
ORIGINAL RESEARCH
published: 04 March 2022

doi: 10.3389/fhumd.2022.825665

Frontiers in Human Dynamics | www.frontiersin.org 1 March 2022 | Volume 4 | Article 825665

Edited by:

Francesca Fulminante,

University of Bristol, United Kingdom

Reviewed by:

Paul Bogdan,

University of Southern California,

United States

Franco Ruzzenenti,

University of Groningen, Netherlands

*Correspondence:

Giorgio Fagiolo

giorgio.fagiolo@santannapisa.it

orcid.org/0000-0001-5355-3352

Specialty section:

This article was submitted to

Social Networks,

a section of the journal

Frontiers in Human Dynamics

Received: 30 November 2021

Accepted: 31 January 2022

Published: 04 March 2022

Citation:

Fagiolo G (2022) On the Coevolution

Between Social Network Structure

and Diffusion of the Coronavirus

(COVID-19) in Spatial Compartmental

Epidemic Models.

Front. Hum. Dyn. 4:825665.

doi: 10.3389/fhumd.2022.825665

On the Coevolution Between Social
Network Structure and Diffusion of
the Coronavirus (COVID-19) in Spatial
Compartmental Epidemic Models
Giorgio Fagiolo*

Istituto di Economia, Scuola Superiore Sant’Anna, Pisa, Italy

In this article, the author studies epidemic diffusion in a spatial compartmental model,

where individuals are initially connected in a social or geographical network. As the virus

spreads in the network, the structure of interactions between people may endogenously

change over time, due to quarantining measures and/or spatial-distancing (SD) policies.

The author explores via simulations the dynamic properties of the coevolutionary process

linking disease diffusion and network properties. Results suggest that, in order to predict

how epidemic phenomena evolve in networked populations, it is not enough to focus

on the properties of initial interaction structures. Indeed, the coevolution of network

structures and compartment shares strongly shape the process of epidemic diffusion,

especially in terms of its speed. Furthermore, the author shows that the timing and

features of SD policies may dramatically influence their effectiveness.

Keywords: Coronavirus disease 2019 (COVID-19), diffusion models on networks, spatial SEIRD models, networks,

geographical networks, lockdown

1. INTRODUCTION

In the last two years, the still ongoing diffusion of the Coronavirus disease 2019 (COVID-19)
pandemic has spurred a large body of scientific contributions, attempting to explore how
compartmental models (Keeling and Rohani, 2008; Pastor-Satorras et al., 2015; Kiss et al., 2017)
can reproduce and predict the spread of the epidemics in different countries and regions (Adam,
2020; Kousha and Thelwall, 2020).

Most of this work has been focusing on models in which the mixing process between people in
different states or compartments does not depend on the social or geographical space where they
are embedded in. However, some previous literature has shown that the (complex) structure of
networks describing the way agents can meet and possibly get infected may affect the dynamics
of the epidemic diffusion and its long-run properties (Keeling and Eames, 2005; Jin et al., 2014).
Furthermore, as the virus spreads in the network, the structure of interactions between people may
change over time, due to quarantining measures and/or SD policies, which may possibly introduce
a coevolutionary effect dynamically linking disease diffusion and network properties (Achterberg
et al., 2020; Horstmeyer et al., 2020; Corcoran and Clark, 2021).

Motivated by these observations, the paper introduces a generalized spatial susceptible,
exposed, infected, recovered, dead (SEIRD) model that, besides the standard four compartments
(susceptible, exposed, infected, recovered, dead), also considers an additional “quarantined”
state, i.e., a susceptible, exposed, infected, quarantined, recovered, dead (SEIQRD) model
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(Peng et al., 2020).1 The author explores how the properties
of the spread of the epidemics depend on: (i) the structure of
the social/geographic network initially connecting the agents in
the population, which matches infective and susceptible agents
and (ii) the evolution of the share of quarantined and recovered
agents (as well as social distancing policies), which dynamically
destroy or re-establish social links.

