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the autoimmune-mediated disruption of myelin and have an evolu-
tion characterized by an early “active” stage [T1-weighted (T1w) 
MRI contrast enhancing] and later either resolving or chronic (non-
enhancing) stages (Rovaris et al., 2000). While NPSLE is also an 
autoimmune disease affecting multiple organs, the brain lesions 
in NPSLE patients appear to arise primarily from thrombotic or 
embolic infarction, perhaps secondary to vasculitis or heart valve 
vegetations respectively (Brey, 2007).

Among the multiple approaches to white matter lesion segmen-
tation that have been tried, multivariate classifi ers have shown good 
agreement with expert manual tracing. Lao et al. (2006) used a 
multivariate spotlight approach that included multi-protocol 
intensities of all voxels in a cube, centered on the voxel in ques-
tion, as input to support vector machines (SVM). Schwarz et al. 
(2009) used Markov random fi elds to combine spatial distribution 
and neighborhood intensities. Anbeek et al. (2005) employed k-
 nearest-neighbor to incorporate spatial and intensity information. 
Morra et al. (2008) attempted to take more of a gestalt approach 
by generating numerous features including the “intensity, mean 
fi lters, standard deviation fi lters, curvature fi lters, and haar fi lters 
of various shapes” (Morra et al., 2008) based on the surround-
ing tissue and then performing feature selection and classifi cation 
using AdaBoost. Our work attempts to build on these approaches 
by combining a greater variety of morphometric features that are 
guided by human rater procedures with a multivariate-classifi er 
to achieve high accuracy.

INTRODUCTION
Systemic lupus erythematosus (SLE) is an autoimmune disease 
affecting multiple tissues, including the brain. Neurologic and 
psychiatric complications in SLE, subsumed by the term neu-
ropsychiatric SLE (NPSLE), occurs in up to 95% of SLE patients. 
While MRI often reveals distinct white matter abnormalities in 
active NPSLE, the pathologic processes underlying these lesions, 
whether involving autoimmune mechanisms or purely vascular 
in nature (e.g., hemostasis), are unknown. Nonetheless, accurately 
measuring brain lesions can contribute substantially to under-
standing the pathology causing NPSLE. The traditional method 
of lesion identifi cation in NPSLE involves the expensive and time-
intensive manual rating of each image slice by a radiologist. An 
accurate automated lesion analysis method would reduce the time 
and costs associated with SLE brain lesion measurement and, 
hence, facilitate both research studies and the diagnosis of this 
prevalent disease.

There exists a large body of work focused on segmenting white 
matter lesions in various disorders such as multiple sclerosis (Van 
Leemput et al., 2001; Lao et al., 2006; Khayati et al., 2008; Morra 
et al., 2008), vascular dementia (Yamashita et al., 2008), and leukoa-
raiosis (Kruggel et al., 2008; Schwarz et al., 2009), but seldom have 
these methods been applied to NPSLE. Though white matter lesions 
appear in the above disorders as hyperintensities in T2-weighted 
(T2w) MRI images, their etiology differs from NPSLE substantially 
(Rovaris et al., 2000; Brey, 2007). Particularly, MS lesions arise from 
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MATERIALS AND METHODS
OVERVIEW
Figure 1 outlines the general lesion segmentation protocol from 
raw data through segmentation.

DATA ACQUISITION
T1w, T2w, and fl uid attenuated inversion recovery (FLAIR) images 
were acquired for 27 subjects with a diagnosis of SLE on a Siemens 
Sonata 1.5T scanner at The Mind Research Network with sequence 
parameters as shown in Table 1. This protocol was selected for com-
patibility with a standard clinical sequence in use at the University 
of New Mexico Hospital (UNMH) and clinics where it was origi-
nally used for the qualitative analysis of lesion load. The method 
in this paper was developed to be applied on a standard clinical 
sequence such as the one employed at UNMH.

Of the 27 subjects collected, 10 subjects were used for train-
ing and 17 subjects were reserved for testing. Each subject was 
evaluated by a neuroradiologist and found to have white matter 

lesions consistent with SLE with no other obvious neurological 
issues. All subject data was collected with human subject consent 
and appropriate approval from the Internal Review Board at the 
University of New Mexico.

