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This paper presents a novel perspective on human-computer interaction

(HCI), framing it as a dynamic interplay between human and computational

agents within a networked system. Going beyond traditional interface-

based approaches, we emphasize the importance of coordination and

communication among heterogeneous agents with di�erent capabilities,

roles, and goals. The paper distinguishes between Multi-Agent Systems

(MAS)—where agents maintain autonomy through structured cooperation—

and Centaurian systems, which integrate human and AI capabilities for

unified decision making. To formalize these interactions, we introduce a

framework for communication spaces, structured into surface, observation,

and computation layers, ensuring seamless integration between MAS and

Centaurian architectures, where colored Petri nets e�ectively represent

structured Centaurian systems and high-level reconfigurable networks address

the dynamic nature of MAS. We recognize that elements such as task

recommendation, feedback loops, and natural language interfaces are common

in contemporary adaptive HCI. What distinguishes our framework is not the

introduction of these elements per se, but the synthesis of architectural

principles that systematically accommodate both autonomy-preserving and

integration-seeking configurations within a shared formal foundation. Our

research has practical applications in autonomous robotics, human-in-the-

loop decision making, and AI-driven cognitive architectures, and provides

a foundation for next-generation hybrid intelligence systems that balance

structured coordination with emergent behavior.

KEYWORDS

multi-agent systems, Centaurian systems, communication spaces, satellite and swarm

robots, large action models (LAMs)

1 Introduction

Agentic AI systems—capable of iterative planning, autonomous task decomposition,

and continuous learning—are rapidly reshaping the landscape of human-computer

interaction (HCI). Recent advances in Large Language Models (LLMs) and advanced

conversational agents have revitalized the field of multi-agent systems, whose roots in

Artificial Intelligence predate the current rise of generative AI. Historically, multi-agent

systems have relied on agents with relatively limited capabilities; however, the emergence

of powerful, conversational LLMs greatly expands the range of possible multi-agent

interactions. In this new paradigm, humans themselves can participate as full-fledged

agents, thanks to their innate conversational and decision-making abilities. The result is

a complex, interconnected ecosystem (Hopf et al., 2024).
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Simultaneously, novel and more direct forms of human-

AI integration are emerging (Pareschi, 2024; Saghafian and

Idan, 2024), in which advanced AI cognition is harnessed to

create “Centaurian” intelligence—a seamless fusion of human and

machine-driven capabilities.

These developments push beyond traditional HCI in two

distinct directions that mirror fundamental patterns found in

biological systems (Borghoff et al., 1995; von Bertalanffy, 1968;

Miller, 1978). Multi-agent systems, like biological ecosystems,

emphasize how collections of autonomous entities can coordinate

effectively while preserving distinct boundaries and roles. In

contrast, “Centaurian” systems pursue deeper integration—

analogous to the symbiotic relationships in nature—fusing human

and artificial competencies in tightly knit partnerships that

often blur the lines between human decision making and AI-

driven processes. Living systems theory (Maturana and Varela,

1980) helps us understand how both approaches must address

a core challenge: maintaining system identity through regulated

boundaries and feedback loops (Wiener, 1948), whether in loosely

coupled collectives or tightly integrated hybrid intelligences.

From an ethical and regulatory perspective, the blurring of

boundaries between human and artificial agents raises critical

issues of accountability and transparency. As hybrid systems

increasingly share decision-making authority between human and

AI components, especially in domains such as healthcare, defense,

or finance, it becomes essential to ensure traceable paths of

action and define clear loci of control. By preserving observable

communication layers and explicit transitions, our architectural

model supports auditability and human oversight even in deeply

integrated Centaurian configurations. While our goal is primarily

analytical rather than normative, we recognize that formal clarity

in modeling is a prerequisite for ethical deployment.

Herbert Simon’s influential work on cognitive architectures

(Simon, 1996) provides additional insight into how such human-AI

integration might be structured. His tripartite model—comprising

an external interface, a coding mechanism, and an internal

processing system—was originally conceived to explain human

problem-solving but extends naturally to hybrid systems. When

human abilities merge with artificial intelligence, the resulting

configuration can evolve from traditional tool use (Homo Faber)

to a more profound integration (Centaurus Faber) where each

component may be instantiated by either human cognition or AI

subsystems (Pareschi, 2024). This perspective suggests how system

boundaries might be organized to support both autonomous

operation and deep integration.

The framework proposed in this paper serves a dual purpose:

first, as a design methodology for structuring hybrid human-

AI systems, and second, as an analytical lens for understanding

their coordination dynamics. While not prescriptive in a regulatory

sense, it offers a normative foundation for evaluating the degree and

quality of integration between agents. Its modular structure also

allows it to be adapted for formal verification and implementation

in real-world systems.

To address these architectural challenges, we introduce a formal

framework based on Petri nets (Petri, 1962; Murata, 1989) that

can model both multi-agent and Centaurian paradigms while

supporting the key requirements suggested by living systems theory

and Simon’s architecture: clear boundaries, regulated interactions,

and adaptive feedback loops. Unlike graph-based agent frameworks

(Wooldridge, 2002; Weiss, 2013), which prioritize topological

relationships but struggle with dynamic concurrency, Petri nets

offer native support for parallel processes and state transitions via

token semantics, critical for hybrid human-AI systems. Colored

Petri nets (Jensen, 1995), in particular, allow us to encode

heterogeneous data, agent roles, and interaction semantics—

key to modeling learning, adaptation, and reasoning in hybrid

agent configurations.

Our approach, grounded in rigorous process modeling,

provides a unified way to specify how heterogeneous agents—

human and artificial—can coordinate their activities while either

maintaining autonomy or achieving deeper integration as needed.

The remainder of this paper is organized as follows.