More specifically, the author plays with a finite population
of agents (i.e., nodes) initially placed on four different families
of interaction structures: (a) regular 2-dimensional lattices
with Moore neighborhoods; (b) small-world lattice (Watts
and Strogatz, 1998); (c) Erdös-Renyi random graphs (Erdos
and Renyi, 1960); and (d) scale-free (preferential-attachment)
networks (Barabasi and Albert, 1999). The author then
investigates via Monte-Carlo simulations of how the epidemic
diffusion is affected by network structures, as their initial
average degree increases (which in turn makes their topological
properties change) and as the coupled dynamics of quarantined
and recovered people deletes and restores social interaction links.
Finally, the author examines how alternative SD policies, which
are taking again center stage in the political and social debate as to
the second wave of COVID-19 rolls across Europe and elsewhere,
interact with the coevolutionary process of disease diffusion and
network updating.

2. METHODS

2.1. A Simple Model Without SD Policies
The author begins by describing a simple model where no SD
policies are enforced. Consider a population P of N agents living
in a city, which is initially isolated from other cities. Time is
discrete and, for the only sake of convenience, the author uses the
terms “time periods” or “days” as synonyms. Agents physically
interact according to a simple, undirected, binary graph without
self-loops, which at time t = 0 is defined as G0 = (P, L0), where
P = {1, . . . ,N} and L0 is the initial edge list, defined as the set of
pairs (i, j) such that i 6= j, i ∈ P, j ∈ P, and (i, j) ∈ L0 if and only
if there exists an edge between i and j at t = 0. The graph G0—
which, as we will see below, is going to evolve through time as
the epidemics spreads—can be considered as describing social or
geographical links through which people normally meet friends
or neighbors.

At time t = 0, all nodes are in the state S (susceptible), but a
randomly-chosen share θ of them becomes exposed (i.e., ⌊θN⌋

agents become in state E, due to a random inflow of infective
agents from other cities). People in state E enter an incubation
period without any symptoms and are not infectious. At any
t > 0, the author assumes that each agent i ∈ P meets all its
neighbors, i.e., all j ∈ Vit , where Vit = {j ∈ P :(i, j) ∈ Lt} and Lt
is the current edge list. In each time period, transitions between
compartments (i.e., states) occur through a parallel updating
mechanism according to the following rules:

(a) An agent in state E becomes state I (infective) after
incubation of ⌊1⌋ time periods, where 1 is an i.i.d random

1see Supplementary Table 1 for the list of acronyms used in this article.

variable with probability distribution p(1). Following (Lauer
et al., 2020), we assume that 1 is log-normally distributed
with parameters (µ, δ) (refer to Section 2.3 below for
more details).

(b) An agent in state E becomes infected with probability
π = 1 − (1 − α)k if s/he meets k infective agents in its
neighborhood, where α is a parameter tuning the likelihood
of becoming infected in a single direct meeting and 0 ≤ k ≤

|Vit|.
2

(c) An agent in the state I becomes quarantined (in stateQ) with
a daily quarantine rate (DQRt). Agents in stateQ cannotmeet
anyone, i.e., they instantaneously cut all their bilateral links
with their neighbors.3

(d) An agent in state Q dies (i.e., becomes in state D) with
a daily death rate (DDRt), recovers (in state R) with a
daily recovery rate (DRRt), or stays quarantined otherwise.
Recovered agents are assumed to be immunized and re-
establish connections that they used to have in G0 (provided
that neighbors are still alive and are not quarantined).

A flow-chart description of model dynamics is provided
in the Supplementary Material (SM), as shown in
Supplementary Figure 1.

2.2. Initial Network Structures
The initial network G0 is assumed to belong to one out of the
following graph families:

(i) Regular 2-dimensional boundary-less lattices endowed with
the Chebyshev distance (LA henceforth, lattice network).
This defines squared Moore neighborhoods of radius rLA ≥

1 and degrees kLAi = (2rLA + 1)2 − 1 for all i.
(ii) Small-worlds lattice (Watts and Strogatz, 1998) built

starting from nodes placed on a ring, with rewiring
probability pSW > 0 and expected average degree k̄SW =

2rSW , where rSW ≥ 1 is the interaction radius on the initial
ring (SW henceforth, small-world network).