The gold standard lesion segmentation was created via 
manual tracing of white matter lesions performed by an expe-
rienced rater. Raters were requested to review the axial FLAIR 
images from inferior to superior for visual hyperintensities in 
the white matter regions. All FLAIR hyperintensities that are 
regionally bright relative to the surrounding tissue and distant 
from the ventricles were considered lesions. Lesions that were 
greater in size than three contiguous voxels were traced by the 
expert rater. During the identification of the lesion, the rater 
had the opportunity to refer to the co-registered T1w and T2w 
images. This was helpful because of the decreased partial vol-
ume artifact in the T1w images. For FLAIR hyperintensites that 
were adjacent to the ventricles, hyperintensities that were sig-
nificantly hemispherically asymmetric were considered lesion, 
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Scaled

Ranked with mRMR
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* Manual segmentation as input
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FIGURE 1 | Overview of lesion segmentation protocol.

Table 1| Data acquisition details.

Name Sequence Dimensions Voxel size TR (ms) TE (ms) TI (ms) Flip angle ETL

T1w Gradient echo 256 × 256 × 128 1.0 × 1.0 × 1.5 12 4.76 NA 20° 1

T2w Turbospin echo (TSE) 192 × 192 × 120 1.1 × 1.1 × 1.5 9040 64.00 NA 180° 5

FLAIR TSE inversion recovery 192 × 192 × 120 1.1 × 1.1 × 1.5 6000 358.00 2100 120° 107
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while hemispherically symmetric hyperintensities were consid-
ered to be periventricular artifact. Symmetry was evaluated in 
a qualitative manner.

PREPROCESSING
Consistent voxel location and size is required when combining mul-
tiple image intensities into a single feature vector. To achieve this all 
images were resampled to 1mm isotropic resolution using trilinear 
interpolation. Each subject’s T2w and FLAIR were then registered to 
the T1w using Matte’s Mutual registration (Ibanez et al., 2005).

Multiple studies have shown that voxel-based lesion classifi -
cation is sensitive to B1-fi eld inhomogeneity (Madabhushi and 
Udupa, 2005; Jäger et al., 2007; Jäger and Hornegger, 2009) within 
each series acquired on a single subject and between individu-
als. Multiple solutions have been examined in the literature, but 
some form of bias correction and intensity standardization is nor-
mally employed (Madabhushi and Udupa, 2005). Bias correction 
was performed using an implementation of Van Leemput et al.’s 
(1999) method due to its ability to incorporate information from 
multiple MR sequences. After performing bias correction, brain 
extraction was performed using (Pierson et al., 2009). Intensity 
standardization through linear histogram matching, as presented 
by Nyul et al. (2000), was used to separately match each sequence 
to a reference image to reduce inter-subject intensity variability.

FEATURE CREATION/RANKING
Human raters do not judge lesions solely on intensities, on a voxel-
by-voxel basis, independent of their neighbors. The obvious rea-
son is that much of the information that differentiates lesion from 
non-lesion tissue is contained in the spatial position of the voxel 
in question, the intensities of its neighbors, the proximity of gray 
matter, white matter, or CSF tissue, and often the hemispheric sym-
metry/asymmetry. In order to quantify and incorporate this type of 
information, 49 different morphometric features were calculated 
for each voxel. Figure 2 shows a single axial slice, from a single 
subject, of a subset of the features used.

To incorporate some higher level spatial information the fi rst 
feature calculated was an estimate of the tissue type (gray, white, 
or CSF), using k-means seeded with appropriate initial means 
(Figure 2D). Next, distance maps were calculated for each tis-
sue type, giving a distance from a voxel to the nearest voxel for 
each tissue type (Figures 2E–G). The distance maps are meant 
to incorporate information about tissue type boundaries, such 
as the transition from white matter to gray matter, as these can 
affect classifi cation. Since hemispheres are generally sagittally 
symmetric and lesions are generally hemispherically asymmet-
ric, each image was left–right fl ipped and subtracted from itself 
(Combès and Prima, 2008) (Figures 2K–M). The purpose of the 
fl ipped difference is not to indicate the symmetry of the brain, but 
to enhance lesion locations which are known to be hemispheri-
cally asymmetric. This approach runs the risk of noise at tissue 
boundaries or near physical abnormalities. Neighborhood means 
and medians were calculated for neighborhoods with radius 1, 2, 