Section 2 analyzes two fundamental paradigms in human-machine

collaboration—themulti-agent approach and the Centaurian one—

in light of the recent resurgence of agentic AI. Section 3 provides

foundational background on Petri nets and their extensions.

Section 4 introduces the concept of communication spaces as

a unifying framework for these paradigms, grounded in formal

architectures and coordination mechanisms. Sections 5 and 6

illustrate these ideas with two use cases, demonstrating how

communication spaces can be applied in practical HCI scenarios.

Section 7 discusses related work, and Section 8 concludes with

implications and future directions.

2 Paradigms in human-AI integration

Agentic AI systems have reinvigorated two distinct approaches

to human-AI collaboration: multi-agent architectures and

Centaurian integration. This section examines these paradigms in

detail, highlighting the distinct challenges each presents for system

design and coordination.

Indeed, although both paradigms involve interactions between

intelligent entities, they represent fundamentally different

approaches to human-artificial collaboration (Pareschi, 2024).

Multi-agent systems maintain distinct boundaries between

components while enabling complex interactions, much like

natural ecosystems. In contrast, Centaurian systems mirror

the tight integration seen in biological organisms, where

components merge functionally to create new capabilities

(Saghafian and Idan, 2024).

2.1 Architectural di�erences

The primary architectural distinction lies in how these systems

organize and maintain their identity (Pareschi, 2024).

Multi-agent systems (MAS) emphasize functional

independence, where agents—human or artificial—operate as

distinct entities with decision-making capabilities and dynamic

collaboration. This design has allowed MAS implementations

to thrive even with relatively simple AI agents, focusing on

coordination rather than deep integration.

Centaurian systems, by contrast, create unified composite

entities where human and artificial components become

functionally interdependent. Theoretical foundations for such

systems trace back to Licklider (1960) and Engelbart (1962), but
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their practical feasibility has emerged only recently with generative

AI systems capable of complementing human cognitive functions.

A key concept in both systems is that of communication

spaces—regions of interaction where information exchange and

coordination occur. In biological systems, these are signaling

pathways or neural networks; in human-machine systems, they

manifest as protocols, interfaces, and shared representational

spaces (Bradshaw et al., 2011). These spaces enable “joint

activity”, characterized by inter-predictability, common ground,

and directability.

2.2 Integration paradigms, operational
dynamics, and convergence points

Each paradigm embodies different principles from living

systems theory: In MAS, collaboration occurs through well-

defined protocols between autonomous agents, resembling distinct

organisms in an ecosystem. Effectiveness emerges from collective

behavior while maintaining individual identities. In Centaurian

systems, integration blurs the boundaries between human and

artificial components, forming functionally unified entities similar

to biological organisms.

The ecosystem versus organism analogy extends to

operational dynamics:

• Identity maintenance: MAS preserve distinct agent identities

while allowing interaction while, Centaurian systems create

new composite identities through integration.

• Adaptation mechanisms: MAS adapt via reconfiguration of

agent relationships, while Centaurian systems evolve through

internal transformation of integrated components.

• System boundaries: MAS maintain clear boundaries with

well-defined interfaces, while Centaurian systems develop

permeable boundaries for deep functional integration.

Despite these distinctions, some scenarios blur the boundaries

between paradigms, especially in adaptive complex systems.

Consider large action models (LAMs), where human operators

provide training feedback to artificial systems. Depending on

the context, these interactions can manifest as multi-agent

collaboration or Centaurian integration. Such convergence points

suggest that while the paradigms are conceptually distinct, they can

complement each other in practice.

2.3 Implications for system design

Viewing these paradigms through the lens of living systems

theory has key design implications: The MAS design focus

is on preserving agent autonomy, developing protocols for

effective coordination, and ensuring system resilience through

independent agents. Centaurian systems, on the other hand, have

a design focus on emphasizing functional integration mechanisms,

developing shared representational spaces, and encouraging

emergent capabilities.

Section 4 will introduce communication spaces as a unifying

framework supporting both paradigms, thus enabling both the

loose coupling of MAS and the tight integration of Centaurian

systems while preserving their core attributes.

2.4 Situating human-machine
collaboration in the context of agentic AI

Advances in agentic AI heighten the relevance of multi-agent

and Centaurian systems. Unlike traditional AI chatbots, agentic AI

systems engage in sophisticated reasoning and iterative planning to

solve complex, multi-step problems autonomously. These systems

follow a four-step cycle of perception, reasoning, action, and

learning, continuously improving over time.

Our framework provides a theoretical foundation for

integrating agentic AI into human-machine collaboration. It

is intended to be used primarily for system design, analytical

modeling, and normative assessment. The multi-agent paradigm

aligns with contexts where agentic AI must maintain autonomy

while coordinating with human and artificial agents via defined

protocols—such as in distributed customer service or collaborative

software development.

Conversely, the Centaurian paradigm is critical for cases that

require deep integration with human operators, such as healthcare

or video analytics, where AI seamlessly blends with human

expertise and decision making. The tight coupling characteristic

of Centaurian systems enables fluid interactions for complex tasks

that require human judgment alongside AI-driven analysis.

As agentic AI systems grow more sophisticated, the interplay

between these paradigms becomes more dynamic. For instance,

an enterprise AI system might operate independently (multi-agent

mode) for routine tasks while tightly integrating with human

experts (Centaurian mode) for complex decisions. Our framework

supports the understanding and design of such interactions.

Additionally, the “data flywheel” effect—continuous learning

and adaptation—aligns with our model’s emphasis on system

evolution. Learning occurs both in the improvement of

independent agents (multi-agent paradigm) and in the refinement

of human-AI integration patterns (Centaurian paradigm),

demonstrating how our framework accommodates various aspects

of agentic AI development.