(iii) Erdös-Renyi random graphs (Erdos and Renyi, 1960), with
link probability pER > 0 and expected average degree k̄ER =

(N − 1)pER (ER henceforth, ErdŁos-Renyi network).
(iv) Scale-free networks with linear preferential-attachment

(Barabasi and Albert, 1999) and entrance of mSF ≥ 1 new
nodes, generating an expected average degree k̄ = 2mSF +

o(1/mSF) (SF henceforth, scale-free network).

These four graph families have been chosen as they represent
the simplest and most widely used network structures employed
in the literature. Nevertheless, additional, more complex graph
families can be employed to describe the initial social or
geographical setup, e.g., graphs displaying self-similarity and
multi-fractal patterns (Song et al., 2005).

To summarize network topology, the author focuses, besides
average degree, on three statistics that have been found to

2In other words, π is the probability of being infected by at least one infective

neighbor in a random sequence of meetings.
3Since I do not distinguish between mild and severe symptoms in the development

of the illness, there is not any difference in the model between being quarantined

at home or at the hospital.
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influence, in general, the spread of epidemics on graphs (Lloyd
and Valeika, 2005). These are the standard deviation of node
degree distribution (sk), global clustering coefficient (c), and
average path-length (ℓ), computed ignoring infinite path-lengths
between nodes of different components. Their expected values
(with SE) are reported in Supplementary Table 2. To get a better
feel, fixing rLA ∈ {1, 2, 3, 4} and thus k̄ ∈ {8, 24, 48, 80}, sk, c, and
ℓ approximately scale as k̄β , with β > 0 for sk and c and β < 0
for ℓ in all networks.

2.3. Parameter Setup
All simulations refer to a population ofN = 1, 024 agents (chosen
to build a square lattice with edge L = 32) and a number of days
T sufficient to reach a steady state.

The epidemic parameters of the model are calibrated
using data at the national level for Italy, made available
by “Dipartimento della Protezione Civile,” see https://github.
com/pcm-dpc/COVID-19, covering the period from February,
22nd onward. In the simulations, the author assumes for
simplicity that DRRt = DRR, DQRt = DQR, and
DDRt = DDR and, on the basis of empirical diffusion
curves, the author builds three epidemic scenarios: (i) strong-
impact scenario: (DQR,DDR,DRR) = (0.20, 0.10, 0.10); (ii) mid-
impact scenario: (DQR,DDR,DRR) = (0.15, 0.07, 0.15); and (iii)
low-impact scenario: (DQR,DDR,DRR) = (0.10, 0.04, 0.20)—
(see Supplementary Section S2 for more details). Since the
theoretical infection probability in a single meeting cannot
be directly observed, the author plays with values of α that
are (0.20, 0.10, 0.05), respectively, in the three scenarios. The
percentage θ of exposed agents in day 0 is set to 5% throughout.
Using results from Lauer et al. (2020), the parameters of
the distribution of incubation days 1 are set to (µ, σ ) =

(1.621, 0.418).
As to initial network structures, the author experiments with

average degrees k̄ ∈ {8, 24, 48, 80}. These values result from
setting rLA ∈ {1, 2, 3, 4}. Therefore, it follows that rLA ∈

{4, 12, 24, 40}, pER ∈ {k̄(N − 1)−1, k̄ = 8, 24, 48, 80}, and mSF ∈

{4, 12, 24, 40}. Refer to Supplementary Table 3, for a summary of
parameter setups.

2.4. Monte Carlo Simulations and Statistics
For each choice of model parameters, the author independently
runs M = 1, 000 simulations. This Monte Carlo sample size
is sufficient to get SEs for across-simulation averages small
enough to ensure that differences between averages are always
statistically significant.

In order to get insights about within-simulation model
behavior, the author keeps track of several within-simulation
statistics, i.e., computed on each day of the epidemic diffusion.
These include population shares in each compartment, death
and cure rates, the share of agents who become infected
through meetings, and the four network metrics k̄, sk, c, and
ℓ—which change across time as the result of the evolution
population shares in each compartment. Another statistics of
interest is the population-average of the number of neighbors
that each I agent has infected daily (ρ̄ henceforth; refer to
Supplementary Section S3 for details), which can be employed

as a rough estimate of the basic reproduction number (R0) of the
epidemics. Finally, the author also explores the spatial correlation
coefficients of compartments (SCCC), calculating, for each state
{S,E, I,Q,R,D} the fraction of all existing edges in the network
whose endpoints end up being in the same state.