and 3 voxels1 in order to capture some of the surrounding tissues 
characteristics (not shown). For the fi nal features, dilation and 
erosion with radius 1, 2, and 3 were performed on each image to 
quantify information about voxels that may be on the bounda-
ries of lesions (Figures 2H–P). Finally, to capture some idea of 
global location the normalized x, y, and z location of each voxel 
was calculated (not shown). The spatial normalization involved 
independently calculating the mean and standard deviation of the 
x, y, and z values for all voxels within the brain, then subtracting 
the mean and dividing by the standard deviation. Since all brains 
were AC–PC aligned this form of spatial normalization provides 
a means of usefully comparing voxel indexes between subjects 
without registering to a standard space.

All features were quantized and then ranked using maximum 
relevance, minimum redundancy (mRMR) (Peng et al., 2005). This 
method computes the mutual information between each feature 
and its target, then adds features that are maximally related to the 
target classifi cation while being minimally related to the features 
already present. Thus each additional feature should include the 
greatest amount of new information. Since SVMs are being used 
to perform the segmentation step, it is not the features themselves 
that are important but the areas of the feature space defi ned by the 
combination of features. The results of ranking the features using 
mRMR are presented in Table 2.

According to the mRMR ranking shown in Table 2, the FLAIR 
after grayscale dilation of radius two (Figure 2J), and the T1w 
fl ipped difference (Figure 2K) are the two most relevant fea-
tures. The dilation of the FLAIR image is important because it 
essentially makes the entire lesion cluster match the intensity 
of the center of the lesion and pushes boundary voxels outside 
the original lesion dimensions. The T1w fl ipped difference is 
relevant because lesions are generally hypo-intense on T1w; 
so, after subtracting the lesion from the healthy tissue on the 
opposite side of the brain, the lesion becomes hyper-intense. 
Since most radiologists use the T1w, the FLAIR, or both when 
performing their manual segmentations, it is encouraging that 
features from these two sequences provide the most mutually 
independent information according to mRMR. The following 
fi ve most relevant features include the normalized x, y, and z 
location and the distance to white and gray matter. The presence 
of the x, y, and z values so high in the rankings demonstrates 
that the spatial location of lesions is quite informative, and the 
distance to white and gray matter shows that the location within 
tissue types is very relevant. Another very interesting property of 
the ranked features is that the T1w, T2w, and FLAIR intensities 
provide much less relevant, non-redundant information than 
many of the calculated morphometric features, implying that 
the morphometric features enhance the local features providing 
additional information that improves the ability of the auto-
mated algorithm to detect the lesions.

DATA REDUCTION
After brain extraction, the entire training data set comprised of 10 
subjects contained over 12 million voxels. Since most nonlinear 
classifi ers have time complexity between O(n log n) and O(n2), 
reducing the number of samples is required to make the problem 
computationally tractable. The data is also extremely unbalanced 

1The radius refers to the size of one side of the cube of voxels in the neighborhood-
1. Thus a radius of two would encompass a cube of voxels, with three voxels on a 
side, centered on the voxel in question, resulting in a volume of 27 voxels.
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with over 1000 non-lesion voxels to 1 lesion voxel. The problem is 
thus one of selecting the non-lesion samples that are the most diffi -
cult to classify, and then training using those and the lesion samples. 
To achieve this we created a multi-level elimination process.

Distance threshold
The fi rst reduction step is something of a single class clustering 
approach. The mean of each feature was calculated for all lesion 
voxels, and then the maximum distance from any lesion feature 
vector to the lesion center was found. All non-lesion voxels that 
were farther from the lesion centroid than this max distance were 
labeled non-lesion and removed from consideration.

Leave-one-out (LOO) error was calculated for all sets of features 
numbering 1:49, in mRMR order. The optimum performance was 
achieved with fi ve features with no false negatives and the highest 
number of true negatives based on the manual tracing as the gold 
standard. The reduction at this step was between 2 and 5% which, 
while not substantial, was shown empirically to improve the per-
formance of the Naive Bayes classifi er.