3 Technical background: Petri nets

To provide a rigorous foundation for modeling the complex

interactions in both multi-agent and Centaurian systems, we

employ Petri nets as our core formal framework. Petri nets

present several advantages for our purpose: they offer a

clear graphical representation while maintaining mathematical

precision, they naturally capture concurrent processes and

synchronization requirements, and they can be extended to handle

sophisticated data types and conditions through their colored

variants. These properties make them especially well-suited for

modeling interactions among heterogeneous agents, whether in

loosely coupled multi-agent configurations or tightly integrated

Centaurian systems. This section introduces the key concepts of

Petri nets and their extensions, which will serve as the formal basis

for our communication spaces framework.
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Petri nets are a well-established formalism for describing and

analyzing the flow of information and control in concurrent

systems. Originally introduced by Petri (1962), they have evolved

into a family of models widely applied in computer science, systems

engineering, and workflow management. A Petri net consists of

places, transitions, and arcs connecting places to transitions (or

vice versa), with the system’s state captured by tokens that reside

in places. As transitions fire, tokens move among places, thus

modeling the progress of a process or distributed computation

(Murata, 1989).

3.1 Basic concepts and advantages

• Graphical clarity: One of the key strengths of Petri nets

is their visual nature. Processes, resource constraints, and

synchronization points are represented in a diagram, offering

an intuitive view of concurrent interactions. This makes Petri

nets well-suited for communicating system designs to both

technical and non-technical stakeholders.

• Explicit concurrency: Petri nets explicitly capture

concurrency by allowing multiple transitions to fire

independently if they have sufficient tokens in their input

places. This feature provides a natural way to represent

multi-agent or multi-component systems where actions may

proceed in parallel.

• Formal analysis tools: A rich ecosystem of analysis techniques

(e.g., reachability, liveness, boundedness) and software tools

(e.g., colored Petri nets Tools1) exists for verifying properties

of Petri net models (Jensen, 1995). This is particularly useful

for systems requiring rigorous guarantees, such as safety-

critical applications or complex human-AI workflows.

• Modularity and extensibility: Petri nets provide a modular

framework that can be extended to various specialized forms

(e.g., timed, stochastic, colored), allowing the designer to

incorporate specific features such as timing constraints,

probabilistic behavior, or typed tokens.

3.2 Colored Petri nets and typed tokens

While classical Petri nets use indistinguishable tokens to

mark places, colored Petri nets extend this model by assigning

types or colors to tokens. Places become typed containers, and

transitions can incorporate guard functions that enable more

complex behaviors (Jensen, 1995). This extension allows designers

to encode complex data structures and interaction protocols

directly in the net, significantly increasing expressiveness. In the

context of hybrid agent systems, colored Petri nets are especially

advantageous for:

• Heterogeneous agents: Different types of tokens can represent

messages, tasks, or capabilities unique to human and

synthetic agents.

1 https://cpnide.org/

FIGURE 1

A simple Petri net example showing two places and one transition.

• State and context tracking: Color sets can capture the internal

state of agents or system contexts, allowing transitions to fire

only when certain conditions (guards) on those states are met.

• Protocol definition and enforcement: Complex interaction

sequences, including the dynamic creation and distribution of

tasks, can be succinctly specified and analyzed.

• Integration with communication spaces: As we will see in

Section 4, communication spaces—surface, observation, and

computation—can be mapped onto distinct parts of a colored

Petri net, leveraging types to separate or coordinate different

communication and processing domains.

3.3 Illustrative example

Figure 1 presents a simplified Petri net modeling a small

concurrent process. Places are shown as circles, transitions as

rectangles, and arcs indicate the flow of tokens.

In a colored Petri net version (Figure 2), tokens carry additional

data types that reflect the roles or tasks assigned to different agents.

3.4 Relevance to hybrid agent systems

Petri nets, and particularly their colored variants, are

ideally suited to represent the parallel and event-driven nature

of interactions among humans and AI components. Their

token-based semantics naturally handles concurrency, while the

ability to extend tokens with data types makes them powerful

enough to capture the complexities of heterogeneous, hybrid

agent systems.

As we will see in the next section, Petri nets’ properties—

particularly their ability to model concurrent processes,

handle heterogeneous data types, and support both loose

and tight coupling—make them ideal for implementing

the communication spaces framework, which addresses the

coordination challenges identified in our discussion of multi-agent

and Centaurian paradigms.

4 Communication spaces and agent
architectures

The contrasting requirements of multi-agent and Centaurian

paradigms—maintaining clear boundaries in one case while

enabling deep integration in the other—call for a unified framework
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FIGURE 2

A colored Petri net where tokens carry types or data, allowing conditional transitions.

that can support both approaches.While Petri nets provide a strong

formal foundation for modeling processes and synchronization,

we need to extend their capabilities to capture the complexities of

human-AI collaboration fully. We introduce communication spaces

as this unifying framework, building on Petri nets while adding

specialized structures for handling varied communication styles,

heterogeneous capabilities, and adaptive protocols.

4.1 Foundations and rationale

Petri nets excel at modeling token flows among well-defined

places, but in hybrid human-AI systems, we face additional

challenges. Agents differ widely in perceiving, processing, and

sharing information: humans communicate through natural

language, AI systems through structured data, and physical devices

through sensor signals. Moreover, these communication patterns

must adapt dynamically as the system shifts between loose coupling

(characteristic of multi-agent systems) and tight integration

(needed in Centaurian configurations). These requirements call

for a framework that can accommodate asymmetric interaction

capabilities while supporting both autonomous operation and deep

cognitive fusion.

A mini-example of heterogeneous agents
Consider a team as shown in Figure 3 with a human operator,

an LLM-based conversational agent, and a swarm of simple robotic

drones. The human and LLM exchange strategic decisions via

text-based conversation, while the drones communicate real-time

state updates in a lightweight sensor-data format. Additionally,

the human observes a video feed of drone activity. Each of these

“channels” imposes different synchronization rules, data formats,

and reliability guarantees—precisely the nuances communication

spaces help formalize.

