxa exhibit

selective physiological preferences, which can in turn strongly

impact their colonization and fruit quality during bell pepper

development and postharvest (Lievens et al., 2015; Palmieri et al.,

2023). However, RDA explains only 8.53% of fungal variation, with

the remaining 91.47% possibly being accounted for by other

variables not tested in this study. This includes abiotic factors,

such as environmental conditions (Verma et al., 2022), and

handling practices (Abdelfattah et al., 2016; Bill et al., 2021).
4.2 Potential pathogenic and beneficial
fungal genera in bell pepper microbiome

Among the taxa consistently present across all bell pepper

developmental stages were Alternaria, and Fusarium. These

fungal phylotypes have a wide distribution in agricultural

environments and exhibit variable abundance (Egidi et al., 2019;

Yadav et al., 2022), providing a potential explanation for their high

prevalence across the fruit developmental stages. The phylotypes

have also been previously reported as pre- and postharvest
TABLE 4 Redundancy analysis results showing overall and individual
model significance of fruit physiological attributes on
fungal composition.

Model &
Quality
Attributes

Df Variance F Pr (>F)

Model 5 0.085335 4.2068 0.001 ***

Residual 12 0.048684 – –

TPC 1 0.009587 2.3631 0.066

TFC 1 0.021337 5.2594 0.002 **

AA 1 0.018777 4.6284 0.005 **

TSS 1 0.017541 4.3236 0.003 **

pH 1 0.018093 4.4596 0.003 **
Significant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.
Fruit physiological attributes: TPC, total phenolic content; TFC, total flavonoid content; TSS,
total soluble solids; AA, ascorbic acid; pH, fruit acidity.
FIGURE 5

A redundancy analysis (RDA) plot showing the influence of fruit physiological attributes (vectors) on common bell pepper fungi. Fruit physiological
attributes: TPC, total phenolic content; TFC, total flavonoid content; TSS, total soluble solids; AA, ascorbic acid; pH, fruit acidity. RDA1 and RDA2
explained 30.69 % and 27.92 % of the observed variance.
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pathogens of bell peppers (Tiamiyu et al., 2023). For instance,

Alternaria species, particularly A. alternata, A. solani and A.

tenuissima, are considered among the most aggressive fungal

species affecting several horticultural crops including bell peppers

globally (Balamurugan and Kumar, 2023). The significant crop

losses associated with Alternaria is largely due to its high

prevalence, which can be attributed to its ubiquitous nature and

diverse composition, as well as its broad host range (Dang

et al., 2015).

Fusarium species have also been linked with bell pepper internal

fruit decay (Tiamiyu et al., 2023). The presence of Fusarium across

all fruit developmental stages and at storage is consistent with

previous studies on bell pepper crops at pre- and postharvest stages

(Engalycheva et al., 2024; Liu et al., 2016). This can be attributed to

its versatile nature with the ability to survive in almost every

environment, including air, water, soil, plants, and other organic

substrates (Ekwomadu and Mwanza, 2023). It also has efficient

dispersal mechanisms hence its high abundance and distribution in

nature (Tupaki-Sreepurna and Kindo, 2018). Some of the Fusarium

species that have been reported on bell peppers include F.

oxysporum, F. solani, F. verticillioides, F. commune, F. torulosum,

and F. sporotrichioides (Engalycheva et al., 2024; Gilardi et al.,

2019). Colletotrichum was also among the taxa identified from the

retrieved ASVs across all fruit developmental stages in one of the

farms, highlighting its potential to infect bell peppers both at pre

and postharvest stages (Ali et al., 2016). Pathogenic Colletotrichum

spp. that have been reported on Capsicum annuum globally include,

C. gloeosporoides, C. truncatum, C. fruticola, C. scovillei, C.

endophyticum, C. karsti, C. plurivorum, C. siamense and C.

tropicale (de Silva et al., 2019; Liu et al., 2016).