To summarize the aggregate behavior of the model (i.e., across
runs), the following set of additional statistics are computed: (i)
peak-time of infections (PTI), defined as the first day in which
the share of infected people reach its overall maximum; (ii) the
shares of agents in states {S, I,R,D} at the end of the simulation
(EoS) and at PTI; (iii) the sum over all compartments of SCCC
at PTI; (iv) the EoS share of agents who become infected through
meetings; and (v) the values of network metrics k̄, sk, c, and ℓ at
PTI. Furthermore, the author provides an estimate of the first day
after which ρ̄ goes below one (cf. Supplementary Section S3).

Monte Carlo averages of all the above summarizing statistics
will then be compared across initial networks families, initial
average degrees, and epidemiological setups.

3. RESULTS

3.1. Anatomy of Within-Simulation
Dynamics in a Benchmark Setup
The author begins studying the dynamic behavior of disease
spreading across the four network families, focusing on the “Mid
Impact” epidemic scenario with k̄ = 8 (refer to Figure 1).
Irrespective of the initial network structure, the population
converges to a similar share of deaths, but in ER and SF networks,
a small percentage of S people still remains. This is more clearly
depicted in Supplementary Figure 3, where the time series of
population shares for susceptible and dead compartments are
plotted comparing their behaviors across graph structures (refer
to also the discussion in Section 3.3).

In these two networks, epidemic diffusion reaches a higher
peak of infections than in the case of LA and SW, since more
agents become exposed a little earlier. This is because in ER
and SF networks the average number of infections per agent
grows very quickly during the outbreak of the epidemic process,
and then decreases earlier and more sharply than in LA and
SW networks (Supplementary Figure 4). The evolution of SCCC
shows, indeed, that the shares of edges linking two E or two I
agents cross near to PTI and displays a more abrupt inverse-
U-shaped pattern over time, illustrating how the virus spreads
across neighborhoods (Supplementary Figure 5).

As the epidemic process develops over time, the share
of Q agents first grows and then declines. This impacts the
network structure, because quarantined agents become isolated,
constraining in turn the diffusion of the disease. Furthermore,
the more the infection weakens, the more quarantined people
recover and re-establish some of their initial connections.

To get a better feel about this coevolutionary process, Figure 2
shows how network metrics, normalized to match the [0, 1]
interval, change during a simulation. Both k̄ and ℓ decrease
toward their minimum value across time in LA and SW, with
a pace slowing down as R people spread in the population. The
decline of ℓ is due to the growing number of small connected
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FIGURE 1 | Within-simulation evolution of agent shares in the six compartments over time. Initial k̄ = 8. Mid-impact epidemic scenario. Averages across M = 1, 000

Monte Carlo simulations. (A) Regular 2-dimensional lattice with Moore neighborhoods; (B) small-world lattice; (C) Erdös-Renyi random graph; (D) scale-free network.

components and isolated nodes created by Q and D agents.
In LA and SW networks, however, recovered agents that re-
establish their connections are able to slightly boost average
degree and reconnect isolated clusters. More marked differences
across network structures emerge when looking at sk and c. In
LA, SW and, particularly, in ER graphs, sk first increases due to
the injection of Q agents, then as R and D gradually replace Q
patients, it oscillates until getting to a stable level. In SF graphs,
instead, sk follows the same time pattern of k̄ and ℓ, as initial
heterogeneity is very high and cannot be further increased by
the interplay between Q, R, and D shares. Therefore, populations
where the epidemics diffuse in LA, SW, and ER networks end up
having a higher final heterogeneity of degrees, while the opposite
holds for SF graphs. The initial clustering level, instead, is almost
completely recovered, but with opposite patterns. LA and SW
networks first experience an increase in c (albeit very moderate in
magnitude) because the diffusion evolves less quickly. Instead, in
ER and SF graphs, some triads are rapidly destroyed by Q people
and then R people re-establish them when the epidemics soften.
Note also that, unlike what happens in panels (a)–(c), some
discontinuities and jumps emerge in the time-series behavior
of MC averages of global clustering coefficient. This is not due

to an insufficiently large MC sample size, but rather to the
well-known sensitivity of clustering coefficients to link dynamics
(i.e., link deletion and formation), which occurs throughout our
simulations due to quarantines and recoveries (Nakajima and
Shudo, 2021). These affect much more the number of triangles
present in the network than they do with density, standard
deviation of degrees, and average path length.