4.2 Core ideas of communication spaces

Communication spaces group interactions into three

conceptual layers (Borghoff et al., 2024a): surface, observation,

and computation. Whether in a multi-agent (MAS) or a

Centaurian system, each space encapsulates a coherent set

of interaction rules and constraints. The formation of these

spaces typically involves either point-to-point or broadcast

communication2, or communication through the environment3.

Several examples illustrate this multi-agent organization of

communication spaces:

• In Mobile Ad-hoc NETworks (MANETs), mobile devices

communicate with one another via wireless links without

relying on an underlying infrastructure: each device acts

as both an endpoint and a router forwarding messages to

devices within radio range. Software support for MANETs

typically presents a coordination layer that sends specific

messages to individual agents to guarantee the execution

of cooperative processes while considering the need for

connectivity continuance. In Bottoni et al. (2006), a formal

model of the coordination mechanisms was given in terms of

High-Level Petri nets.

• Management of transportation networks requires maintaining

complete information on the whereabouts of vehicles and

the state of roads to be mapped on the topology of the

transportation network (see Ciancia et al. (2018) for a concrete

example). Then, the overall state of the transportation system

is given by the information of which vehicle is at which

node of the network, information which has to be maintained

consistently for each vehicle.

2 Point-to-point or broadcast communication often uses message passing

as a crucial concept in many system interactions, especially in distributed

systems, concurrent programming, or event-driven architectures like ours.

It allows di�erent components (agents, large action models, etc.) to

communicate without internal knowledge of the other system (decoupling),

making it easy to add more components to a messaging-coupled system

(scalability). Even di�erent messaging protocols can be easily implemented

and exchanged spontaneously (flexibility), with some protocols allowing

asynchronous interaction in which the sender and receiver do not

have to work simultaneously (asynchrony). Xiao et al. (2020) presents a

comprehensive overview and analysis of the most advanced blockchain

consensus protocols based on message passing.

3 Shared memory architectures can form such an environmental common

ground in the Bradshaw et al. (2011) sense.

Frontiers inHumanDynamics 05 frontiersin.org

https://doi.org/10.3389/fhumd.2025.1579166
https://www.frontiersin.org/journals/human-dynamics
https://www.frontiersin.org


Borgho� et al. 10.3389/fhumd.2025.1579166

FIGURE 3

Conceptual illustration of a human operator, an LLM agent, and a swarm of drones, each using distinct communication channels (text-based,

structured data, and video feed).

FIGURE 4

A layered architecture for HCI.

• In the classical work by Dorigo et al. (2006), a computational

model was derived from how ants communicate information

on trails to reach food sources by marking them through

pheromones recognized by other ants. The computational

model was, therefore, based on associating weights to paths

to a result and strengthening those associated with a

successful one.

Figure 4 shows a layered architecture similar to the Model-

View-Controller (MVC) paradigm, where executive agents

implement the actual computations, observer agents realize

a bridge between the computations, thereby managing the

formatting of data for presentation and decoding user interactive

commands and data entry, and surface agents (or mediators)

are responsible for maintaining the presentation of the overall

state to the users, thereby managing the materialization of the

formatted data and the presentation layout, and providing support

for capturing user interactions.

Note that in this architecture, the actions performed by the

executive agents, and not just their results, can be subject to

observation. Vertical structuring is also shown, relating surface

agents and executive agents through an observation space (see

Figure 5).

Surface space
This space mediates all contact with the outside environment—

user interfaces, sensors, and external APIs. In MAS, surface space

typically involves message-passing protocols or event listeners. In

Centaurian systems, it can reflect a direct blending of human

sensory input and AI-driven data capture.
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FIGURE 5

Schematization of communication spaces in the proposed architecture.

Observation space
Bridging the surface interface with internal processing,

observation space handles message transformations, routing,

and light coordination. In MAS, protocols here ensure agents

remain autonomous yet cooperative. In Centaurian systems,

observation may feature continuous feedback loops that unify

human perception with AI analysis.

Computation space
Serving as the “core” of the system, the computational space

makes decisions, allocates resources, and generates final outputs.

MAS solutions often involve multiple autonomous modules, each

coordinating a portion of the computation. In contrast, Centaurian

architectures could fuse human insight with AI algorithms in a

shared decision-making environment.

Flows and feedback
Information travels vertically through these spaces—from raw

input at the surface to internal processing and back. There may also

be horizontal flows where agents collaborate within a given space.

Feedback loops enable adaptive behavior, such as refining protocols

or redistributing tasks in real time based on performance.

Each of these spaces can be seen as managed by an associated

group-agent, facilitating distributed problem-solving among a

group of users within a networked system or application. The

structure of a group-agent is schematized in Figure 6, where the

ID and ST compartment are common to all agents. Then, the

COMPOSITION compartment is specific to a group-agent, while

other agents have specific additional members for defining their

state, and are endowed with a set of behaviors.