The identification of pathogenic taxa Alternaria, and Fusarium

from floral stage through to fruit at storage provides insights

potentially linking deterioration during storage with quiescent

infections at the early fruit developmental stage. This highlights

the need to strengthen preharvest management, for instance timely

spray cycles ideally before or at anthesis to reduce postharvest losses

and maintain fruit quality. Delayed spray cycles beyond anthesis

stage may result in reduced fungicide efficacy particularly against

pathogens causing internal fruit rot (Paul et al., 2018). It is also

essential to use synthetic fungicides judiciously, as their improper

application can suppress potential biocontrol agents (BCAs),

possibly enabling pathogenic taxa to proliferate (Szymanski et al.,

2023), ultimately impacting fruit quality and postharvest storage

outcomes. Also, among prevalent microbial taxa were

Pseudopithomyces, Plectosphaerella, Bipolaris, Exserohilum,

Lectera, Xenodidymella, Curvularia, and Nigrospora. Despite their

existence across the fruit developmental stages, their role in the bell

pepper fungal community is yet to be fully understood. These taxa,

however, have been reported as pathogenic in crops such as barley,

maize, rice and wheat but not in bell peppers (McDonald et al.,

2018; Perelló et al., 2017; Wang et al., 2022).

Bell pepper fungal community across the different fruit

developmental stages also comprised of potential BCAs. Among

them were Acremonium, Aureobasidium, Filobasidium,

Hohenbuehelia, Rhodotorula, Sampaiozyma, Sporobolomyces, and
Frontiers in Horticulture 11
Wickerhamomyces. Some of these taxa exhibited an inverse

relationship with pathogenic taxa. Specifically, Sampaiozyma and

Filobasidium were more abundant in samples where Alternaria and

Fusarium were less prevalent, whereas their abundance decreased in

samples where Alternaria and Fusarium were more dominant. A

similar trend was seen in the cases of Rhodoturula and

Xenodidymella, highlighting their potential inhibitory effect

against pathogenic taxa. Some of these taxa, for instance

Aureobasidium pullulans, have been explored for biocontrol

activity against B. cinerea, R. solani, Penicillium expansum and P.

digitatum (Agirman and Erten, 2020; Di Francesco et al., 2021; Galli

et al., 2021). These studies associated inhibition by A. pullulans to

several action mechanisms including competition for space and

nutrients, production of volatile organic compounds (VOCs) and

secretion of extracellular lytic enzymes. Filobasidium oeirense and F.

wieringae have also been reported to inhibit growth of B. cinerea

and A. porri mainly by production of antifungal VOCs (Abo-

Elyousr et al., 2024; Ruiz-Moyano et al., 2020). Production of

VOCs by Rhodoturula species and Wickerhamomyces anomalus

have also been linked to inhibition of Aspergillus flavus spore

germination, mycelial growth, and toxin production (Hua et al.,

2014). Apart from antibiosis, resource competition and

mycoparasitism, some BCAs induce plant systemic resistance

against pathogenic species (Chaudhary et al., 2024; Prasad et al.,

2023). The observed inverse relationship between the potential

BCAs and pathogenic taxa in this study could be due to one of

these mechanisms, particularly antibiosis or resource competition.

Future studies should focus on their functional level of interaction.
4.3 Fungal interactions and ecological
dynamics in bell pepper development

Dynamic changes in fungal interaction on bell peppers during

development and storage were noted in the current study through co-

occurrence network analysis. Potential synergistic and antagonistic

interactions within the bell pepper fungal community were revealed,

further explaining the temporal changes within the mycobiome

genera. This supports the observations of Wright et al. (2019),

that microbial communities are characterized by rapid, dynamic

succession that maintains ecological stability. The negative

correlation of the genera Aureobasidium, Sampaiozyma,

Filobasidium and Coprinellus to Alternaria and Fusarium

may depict their inhibitory effect as majority of them have been

reported as potential BCAs (Abo-Elyousr et al., 2024; Di Francesco

et al., 2021; Elkhairy et al., 2023). Cases of positive correlation

be tween potent ia l pa thogenic taxa e .g . , Alternar ia ,

Pseudopithomyces, Exserohilum, Xenodidymella and Hohenbuehelia,

as well as that of Fusarium, Acremoniaum, Plectosphaerella and

Sporobolomyces was also noted. This kind of interaction provides a

possible glimpse into dual or multi-pathogen infection. This type of

host interaction is less studied despite its potential to alter the course

of disease and severity expression (Abdullah et al., 2017). For

instance, co-infection by F. oxysporum f. sp. medicaginis and R.

solani exacerbated disease severity in commercial alfalfa fields in
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China (Fang et al., 2021). A study by Lerch-Olson and Robertson

(2020) also showed that co-inoculation with Pythium and Fusarium

species greatly enhanced disease severity in soybeans compared to

single pathogen inoculation.

