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in the tissue. Fixation results in further shrinkage and distortion of 
brain volume. Histological processing such as sectioning, staining, 
and mounting on glass slides can cause further shrinkage, spatial 
deformations, or tissue damage such as shears or tears. In general, 
any histology to in vivo modality registration method requires: (1) 
alignment of photographic images of histological sections and their 
stacking to reconstruct a 3D histological volume, and (2) matching 
of the 3D histological volume to the 3D MRI volume. Sometimes 
the photographic images of the brain taken prior to sectioning, that 
is, blockface images, have been used as an intermediate modality to 
aid in the 3D histological volume reconstruction and to facilitate 
alignment to 3D MRI volumes (Table 1).

Here we describe a multistage method that allows direct regis-
tration of the histological volume to the MRI volume when block-
face images are not available. The major innovative feature of our 
method is the incorporation of large deformation diffeomorphic 
metric mapping (LDDMM) (Beg et al., 2005) for final registration 
of the 3D volumes. LDDMM is a nonlinear registration algorithm 
that calculates diffeomorphic transformations between images in 

IntroductIon
High resolution magnetic resonance imaging (MRI) technology 
has rendered in vivo brain structure accessible to morphometric 
analysis, an approach that has found widespread application in 
studies of anatomic changes associated with neuropsychiatric dis-
orders, see papers in Thompson et al. (2004, 2008b). However, 
the cytoarchitectonic boundaries that define individual functional 
units in the brain, as for example the borders between neighboring 
cortical areas, cannot be captured at the resolution of MRI images. 
Such cellular detail is available only from post mortem microscopic 
analysis of histologically processed brains. Therefore, using histo-
logical sections to define anatomic boundaries in the MRI images 
would elevate the morphometric analyses of in vivo brain structure 
to a more refined, functionally meaningful level.

Combining the two techniques requires precise registration of 
histological section images and MRI images, a process that is dif-
ficult due to the deformations introduced by histological process-
ing (Dauguet et al., 2007). Brain extraction commonly leads to 
nonlinear deformation such as shrinkage because of the fluid loss 
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which anatomical structures and sub-structures are faithfully pre-
served. As demonstrated here, the addition of LDDMM greatly 
enhances the precision of the registration.

In this paper, we describe the data used to test our method 
and describe our registration algorithm in detail (see Materials 
and methods). We then provide visual examples of the registration 
and give validation results for registration accuracy (see Results). 
Finally, we conclude our work with a discussion of our method 
and possible improvements.

MaterIals and Methods
The registration method we have developed consists of five 
steps that constitute a new method for generating anatomical 
correspondences between the histology and the MRI volumes 
(Figure 1). Step 1 is the manual white matter (WM), gray mat-
ter (GM), and cerebrospinal fluid (CSF) segmentation of histo-
logical sections. Step 2 is the 2D rigid alignment and stacking of 
histological sections. Step 3 is the affine registration of the 3D 
histological image to the MRI volume. Step 4 is matching the 
histogram of 3D histological image to the MRI histogram. Step 5 

is the 3D LDDMM image matching between the 3D histological 
image and the MRI volume. These individual steps are described 
in detail below.

subjects
Brains from nine adult Rhesus macaque monkeys (age at scanning 
5.5–9.25 years; age at sacrifice 6.42–12.42 years) were used in this 
study. Three (1M, 2F) were normal untreated adult animals, three 
(2M, 1F) were exposed to x-irradiation (175–200 cGy) in early gesta-
tion, and three (2M, 1F) were exposed to x-irradiation (300–600 cGy) 
in midgestation. All procedures involving non-human primate sub-
jects, including in utero exposure to irradiation, surgical C-section, 
housing, feeding, veterinary care, MRI, and sacrifice were performed 
in accordance with guidelines established by the Yale Institutional 
Animal Care and Use Committee. Irradiation exposure for these 
animals has been described elsewhere (Selemon et al., 2009).

The MRI scans of the monkeys were acquired in vivo on a 1.5 
Tesla LX GE Advantage scanner S using the following protocol: A 
T1-weighted spoiled gradient recalled acquisition at steady state 
(SPGR) sequence (repetition time = 25 ms, echo time = 4 ms, flip 

Table 1 | Summary of previous work for reconstruction of 3D histological volume and histology to in vivo modality registration.