Group-agents are relevant in collaborative systems where

multiple users and agents work together to solve complex problems

or tasks and proper delivery of messages is crucial to ensure

that each participant is correctly informed of the overall progress

toward task achievement. A group-agent can be created at any

time with respect to a topic and its register behavior regulates

composition modification through a protocol which respects the

localization constraints. The following pseudo-code provides an

abstract specification of the construction of group-agents for

communication spaces.

register(self, agent) {

if agent is concerned with self.topic then
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FIGURE 6

A schematization of the basic structure of a group agent.

if agent.ST = ON then

self.CMP[active].Add(agent)

else self.CMP[nonActive].Add(agent)

}

}

Once created, a group-agent has to guarantee that any message

from a member of the group can be read by all other (active)

members. In particular, a message sent by an agent registered

to a group and concerning the group’s topic is delivered to all

active agents registered to that group, as for the group’s deliver

behavior, to be invoked on message generation.

deliver(m) {

if self.ST==ON and self.isConcernedWith(m.topic) then

for each agent in self.CMP[active]

agent.addToBuffer(m)

}

Similarly, deregistration can occur, when a component is no

longer relevant to a group topic, or due to an explicit decision

by the coordination mechanism. Deregistration can only occur for

active agents.

deregister(self, agent) {

if agent ∈ self.CMP[active] then

self.CMP[active].Remove(agent)

}

The information about the activity status of an agent registered

to a group is updated through the switch behavior

switchCMP(self, agent) {

if agent.ST == OFF and agent ∈ self.CMP[active]

then

self.CMP[active].Remove(agent)

self.CMP[nonactive].Add(agent)

if agent.ST == ON and agent ∈ self.

CMP[nonactive] then

self.CMP[nonactive].Remove(agent)

self.CMP[active].Add(agent)

}

4.3 Implementing communication spaces

Each of the three spaces can be mapped onto subsets of Petri

net places (or subnets) with typed tokens indicating relevant data,

tasks, or events. This approach partitions a net into self-contained

“zones”, each governed by specific interaction rules and constraints.

Multi-agent architecture
In a multi-agent system, surface agents manage user

interactions and detect events from the environment, acting

as the system’s interface with external inputs. Observer agents

ensure smooth communication by transforming and routing

messages, enabling coherent collaboration among autonomous

components. Meanwhile, executive agents operate within the

computational space, executing specialized tasks and maintaining

a partial system state to support overall functionality.

A key benefit is clear boundary maintenance and scalability:

each agent type can be added or removed with minimal impact on

the others, provided communication protocols remain consistent.

Centaurian architecture
In Centaurian systems, a unified interface layer merges human

and AI sensory input within the surface space, creating a

seamless interaction point. A shared observation layer acts as a

bridge between human and AI representations, facilitating smooth

cognitive fusion. Meanwhile, a hybrid processing layer integrates

human reasoning with algorithmic methods, allowing for emergent

collective problem-solving.

Such architectures thrive on adaptability, where boundaries

are permeable and agents can fluidly exchange roles or data to

optimize performance.

4.4 Formal representation with colored
Petri nets: communication space Petri net

We extend colored Petri nets to create a Communication Space

Petri net, where places are partitioned into surface, observation,

and computation categories. Tokens carry types or “colors”
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FIGURE 7

A schematic colored Petri net snippet illustrating how a transition fires only if both an LLM planning token and a human approval token are present,

capturing Centaurian synergy.

corresponding to data formats or message semantics relevant to

each space. Transition guards incorporate rules for agent-specific

capabilities (e.g., a color set may denote “human text command” vs.

“drone sensor data”).

This enriched formalism preserves the tractability of standard

Petri nets while accommodating the specialized interactions of

heterogeneous agents. For example, transitions in the observation

space can fire only when tokens of type “parsed command” are

present, ensuring that raw data never bypasses the necessary

transformation steps.

Example snippet
Imagine a transition as shown in Figure 7 in the computation

space labeled Assign Task, which fires only when it receives both

a “planning token” from the LLM agent and an “approval token”

from the human. Such a rule encapsulates the synergy sought in

a Centaurian design, formalizing how human sign-off triggers an

AI-based planning process.

4.5 Implementation considerations

Implementing communication spaces requires careful attention

to the following aspects: State management ensures consistent

updates across distributed agents or fused human-AI modules,

especially in time-sensitive environments. Resource allocation deals

with balancing computational load, bandwidth, and potential real-

time constraints. Protocol adaptation supports switching between

agent autonomy (MAS) and deeper integration (Centaurian) based

on changing system goals or unexpected conditions.

A systemmay operate predominantly in MASmode for routine

tasks, yet temporarily shift to a more Centaurian-like strategy

when it encounters novel or ambiguous conditions. This capacity

to blend paradigms on demand underscores the flexibility of

communication spaces.

The benefits can be summarized as follows: By demarcating

surface, observation, and computation spaces within a

unified Petri net model, designers gain a clear blueprint

for structuring agent interactions. This approach enables

them to capitalize on the strengths of both multi-agent and

Centaurian paradigms—maintaining well-defined boundaries

when necessary, but also allowing for deep integration and

emergent capabilities where advantageous. The next sections

illustrate how communication spaces operate in real-world

scenarios, further emphasizing their role in building robust

human-AI systems.

5 Use case 1: multi-agent interaction
with satellite and swarm robots

This use case demonstrates how our theoretical framework

accommodates both multi-agent and Centaurian paradigms within

a complex system. While predominantly exhibiting multi-agent

characteristics through its distributed architecture, the system also

incorporates Centaurian elements in specific human-AI interaction

points. Figure 8 illustrates the data flow in an experiment with a

semi-centralized coordinated swarm of robots, using both “rigid”

optimization algorithms and “flexible” intervention through a large

language model (LLM). This setup encapsulates a true multi-agent
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FIGURE 8

Interaction of human operators, conversational AI, satellite, and a robotic swarm.

HCI interaction, integrating human operators, conversational AI,

the satellite control unit, and swarm robots.

This use case extends the application of a semi-centralized

control strategy, originally enhanced with blockchain technology

for security and transparency (Carovilla et al., 2023). The multi-

agent paradigm is evident in how distinct entities—the satellite

control unit, swarm robots, LLM, and human operators—maintain

their functional independence while collaborating through well-

defined protocols. However, the system also exhibits Centaurian

characteristics at certain points of interaction, particularly at the

human-LLM interface. The overall information and decision flow,

described in detail in the following sections, is shown in Figure 9.