Positive correlation was also depicted among the potential BCAs,

Aureobasidium, Coprinellus, Sampaiozyma and Filobasidium, which

may be interpreted as mutualistic or complementary interaction

within their microbial community and can impact their inhibitory

effect against pathogenic taxa. This supports the findings by

Ramudingana et al. (2024), which shows that some endophytic

fungi, such as Preussia africana and Coprinellus micaceus, have

mutualistic associations and can be explored for combined control

against fungal pathogens. Other genera such as Cladosporium

positively correlated with all other fungi in the bell pepper

mycobiome, affirming its ecological adaptability contributing to

high abundance throughout the fruit developmental stages

(Salvatore et al., 2021). Although considered a weak pathogen, its

high adaptability and prevalence enable it to influence the surface

microbial communities of fresh produce, potentially causing spoilage

under favorable conditions. Therefore, effective postharvest

management practices are essential to mitigate its impact (Bento de

Carvalho et al., 2024). Also worth noting in the current study, was the

negative correlation of Aureobasidium to Fusarium and a positive

correlation to Alternaria. This highlights the intricate nature of

microbial interactions in fruit maturation, where a single organism

inhibits one pathogen while simultaneously promoting the growth of

another (Knudsen and Dandurand, 2014). This complexity highlights

the absence of a “silver bullet” biocontrol agent, as the efficacy of

biocontrol agents can vary based on environmental conditions, target

pathogens and the overall dynamic interactions on the host plant

(Knudsen and Spurr, 2023).
5 Conclusion

The study findings showed that bell pepper fruit stages harbor

numerous fungal genera, from the phyla Ascomycota and

Basidiomycota. These genera comprise potential phytopathogens

and known biocontrol taxa, all providing a dynamic microbial

environment on bell pepper during the various fruit development

stages. The results highlighted a distinct differentiation in fungal

diversity between the early and the mature fruit development stages.

Despite these differences, some taxa, including potential plant

pathogens like Alternaria, Fusarium, and Cladosporium, persists

from flowering to storage. This persistence suggests that these

pathogens establish at early development stages i.e. flowering, and

remain quiescent until storage, when rot symptoms and spoilage

losses emerge. This underscores the need to adapt current postharvest

disease management practices to an early field spray during flowering

to mitigate postharvest losses. The study also showed that bell

peppers host numerous potential BCAs such as Aureobasidium,

Filobasidium, Sampaiozyma, and Coprinellus with possible
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inhibitory effect towards the pathogenic taxa. Mutual interaction

among the BCAs is a phenomenon that should be explored for future

development of biocontrol consortia with the ability to control a

wider range of pathogens, especially in cases of multiple infections,

since the current disease control strategies are still fixed on targeting

specific pathogens only. Future research should focus on further

exploring this biocontrol approach with emphasis on the functional

interactions between the potential BCAs and the pathogenic species.
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Boeing, J. S., Barizão, É.O., e Silva, B. C., Montanher, P. F., de Cinque Almeida, V.,
and Visentainer, J. V. (2014). Evaluation of solvent effect on the extraction
of phenolic compounds and antioxidant capacities from the berries: application
of principal component analysis. Chem. Cent. J. 8, 1–9. doi: 10.1186/s13065-014-
0048-1

Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G.
A., et al. (2019). Reproducible, interactive, scalable and extensible microbiome
data science using QIIME 2. Nat. Biotechnol. 37, 852–857. doi: 10.1038/s41587-019-
0209-9

Business-Research (2023). Capsicum market report overview. Available online at:
https://www.businessresearchinsights.com/market-reports/capsicum-market-100180
(Accessed August 10th, 2023).

Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and
Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina
amplicon data. Nat. Methods 13, 581–583. doi: 10.1038/nmeth.3869

Cameron, E. S., Schmidt, P. J., Tremblay, B. J. M., Emelko, M. B., and Müller, K. M.
(2021). Enhancing diversity analysis by repeatedly rarefying next generation
sequencing data describing microbial communities. Sci. Rep. 11, 22302. doi: 10.1038/
s41598-021-01636-1

Chaudhary, R., Nawaz, A., Khattak, Z., Butt, M. A., Fouillaud, M., Dufossé, L., et al.
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