 2D Registration 3D Registration 

 Transformation Method Transformation Method Blockface 

     images used

Hibbard and Rigid Principal axes – – No 

Hawkins (1988)

Andreasen Affine Intensity based – – No  

et al. (1992)

Zhao et al.  Affine Contour matching – – No  

(1993)

Goldszal Rigid Landmark matching – – No  

et al. (1995)

Schormann et al.  Rigid Principal axes Elastic Full multigrid No  

(1995; 1998)

Ranharajan Rigid Landmark matching – – No 

et al. (1997)

Kim et al. (1997) Elastic Landmark based thin Elastic Landmark based TPS Yes 

  plate splines (TPS)

Mega et al. (1997) Elastic Contour matching – – No 

Cohen et al. (1998) Affine Contour matching – – No 

Ourselin et al. (2001) Affine Calculating local – – No  

  displacements using a 

  block- matching strategy

Bardinet Affine Block matching algorithm Affine Block matching algorithm with correlation Yes 

et al. (2002)  with correlation coefficient  coefficient as similarity measure 

  as similarity measure

Malandain Affine Block matching algorithm of Affine Block matching method of No  

et al. (2004)  Ourselin et al. (2001)  Ourselin et al. (2001)

Pitiot et al. (2006) Piecewise affine Block matching algorithm   – No 

Dauguet Piecewise affine Block matching Elastic Free-form deformation Yes 

et al. (2007)  displacement field  Rueckert et al. (1999)

Yelnik et al. (2007) Affine Contour matching Affine Block matching with correlation Yes 

    coefficient as cost function

This list is by no means an exclusive survey.
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celloidin embedding of brain tissue, and histological processing 
have been described elsewhere (Selemon et al., 2009). High resolu-
tion digital photographic images (0.005534 × 0.005534 mm2/pixel) 
were acquired of each histological section.

MultIstage regIstratIon
GM/WM/CSF segmentation of histological sections
In photomicrographs of histological sections, GM and WM of the 
prefrontal cortex were manually segmented based on microscopic 
observation (Leica MZ75 low power scope, variable magnifica-
tion of 0.63–5.0×) of corresponding histology sections that had 
been Nissl stained with cresyl violet for cytoarchitectonic analysis 
(Figure 2, top row). During the segmentation process, we identi-
fied the MRI slice that was visually the most similar to a given 
histological section. Although CSF is not present in sections after 
histological processing of the brain, its labeling is necessary for 
the intensity normalization and LDDMM image matching (see 
Histogram matching and Nonlinear registration with LDDMM) 
steps of our registration method, because four classes or four inten-
sity levels of MR image (i.e., WM, GM, CSF, and background) 
need to be accounted for. We therefore also identified sulcal and 
ventricular spaces of the histology sections that corresponded to 
similar spaces in the MRI slices and labeled those as CSF. Then, 
each compartment was assigned an arbitrary constant intensity 
value, that is, WM = 240, GM = 160 and CSF = 80 (Figure 2, 
bottom row).

2D rigid registration of histological sections
Rigid registration (rotation and translation) was used to align each 
consecutive segmented histological section similar to Malandain 
et al. (2004). Each section was registered to the previous section 
starting from the second. Then starting from the section before the 
last one, each section was registered to the next section. So, if there 
are N section images, I ii : , ,...,Ω ∈ℜ → ℜ =2 1 N :

(1) For i N= −1 2 1, , ..., ; (a) Calculate Ri
x∈ℜ2 2(rotation matrix) 

and ti ∈ℜ2(translation vector) registering Ii+1 to Ii and (b) 
resample image Ii+1  with I I R x ti i i i+

−= −( )( )1
1  using nearest 

neighbor interpolation.
(2) For i N N= − −1 2 1, , ..., ; (a) CalculateRi and ti registering Ii 

to Ii+1 and (b) resample image Ii  with I I R x ti i i i= −( )( )+
−

1
1  

using nearest neighbor interpolation.