Naive Bayesian classifi er
After distance thresholding the data, a Naive Bayesian classifi er was 
employed. The number of features used was selected by calculating the 
LOO rate for an increasing number of features in mRMR order. The 

FIGURE 2 | Axial slices from a subset of the 49 morphometric features. 

(A) T1w. (B) T2w. (C) FLAIR. (D) k-Means segmentation. (E) Distance to 
white matter. (F) Distance to gray matter. (G) Distance to CSF. (H) T1w 
grayscale dilation radius 2. (I) T2w grayscale dilation radius 2. (J) FLAIR 

grayscale dilation radius 2. (K) T1w fl ipped difference. (L) T2w fl ipped 
difference. (M) FLAIR fl ipped difference. (N) T1w grayscale erosion 
radius 3. (O) T2w grayscale erosion radius 3. (P) FLAIR grayscale erosion 
radius 3.
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RESULTS
Figure 3 is the receiver operating characteristic (ROC) curve 
(Obuchowski, 2003) which represents the trade-off between 
sensitivity2 and specifi city3 that occurs by varying the threshold 
at which a voxel should be labeled as lesion. The fi rst line in red 
shows the results based on LOO error, generated by training on 
9 subjects and testing on the 10th, repeated for all 10 subjects. 
The line in green shows the results for the entire hold-out set of 
17 subjects. The lowest threshold, 0.001, on the right side of the 
graph, has a sensitivity of 94.3% and a specifi city of 93.1% in the 
training set and a sensitivity of 94.3% and a specifi city of 93.9% 
on the hold-out set. The highest threshold of 0.99 is on the left 
side of the graph with a sensitivity of 4.2% and a specifi city of 
100% on the training set and a sensitivity of 2.6% and a specifi city 
of 100% in the hold-out set. Figure 4A shows an axial slice of the 
probability mask for a single subject, overlaid on that subjects 
FLAIR. Figure 4B shows the probability mask after thresholding, 
and Figure 4C shows the expert tracings on the same slice.

DISCUSSION
The majority of the false positives present in the predictions are on 
the boundaries of lesion clusters. Disagreement over boundaries is 
common between human raters often because precise boundaries 
do not matter to radiologists. Since this approach was based on the 
work of a single human expert, it is diffi cult to determine how much 
the boundary differences are due to misclassifi cation and how much 
the differences are due to valid disagreement. An additional dif-
fi culty comes from the possibility that an automated approach may 
be more sensitive to lesion tissue in general. Determining where 
the automated method truly fails will require the ratings of more 
radiologists on the same subjects, more back-and-forth with the 
current radiologist, or both.

While overall the results are very good, the unbalanced nature 
of the data makes the specifi city more important than it may seem 
since a specifi city of 99.9% could be achieved simply by labeling 
all tissue non-lesion. In order to improve the specifi city it may be 
worthwhile to implement some form of false positive reduction 
similar to that used by Lao et al. (2006). This would allow for a 
lower threshold, resulting in a higher sensitivity while improving 
the specifi city over the current performance.

Additionally, the current results could likely be improved by 
reducing noise present in the features. One source of noise is the 
inter-subject intensity variation, which could be reduced by using 
a better intensity standardization method. Since the classifi ca-
tion method presented is highly dependent on the relationships 
between images, a method that preserves these relationships, such 
as that presented by Jäger and Hornegger (2009), would likely 
improve accuracy.

Another source of noise in a subset of the features is the initial 
k-means tissue segmentation which is known to be sensitive to the 
intensity variations caused by lesions. A more robust tissue seg-

Table 2 | Maximum relevance, minimum redundancy feature ranking.