In the Supplementary Section S4, the author also shows that,
as the share of Q agents first increases and then decreases, and
that of R agents keep growing in time, the topological properties
of the network change in very heterogeneous ways, depending on
the family to which it belongs. This is due to the dynamic removal
and re-establishment of links—which affects in non-trivial ways,
in particular, the standard deviation of node degrees and global
clustering coefficients—and ultimately impacts on the properties
of the diffusion process itself.

3.2. The Impact of Initial Average Degree
The author now investigates the behavior of the model when
the initial average degree increases in the range of {8, 24, 40, 80},
keeping fixed the epidemic scenario to the “Mid Impact” one. If
agents initially have, on average, more neighbors they can meet
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FIGURE 2 | Within-simulation evolution of network metrics, re-scaled to match the [0, 1] interval. (A) Average Degree (k̄); (B) standard deviation of node degree

distribution (sk ); (C) global clustering coefficient (c); (D) average path-length (ℓ). Initial k̄ = 8 for all four graph families. Mid-impact epidemic scenario. Averages across

M = 1, 000 Monte Carlo simulations.

more infective people. Therefore, the probability to become E
increases for the population every single day. However, a larger
k̄ does not imply that at the end of the simulation (EoS) there
will be a larger fraction of deaths and/or recovered, as this
is mainly affected by the epidemic parameters. What changes
is the speed at which the contagion evolves and some of its
dynamic properties.

For example, as shown in Figure 3, both the PTI and the
estimate of the first day after which ρ̄ goes below one, quickly
decrease with k̄. Furthermore, as the initial average degree grows,
the contagion evolves more quickly in ER and, especially, in
SF networks.

Furthermore, in all networks, the fraction of infected people

at PTI immediately jumps up when k̄ increases from z 8

to 24, and then keeps growing with k̄ but less quickly (cf.

Supplementary Figure 6 in the SM). This implies that, since
the epidemic scenario is fixed, the share of agents that are
quarantined in the first days of the contagion increases more
than linearly. Therefore, at PTI, the shares of susceptible,
recovered, and dead agents actually decrease with initial
average degree.

3.3. Model Behavior in Alternative
Epidemic Scenarios
Next, the author explores what happens in the model when
alternative epidemic scenarios are assumed (cf. Section 2.3).
For the sake of comparison, the author keeps fixed k̄ = 8
throughout. Simulation results show that, as expected, EoS shares
of dead (respectively, recovered) agents decrease (respectively,
increase) in all network setups as one moves from the bad
to the good epidemic scenario (as shown in Figure 4). More
interestingly, within the same scenario, the model behaves
differently across network setups, and these differences are
amplified as the contagion is less strong. Indeed, in ER and
SF networks, the epidemics diffuses quicker than in LA and
SW graphs—as documented in Supplementary Figures 7A,C.
Therefore, LA and SW display more S (and less I) agents
at PTI than ER and SW do—as shown in Figure 4C—and
a significantly smaller spatial correlation of compartments (in
Supplementary Figure 7B). At the end of the simulation (EoS),
conversely, many more susceptible agents remain in ER and,
especially, in SF networks. This is due to the higher heterogeneity
of the degree distribution in such networks: the existence of many
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FIGURE 3 | (A) Peak-time of infections (PTI), defined as the first day in which the share of infected people reach its overall maximum, against initial average degree.

(B) estimate of the first day after which ρ̄ goes below one (cf. Supplementary Section S3). Initial average degree in the range {8, 24, 40, 80}. Mid-impact epidemic

scenario. Averages across M = 1, 000 Monte Carlo simulations. Y-axis in log scale.

small-degree nodes at the beginning of the process prevents them
to be infected, especially when the contagion becomes softer and
their few neighbors are quickly quarantined. As a consequence,
slightly smaller shares of deaths are observed in ER and, in
particular, in SF networks at EoS.