5.1 System overview

The system exemplifies the multi-agent paradigm through

its composition of distinct, autonomous components: a satellite

control unit, a swarm of robotic agents, an LLM, and human

operators. Each agent maintains its own decision-making

capabilities while participating in the collective process. The

satellite provides centralized coordination and processes the data

collected by the swarm, while the LLM offers strategic advice on

algorithm selection and parameter tuning. The human operators

are not just supervisors, but autonomous agents who monitor these

interactions and intervene to guide the system through complex

decision processes.

5.2 Integration with LLM and human
operators

The integration layer demonstrates a hybrid approach that

combines both paradigms. Following themulti-agent paradigm, the

LLM interacts with the blockchain and control algorithms as an

independent agent, providing a flexible intelligence layer. However,

the interaction between human operators and the LLM exhibits

Centaurian characteristics, creating a tightly coupled decision unit

where human judgment and AI recommendations are seamlessly

integrated. This dual-nature system remains robust and adaptive

through both the independent operation of its components and the

synergistic human-AI integration points.

5.3 Practical applications

The practical applications show how the two paradigms

complement each other. For path optimization and adaptive

problem solving, the system primarily operates in a multi-agent

mode, with the LLM acting as an independent advisor. However,

when human operators review and implement suggestions, the

interaction temporarily shifts to a Centaurian mode, creating a

tightly integrated human-AI decision unit. For example, in path

planning, the LLM can suggest changes to curve parameters based

on detected obstacles or changes in terrain, maintaining its agent

independence, while human operators review these suggestions

through a Centaurian-style deep integration process.

5.4 Human-agent collaboration

The collaboration model in this system demonstrates the value

of supporting both paradigms. While the overall architecture

follows multi-agent principles, with human operators functioning

as independent agents within the system, their interaction with the

LLM and control systems often exhibits Centaurian characteristics.

This flexible approach allows the system to leverage both the

independence and coordination capabilities of the multi-agent
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FIGURE 9

Information and decision flows in the semi-centralized control strategy.

paradigm and the deep integration benefits of the Centaurian

approach. The result is a robust system that protects against the

risks of automation while actively leveraging the unique strengths

of both humans and machines, pushing the boundaries of what

technology can achieve through this dual-paradigm approach.

6 Use case 2: large action models
(LAMs) through feedback loops on HCI
interactions

While our first use case emphasized the multi-agent paradigm,

this second use case demonstrates a stronger inclination toward

the Centaurian approach, while still maintaining some multi-

agent characteristics. Figure 10 shows the framework of RABBIT

TECH’s Large Action Model (LAM)4, which integrates advanced

computational agents to effectively model and predict human

actions on computer applications. The system exemplifies the

Centaurian paradigm’s emphasis on tight integration between

human and artificial components, while incorporating multi-agent

elements in its distributed architecture.

This use case illustrates the transformative potential of LAMs in

creating a new paradigm for human-computer interaction. Unlike

traditional multi-agent systems where components maintain

clear boundaries, Rabbit LAM demonstrates the Centaurian

ideal of deep functional integration, continuously learning from

user input and refining its predictive capabilities. It embodies

4 https://www.rabbit.tech/research

a sophisticated feedback loop system where the boundaries

between human and artificial intelligence become increasingly

fluid, reflecting the core principle of Centaurian systems where

components form an integrated whole rather than remaining

distinct entities.

6.1 System overview

The LAM framework in the RABBIT API exemplifies the

Centaurian paradigm through its core components: the LAM node,

human users, and the HCI system, along with representations

of the challenges this integration addresses and the user

experience. Rather than maintaining strict boundaries between

these components, they evolve together through their interactions.

The LAM node, while functioning as a computational agent,

achieves a level of integration with human users that goes

beyond traditional multi-agent relationships, using neuro-symbolic

programming to create a unified decision-making entity.

6.2 Neuro-symbolic integration

The neuro-symbolic approach of LAM represents a

key Centaurian characteristic: the seamless integration of

different processing paradigms. By combining neural network

capabilities for pattern recognition with symbolic AI for rule-

based processing, LAM demonstrates how apparently distinct

computational approaches can be unified into a coherent whole,

much like the human-AI integration central to Centaurian
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FIGURE 10

Feedback loop for improved agent interactions.

systems. This integration enables the execution of complex

tasks across multiple applications with high accuracy and

minimal latency.

For example, consider a LAM processing an ambiguous user

command such as “Schedule a meeting with the team soon.”

The LLM (stochastic) might probabilistically interpret “soon”

as “within 2 days” based on training data, while the symbolic

scheduler (deterministic) enforces a rule that “soon” must map

to a fixed 24-h window. To resolve this, the observation space

(see Figure 5) mediates between the two layers: the LLM’s proposal

is marked as a “suggestion” token, which triggers a human-

AI negotiation protocol in the computational space. Here, the

system either accepts the LLM’s output with a confidence threshold

(> 80%) or defaults to the symbolic rule, logging the conflict

for later refinement. This ensures adaptability while maintaining

traceability—a key requirement for Centaurian systems in high-

stakes domains.

6.3 Human-agent interaction

The human-LAM interaction epitomizes the Centaurian ideal

of symbiotic integration. Through a natural language-based user

interface that processes spoken or typed commands, the system

achieves a level of interaction where the boundaries between

human intent and machine execution become increasingly blurred.

The feedback system allows LAM to learn from each interaction,

adapting its models to better match user preferences—a hallmark of

Centaurian systems where components evolve together rather than

merely coordinating their actions.