Rank Feature Rank Feature

1 Dilate FLAIR radius = 2 26 Median FLAIR radius = 2

2 T1w fl ipped difference 27 Mean T2w radius = 1

3 Normalized z location 28 Mean FLAIR radius = 3

4 Normalized x location 29 Dilate T2w radius = 2

5 Distance to white matter 30 Erode T2w radius = 2

6 Normalized y location 31 Median FLAIR radius = 1

7 Distance to gray matter 32 Erode T1w radius = 3

8 Erode FLAIR radius = 3 33 Mean T2w radius = 2

9 Normalized T2w intensity 34 Normalized T1w Intensity

10 Median FLAIR radius = 3 35 Mean FLAIR radius = 2

11 FLAIR fl ipped difference 36 Median T2w radius = 2

12 Dilate T1w radius = 3 37 Erode FLAIR radius = 1

13 Dilate FLAIR radius = 3 38 k-Means tissue type

14 Mean T2w radius = 3 39 Median T2w radius = 1

15 T2w fl ipped difference 40 Mean FLAIR radius = 1

16 Dilate T1w radius = 1 41 Dilate T2w radius = 1

17 Dilate FLAIR radius = 1 42 Median T1w radius = 3

18 Erode FLAIR radius = 2 43 Erode T1w radius = 2

19 Dilate T2w radius = 3 44 Median T1w radius = 1

20 Normalized FLAIR intensity 45 Median T1w radius = 2

21 Erode T2w radius = 3 46 Mean T1w radius = 3

22 Dilate T1w radius = 2 47 Erode T1w radius = 1

23 Median T2w radius = 3 48 Mean T1w radius = 1

24 Erode T2w radius = 1 49 Mean T1w radius = 2

25 Distance to CSF

best performance was achieved with 34 features. After eliminating any 
non-lesion voxels that had been correctly classifi ed, only 5% of the data 
remained. The training set for the SVMs was then composed of all non-
lesion voxels incorrectly classifi ed as lesion and all true lesion voxels.

MODEL SELECTION
The performance of SVMs is heavily dependent on the kernel 
selected and the parameters used (Hsu et al., 2003). In order to cap-
ture non-linearities in the data, the radial basis function kernel was 
selected. This kernel has two parameters affecting its performance, 
the Gaussian radius, γ, and the cost, C. Often a grid search is used to 
exhaustively search the parameter space (Hsu et al., 2003). Due to 
the size of our data set and the diffi culty of the decision boundary, 
an exhaustive search proved too computationally taxing. Instead, 
a two level, uniform design (Huang et al., 2007) based search was 
performed with 13 points in the fi rst level and 9 in the second. The 
best values for C and γ were selected from the second search level.

While the data reduction stage did bring the lesion and non-lesion 
classes closer to being balanced, there were still approximately 40 non-
lesion voxels for every lesion voxel. To overcome this imbalance, the 
lesion class was given higher weight while training. This makes mis-
classifying a lesion voxel more costly and essentially decreases false 
negatives at the expense of increased false positives (Yang et al., 2005). 
After the best parameters were identifi ed the SVMs were trained on 
the data and confi gured to provide probability estimates. All SVM 
tasks were performed using libSVM (Chang and Lin, 2001).

2Sensitivity
Number of true positives

Number of true positives num
=

+ bber of false negatives
.

3

Specificity
Number of true negatives

Number of true negatives Num
=

+ bber of false positives
.
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FIGURE 4 | (A) FLAIR overlaid with predicted probability that a voxel is lesion, where brighter colors are higher probability. (B) Predicted probability mask after 
thresholding. (C) Manual expert tracing of lesions.

FIGURE 3 | Receiver operating characteristic curve.

menter, using expectation maximization for instance, would help 
provide more accurate tissue types. Multiple features rely on the tissue 
segmentation, some of which were well ranked by mRMR, meaning 
any improvement should result in improved lesion segmentation.

Very little of the SVM kernel parameter space was searched 
which strongly implies the parameters used were non-optimal 
(Chang and Lin, 2001; Huang et al., 2007). Thus the current 
method could be improved by implementing a more thorough 

parameter search, although such a search would be computation-
ally prohibitive.

While the model trained here is specifi c to NPSLE, the frame-
work of features, ranking methods, and classifi ers could be applied 
to any brain lesion type. Since there exists a number of disorders 
that produce brain lesions, there are many opportunities for further 
applications. Performance on more common disorders would also 
allow for better confi dence due to larger sample sizes.
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