3.4. Spatial Distancing
Spatial distancing is implemented in the model in a very stylized
way (cf. Achterberg et al., 2020; Horstmeyer et al., 2020; Corcoran
and Clark, 2021, for related literature). The author assumes that
the city government only tracks the evolution of Q agents and
enforces SD when xt(Q) > q⋆, where xt(Q) is the current share of
agents in theQ compartment and q⋆ ∈ (0, 1). The SD policy aims
at makingmore difficult face-to-facemeetings between neighbors
and can be enforced with increasing strengths. Of course, its
ex-post effectiveness also depends on how strictly people follow
the rules. Here, the author do not separately model the ex-ante
plans of the government and the response of the agents (more on
that in Section 4). Therefore, more formally, the author defines
θ ∈ (0, 1) as the ex-post effectiveness of SD policy and assume
that, under SD, an agent meets each neighbor in any time period
t with probability ψ = 1 − θ . This implies that, under SD, an
agent in state E now becomes infected with probability:

πSD = 1− (1− ψα)k (1)

where k is the number of infective agents the agent meets
in its neighborhood. The author allows for two versions of
SD: (i) permanent, if SD is enforced from the first day when
xt(Q) > q⋆ onward, i.e., during the period {t, . . . ,T}, where
t = inft{t : xt(Q) > q⋆}; (ii) temporary, if SD is enforced only
whenever xt(Q) > q⋆, and it is removed (i.e., θ is switched back to
zero) if xt(Q) ≤ q⋆−ǫ. Here, the ǫ-term prevents the SD policy to
be too sensitive to oscillations of xt(Q) around q∗, thus avoiding

stop-and-go patterns. In the following simulations, the author
considers three SD setups: (a) strong: (q⋆, θ) = (0.02, 0.7); (b)
intermediate: (q⋆, θ) = (0.04, 0.5); (c) mild: (q⋆, θ) = (0.06, 0.3),
whilst keeping fixed throughout k̄ = 8 in the mid epidemic
scenario and ǫ = 0.05.

Figure 5 plots EoS shares of agents under SD (either
permanent or temporary) minus the correspondent share
without SD. In each SD setup, the author targets the share of
people ending up in either S or D compartments and the share
of deaths (D). Results show that, as expected, a permanent SD
policy is better than a temporary one independently of network
structure. However, especially when a strong setup is enforced
in the permanent SD policy version, networked populations that
benefit the most are those where agents are located on either
lattices or small-worlds. Conversely, temporary SD policies are
more effective in ER and, in particular, in SF networks, provided
that they are implemented more rigorously.

This is due to how network structures evolve during a typical
run, as shown in Figure 2. Indeed, when a permanent SD
policy is likely to be implemented, LA and SW exhibit larger
average degrees and clustering than ER and SF. This prevents
the infection to be transmitted more effectively during the peak.
Instead, enforcing temporary SD policies allows an even smaller
probability that low-degree agents remain susceptible, which is
more likely to happen in ER and SF networks, due to their higher
degree variability. When such a policy is switched off, ER and
SF systems display higher (and more dispersed) average degrees
and larger clustering than in the LA and SW cases, but the share
of infected people is now smaller. Therefore, one observes less
deaths. Disaggregating S and R shares also show that, in the
permanent SD case, the improvement in LA and SW is obtained
via an almost similar increase of both compartments. On the
contrary, when SD is temporary, much of the improvement is due
to an increase in EoS susceptible agents only.
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FIGURE 4 | Comparing the behavior of the model across three epidemic scenarios: Bad vs. Mid vs. Good (see Section 2.3). (A) and (C) % of agents in compartment

S at peak-time of infections (PTI). (B) % of agents in compartment I at the end of the simulation (EoS). (D) % of agents in compartment D at the EoS. Initial average

degree: k̄ = 8. Averages across M = 1, 000 Monte Carlo simulations.