6.4 Practical applications and challenges

LAM’s approach to task management and problem solving

demonstrates the advantages of Centaurian integration over mere

multi-agent coordination. By anticipating user needs and providing

proactive solutions, it shows how deep human-AI integration can

surpass the capabilities of systems in which components merely

coordinate their actions. However, this tight integration poses

unique challenges, including ensuring the transparency of AI

decisions and preserving privacy—challenges that are characteristic

of Centaurian systems, where the boundaries between human and

artificial components become blurred.

6.5 Key takeaways

The feedback loops in LAM exemplify the evolutionary

nature of Centaurian systems. Unlike multi-agent systems where

components maintain fixed identities and interact through

stable protocols, LAM’s feedback loops create a dynamic

system where human and artificial components grow together,

continuously refining their interaction patterns. This approach

to HCI demonstrates how Centaurian principles can create

more intuitive and responsive computing environments, while
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still benefiting from certain multi-agent characteristics in its

distributed architecture.

7 Related work

The implementation of agent interactions has been explored

through various computational approaches. Basic interaction

protocols have been formalized for distributed computation

(Aspnes and Ruppert, 2009), while more complex patterns have

been developed for knowledge combination (Andreoli et al., 1994;

Borghoff and Schlichter, 1996) and distributed problem-solving

(Borghoff et al., 1998). Recent work has focused on higher-level

interactions, particularly in intention recognition (de Greef et al.,

2007; Inga et al., 2023), which is becoming increasingly important

as artificial agents grow more sophisticated in their ability to

understand and respond to human goals.

Guamán et al. (2021) presents an innovative unsupervised

clustering theory using self-organizing maps to classify MVC

patterns based on software quality metrics in a continuous

interaction process. Their goal is to identify quality features that

determine the similarity of MVC applications without architectural

bias. Lawless and Sofge (2021) use interdependence theory to

determine whether convergence has a positive or negative effect

in a competition between human and artificial agents, as in system

dynamics models.

Mobile applications, as well as satellite and swarm robotics,

have grown significantly in recent years, with architectural

patterns playing a critical role in their success. To ensure

the correct implementation of an MVC pattern, Dobrean and

Diosan (2022) propose an automated technique that analyzes and

detects architectural issues using data from Software Development

Kits (SDKs) specifically targeted at mobile code bases. To

enhance coordination and security in swarm robotic systems,

Carovilla et al. (2023) introduce a semi-centralized framework

that integrates blockchain technology, featuring a centralized

control unit that coordinates the swarm, while blockchain

technology ensures secure and decentralized data storage and

communication. Kumar and Choppella (2023) take the opposite

approach, extending pattern descriptions with a System of

Systems (SoS) model to apply interactive dynamics to an

MVC pattern.

Using the Internet of Things (IoT) paradigm as a complex

distributed system that shares a 3-tier architecture consisting of

embedded nodes, gateways that connect an embedded network

to the wider internet, and data services in servers or the

cloud, Riliskis et al. (2015) propose a novel approach for

programming applications across 3-tiers using a distributed

extension of the MVC architecture. Also in the IoT context,

with a focus on the gaming/sports arena, Chen (2025) sees

potential for entertainment robots to recognize human posture

through artificial intelligence. By detecting and monitoring users’

movements in real time, these robots provide a personalized

and interactive entertainment experience. Caci and Dhou (2020)

also discuss the interplay between games with personality and

artificial intelligence. They use the term “virtual human” to

describe a computer program that simulates a human in

some aspects.

With the ubiquity of AI applications, HCI research is

increasingly integrating these approaches, demonstrating that AI

and HCI are mutually beneficial when they collaborate (Panda

and Roy, 2024). However, criticism and bad experiences have also

been reported. For example, Choudhuri et al. (2024) state that

there were no statistical differences in participants’ productivity

or self-efficacy when using ChatGPT compared to traditional

resources. Instead, they found significantly higher frustration

levels, identifying five distinct errors resulting from violations of

human-AI interaction guidelines, leading to various (negative)

consequences for the participants.

LLMs are increasingly being used in studies to investigate the

interaction between humans and artificial agents. Borghoff et al.

(2024b) explore human-artificial interaction with generative AIs

in a software engineering project course. In the same domain,

Nascimento et al. (2023) evaluates ChatGPT-generated code against

developer-generated code to determine which tasks are better

suited for engineers and which are better handled by AI. This

could lead to more efficient interaction (e.g., AI as a tutor for SE

developers) and provide new insights into innovative AI strategies

that include the involvement of humans-in-the-loop to support

the tasks of software engineering. Capitanelli and Mastrogiovanni

(2024) demonstrate that LLMs can play an important role in

planning actions in human-robot interactions.

Giudici et al. (2024) present and evaluate a method

for analyzing user reactions to AI using a live-streaming

platform where human streamers conduct interviews that

are transmitted to a specially developed GPT voice interface

using a crowd-based approach. Kim and Im (2023) study the

attribution of human characteristics to artificial intelligence. They

developed a tool to measure how users form anthropomorphic

reactions to interactions with AI chatbots in a banking service

setting. For a survey of Artificial Emotional Intelligence

(AEI) for cooperative social human-machine interactions see

Ahmadi and Hammond (2023).

Message Passing Neural Networks (MPNNs) (Papillon et al.,

2023) are a special class of neural networks that use the

aforementioned message-passing paradigm to capture interactions

between entities (often represented as nodes in a graph). In

MPNNs, nodes in a graph communicate with their neighbors

through a series of message-passing steps. This interaction allows

the network to learn representations by aggregating information

from neighboring nodes; see also the RABBIT use case in Section 6.