4. DISCUSSION

In this article, the author studied a generalized spatial SEIQRD
model to explore the impact of alternative social network
structures on the diffusion of the COVID-19 disease. The
introduction of quarantined agents generates a coevolving
process between epidemic spreading and network structure,

ultimately shaping steady-state outcomes and the speed of

diffusion. In order to make sounder comparisons across different
graph structures, the author kept their initial average degree

fixed. Therefore, the average degree plays the role of a re-scaling
parameter, which is linked to the expected values of the other
topological indicators considered (cf. Supplementary Table 2).
However, the ensuing dynamics of link deletion and formation
due to quarantines and recoveries, structurally changes the graph
over time, introducing a two-way causal relationship between
the evolving network structure and the diffusion of the disease.
This is one of the main contributions of this article, which is
nevertheless well-rooted in the literature exploring the impact
of alternative network structures on epidemic spreading (also in
different application realms, cf. for example Bogdan et al., 2007).

In the simplest framework, without SD policies and a given
benchmark choice of initial average degrees and epidemic
parameters, the initial network structure does not affect the

final shares of susceptible, dead, and recovered people, but
it strongly impacts the timing and the speed of diffusion. In
ER and, in particular, in SF networks, more agents become
exposed earlier and diffusion takes place quicker and more
strongly than in the LA and SW cases. This is linked with how
network structure coevolves across time with the shares of Q,
R, and D agents. Indeed, in ER and SF networks, the average
degree initially decreases less sharply than it does in LA and
SW. Furthermore, degree variation and clustering are higher.
Therefore, the probability of becoming exposed increases, as
susceptible agents face larger and more clustered neighborhoods.
Increasing initial average degree, while keeping fixed epidemic
parameters, thus results in a faster speed of infection, especially
in ER and SF networks, both in terms of smaller PTIs and
average number of neighbors that each agent has infected daily.
When instead different epidemic scenarios are assumed for a
fixed initial degree, network structure impacts differently model
behavior, and these differences are amplified as the strength of the
contagion weakens.

In particular, since the epidemics initially diffuses quicker in
ER and SF networks, one typically observes more S (and less I)
agents at PTI in LA and SW graphs, and many more remaining
S agents at EoS in ER and SF networks (with slightly smaller
shares of deaths). This is interesting, as it suggests that societies,
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FIGURE 5 | Effects of spatial distancing (SD). Comparing the behavior of the model across three SD setups: Strong vs. Intermediate vs. Bad (see Section 3.4). (A), (B)

Permanent SD policy. (C), (D) Temporary SD policy. (A), (C) Share of agents in states S or R at EoS with SD minus the same share without SD. (B), (D) Share of agents

in state D at EoS with SD minus same share without SD. Initial average degree: k̄ = 8. Mid epidemic scenario. Averages across M = 1, 000 Monte Carlo simulations.

where people are initially linked in random or scale-free patterns,
can be exposed more to subsequent strains (or variants) of the
same virus.

The effect of SD policies depends on the strength of the
model with which they are enforced, as well as whether they are
temporary or permanent. In particular, whereas permanent SD
policies allow for better results than temporary ones irrespective
of network structure, permanent (and strong) SD measures are
more effective in LA and SW structures, whereas temporary
(and strong) SD policies should be preferred if interactions
occur through ER or SF graphs. This is again due to the
interplay between network structure and compartment shares
in the evolution of the epidemics. Indeed, switching on and
off SD policies may hit the system when the topological
properties of its network structure are very different, depending
on the initial graph family describing social interactions (cf.
Figure 2), for example, suppose that the government enforces
a permanent SD policy. Then, given the activation rule, it
is likely that this happens when people in LA/SW networks
hold many contacts and are very much clustered. On the

contrary, individuals living in ER/SF networks are likely
to hold fewer links and to be less clustered. Therefore, a
permanent SD policy would flatten the curve of infections
more effectively in LA/SW networks than in ER or SF around
the peak. This results in a more effective outcome in LA/SW
networks as compared to ER/SF graphs both in terms of deaths
and recoveries, especially when the spatial distance policy is
enforced strongly. If instead, the SD policy is temporary, the
probability that agents can spread the virus increases also for
low degree agents, which are more likely to be present in
ER/SF networks. Furthermore, when the temporary SD policy
is switched off, people in ER/SF networks are likely to be more
clustered and more connected than those living in LA/SW
networks (see Figure 2), but the share of infected people is
now smaller. Therefore, one observes less deaths in ER/SF
setups. In terms of health policy, this might mean that societies
where vulnerable people are more secluded (e.g., they live
alone in their homes or in small care houses) might benefit
more from a strong and permanent SD policy, as compared to
societies where vulnerable people live in environments where
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they can more easily meet individuals holding many connections
(e.g., hospitals).

More generally, results suggest that, in order to predict how
epidemic phenomena evolve in networked populations, it is not
enough to focus on the properties of initial interaction structures.
In fact, if the epidemic diffusion requires quarantining people,
and possibly enforcing SD policies, the coevolution of network
structures and compartment shares strongly shape the way in
which the virus spreads into the population, especially in terms
of its speed. On the one hand, the average and standard deviation
of the degree distribution, as well as clustering, of initial networks
are, together with epidemic parameters, important determinants
of the subsequent diffusion patterns. On the other hand, the
topology of social interaction structures evolves over time, due to
the rise and fall of Q, R, and D agents, in different and nontrivial
ways across alternative network families, and this, in turn,
impacts diffusion patterns. As a result, the timing and features
of SD policies may dramatically influence their effectiveness.

The foregoing analysis can be improved in several directions.
To begin with, alternative parameterizations for the epidemic
process, more in line with evidence from the ongoing second
wave, could be tested. Furthermore, it would be interesting
to assess the extent to which results are robust to increasing
population size, additional network structures (e.g., core-
periphery graphs), and different values for the share of agents
that become initially exposed. In this last respect, one could also
play with alternative assumptions as to the mechanism governing
the way in which exposures initially occur, e.g., allowing for the
emergence of spatially-clustered exposed agents, instead of just
supposing that a randomly-chosen share of people gets infected.
One can also perform a deeper analysis to better understand how
the topology of network structures influences epidemic diffusion,
for example, asking whether centrality indicators such as k-
coreness measures (Kitsak et al., 2010; Bae and Kim, 2014) can
help in investigating the role of super spreaders (Bi et al., 2020).

The model, as simple as it is, can be extended to explore
additional issues related to epidemic spreading in networked
populations. For example, the presence of a non-zero share of
susceptible agents at the end of the diffusion process, especially
when the initial graph looks like a random graph or a scale-
free network (cf. Supplementary Figure 3), suggests studying
what could happen in the system when successive strains or
variants of the disease enter the system, after the structure
of the network has been altered due to the previous strain.
Additionally, the assumption that individuals in the model act
rationally in presence of rules enforced by the government might
be relaxed. This may already be done in the baseline model with
SD, assuming that a fraction of individuals disobeys distancing

rules and keeps interacting with neighbors with a probability
ψ = 1, unlike law-abiding citizens (ψ < 1). That boils
down to smaller ex-post effectiveness of the SD policy, i.e., a
situation similar to what has already been analyzed in mild SD
scenarios. More interestingly, no matter whether SD policies
are enforced, one may assume that a fraction of infected agents
may refuse to be quarantined. As a result, some individuals
would stay infected but are neither cured nor quarantined.
This would require defining yet another compartment following
infection, to which one can associate a larger DDR and a
smaller DCR as compared to the rates defined for quarantined
individuals. Furthermore, the model might be extended to
include vaccination. In that case, with or without SD, one may
model situations where individuals may decide whether to be
vaccinated or not. For instance, a fraction of susceptible (and
exposed) agents may become immune after vaccination and be
assimilated to recovered individuals, while others may resist
vaccination and keep being susceptible. This could allow studying
the role played by increasing shares of “anti-vax” people in the
diffusion process. A last, possibly interesting, extension of the
model concerns the introduction of mobility. Following insights
from recent literature blending epidemic models on networks
with agent mobility (Feng et al., 2020; Goel et al., 2021; Huang
and Chen, 2022), one might consider separating geographical
proximity and social ties. In the foregoing model, those two
dimensions are intertwined and individuals always interact with
a set of neighbors that may change over time due to quarantines
but is initially predetermined. Instead, agents might be placed
in a social network but at the same time interact with other
individuals as they move across geographical locations. This may
introduce more realism into the model and allow one to play
with alternative scenarios concerning, e.g., the extent and the
frequency of geographical mixing.
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