A formal model of the global activity of a system of agents

is provided by concurrent game structures, describing a situation

where agents act according to individual strategies by which to

select individual actions based on knowledge of the global state

of the system. Reasoning on the possible evolutions of such

systems leads to the definition of some variations of Alternating-

Time Temporal Logic (see e.g., Alur et al., 2002; Alechina

et al., 2017; Mogavero et al., 2017). In contrast, a logic that

incorporates spatial constraints on a par with temporal ones has

been recently proposed by Bottoni et al. (2024). In general, these

models abstract the actual mechanisms through which information

about states can be exchanged among agents and assume that

all agents act rationally regarding their strategies. The level of

non-determinism inherent to considering human agents would,

therefore, require some adaptation of these logics in the direction

Frontiers inHumanDynamics 13 frontiersin.org

https://doi.org/10.3389/fhumd.2025.1579166
https://www.frontiersin.org/journals/human-dynamics
https://www.frontiersin.org


Borgho� et al. 10.3389/fhumd.2025.1579166

of identifying classes of agents that can follow several strategies

at once.

Although beyond the scope of this paper, there exists a

humanistic perspective (Knell and Rüther, 2024), as well as an

ethical dimension, to human-artificial interaction. For the latter,

the reader is referred to Kumar and Choudhury (2023b), Karlan

(2023) and Nieto (2024). In some ways, “virtual superhuman” AI

technologies could undermine the value of human achievements

(Schaap et al., 2024) or even may pose an existential threat (Kumar

and Choudhury, 2023a).

8 Conclusion and future work

We have outlined a framework that systematically considers

how human and artificial agents interact within a networked

ecosystem. By articulating HCI not just as human-computer

interactions but as dynamic interactions among different agents

within a flexible, multi-agent system, we have highlighted

the potential for more complex and effective interactions.

The application of our multi-agent model to two different

use cases—satellite and swarm robotics, and Large Action

Models (LAMs)—has not only validated our theoretical

constructs, but also underscored the practical implications of

such interactions.

In the first use case, we observed how a semi-centralized

system, enabled by a large languagemodel, could improve decision-

making processes and adaptability through real-time data-driven

adjustments. This setup not only ensures efficiency, but also

preserves human oversight, which is critical for managing complex,

dynamic environments.

The second use case involving LAMs further highlighted

the potential of integrating advanced computational agents to

predict and shape human-computer interactions. Using neuro-

symbolic programming, the LAM framework demonstrated its

ability to refine its operations based on continuous feedback

from human interactions, promoting an adaptive and responsive

HCI system.

We have thus established a foundational framework for

the design and analysis of HCI systems that views these

interactions as a complex interplay among multiple agents.

This approach allows us to better understand and harness the

collective capabilities of different agents, thereby enhancing

the system’s adaptability and resilience. Importantly, this

perspective aligns with emerging technology paradigms that

foster a deep understanding and integration of human agents.

Indeed, our contribution can be seen as a systemic evolution

in design approaches, emphasizing the front-end to enhance

usability and effectiveness. This contrasts with, but complements,

systemic approaches that prioritize the back-end for security and

robustness, as illustrated by Salzano et al. (2023). Together, these

perspectives synergistically improve the overall architecture of

HCI systems.

The integration of human and artificial agents also raises critical

ethical and regulatory considerations. Our framework’s layered

communication spaces–surface, observation, and computation–

provide inherent auditability through explicit transition logs and

token-based interaction traces, aligning with AI accountability

guidelines (Floridi, 2019; EU, 2024). For high-stakes domains

such as healthcare or defense, this enables clear attribution of

decisions to human or AI agents, while preserving the fluidity of

Centaurian collaboration. Future work will further formalize these

mechanisms to ensure compliance with emerging standards for

hybrid intelligence systems.

Ultimately, our study enriches the understanding of HCI

as a dynamic and evolving field characterized by the complex

yet symbiotic relationships between humans and machines.

As we delve deeper into these interactions, the possibility of

transforming human-computer interactions into more seamless

and effective experiences becomes increasingly tangible. This

promises a future in which the human and artificial dimensions

are not merely aligned but fully integrated in a balanced

and complementary manner. Such integration could pave the

way for a new era of collective and hybrid intelligence—

where humans and machines work closely together—potentially

the most significant and immediate outcome of current rapid

technological advances.

Future research will focus on improving the adaptability of

MAS by addressing the challenge of dynamic team composition.

Standard Petri nets, with their static structure, have difficulty

accommodating scenarios where agents join or leave while

maintaining consensus, as illustrated by the register and

deregister (for active agents) pseudo-code in Section 4.

Therefore, we plan to model agents as individual (colored) Petri

nets with specialized input and output locations, allowing token-

based message passing for seamless registration and deregistration.

However, smooth coordination requires high-level reconfiguration

mechanisms to dynamically manage agent lifecycles. While these

improvements enhance the adaptability of MAS, Centaurian

systems, with their stable human-AI integration, remain well-

suited to Petri net formalization due to their reliance on fixed

coordination structures.

Another important future research direction is the

development of a hybrid approach that bridges MAS and

Centaurian systems. While Petri nets effectively model structured

Centaurian intelligence, where human and AI components

collaborate through predefined coordination rules, they fall short

in dynamic MAS scenarios that require self-organization. Future

research will therefore integrate high-level reconfigurable networks

to enable agent fluidity, while using communication spaces as an

intermediate layer for seamless coordination between autonomous

and tightly coupled agents. This three-tiered approach will enable

dynamic transitions between structured Centaurian intelligence

and decentralized MAS interactions. Given the increasing

importance of Centaurian AI in human-computer collaboration,

this hybrid framework will improve efficiency, adaptability,

and interoperability.

An alternative set-theoretic approach abstracts agent

relationships without rigid network structures, defining

interactions through set membership and relational mappings.

While this circumvents the limitations of Petri nets in dynamic

scenarios, its implementation requires structured protocols

for message flow and consistency. Our future research will

therefore explore how set-theoretic models can complement Petri
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nets to ensure both formal rigor and practical applicability in

human-AI collaboration.
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