The transformation parameters were calculated with the auto-
matic image registration (AIR) package (Woods et al., 1998). 
AIR minimizes a least-squared difference image cost function 
(Friston et al., 1995; Hajnal et al., 1995) using full Newton-type 
minimization with a multi-resolution approach. At each reso-
lution level, the derivatives of the cost function with respect to 
the three parameters of the 2D rigid transformation model are 
computed and they are used to update the estimated parameters 
and to iteratively minimize the cost function. Assuming that the 
histological sections were cut parallel to each other and since 
the thickness of the sections was small (0.8 mm), this procedure 
aligns the tissue boundaries in consecutive slices successfully 
achieving a global alignment of all sections. After the align-
ment of histological sections, they were stacked to form a 3D 
 histological image.

angle = 30°, acquisitions = 124, matrix = 256 × 256 was used to collect 
the scans. Voxel resolution was 0.625 × 0.625 mm, and slice thickness 
was 0.7 mm. Note that one normal female subject was scanned on a 
3.0 Tesla Siemens Trio scanner with a similar MPRAGE sequence.

A series of celloidin-embedded, 40-μm thick Nissl-stained 
sections through the frontal lobe for the same subject post mor-
tem at approximately every 0.8 mm (every 20th section) was also 
 generated. The procedures for sacrifice via intracardial perfusion, 

FIguRe 1 | Flowchart illustrating the registration steps from the 
histology to the MRI volumes. Step 1: GM/WM/CSF segmentation of the 
histological sections. Step 2: 2D rigid alignment and stacking of histological 
sections. Step 3: 3D affine registration of the 3D histological image to the MRI 
volume. Step 4: Histogram matching between the 3D histological image and 
the MRI volume. Step 5: 3D LDDMM image matching between the 3D 
histological image and the MRI volume.
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manual  segmentation of GM, WM and CSF regions in histologi-
cal sections, these ROIs were labeled by three different intensity 
values. The 3D histological images were first smoothed with a 
Gaussian filter (SD = 0.5) to make their histograms a continu-
ous function.

Then we used the histogram matching or histogram specifica-
tion algorithm (Gonzalez and Woods, 2002) to match the histo-
gram of the histological image to the MRI volume. This algorithm 
calculates histograms of two images and uses them as probability 
density functions to find a transformation between the intensity 
values of these images.

This algorithm can be summarized as follows. For two images 
I0 and I1:

(1) Calculate the histograms for the images I0 and I1 with
p r n n k Lk k( ) / , , ,...,= = −0 1 1, where rk is an intensity level, nk 
is the number of voxels that have intensity level rk, n is the 
total number of voxels and L is the total number of possible 
intensity levels in an image. Histogram is a discrete approxi-
mation for the probability density function of the occurrence 
of intensity levels.

3D Affine registration
In preparation for registration with the histological volumes, the 
prefrontal cortex was manually segmented using previously pub-
lished protocols (Selemon et al., 2005) in each 3D MRI volume and 
the coronal slices of the segmented 3D prefrontal cortex region-of-
interest (ROI) image were resampled using bilinear interpolation 
to a resolution of 0.15625 × 0.15625 mm2/pixel.

After the reconstruction of the 3D histological image, AIR was used 
to align it to the 3D MRI volume with an affine transformation. Since 
the intensities of tissues between images were different, normalized 
least-squared difference cost function was used in AIR. The 3D affine 
transformation corrects any orientation and other global shape differ-
ences between the 3D histology image and the MRI volume.

Histogram matching
In order to apply LDDMM, structures that will be registered must 
have similar intensity profiles because it is an intensity-based 
algorithm which minimizes the image differences. Therefore, we 
used a histogram-matching algorithm to make the GM, WM, 
and CSF intensity values of the 3D histology images similar to 
the values of the same regions in the MRI volume. During the 

FIguRe 2 | examples of histological sections (top row) and corresponding gM, WM, CSF segmentations (bottom row).
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hIstology to MrI regIstratIon usIng grayscale hIstologIcal 
sectIon IMages
In order to assess the impact of manual segmentation of GM/WM 
and GM/CSF boundaries on the serial alignment of sections, the 
entire registration process was repeated using the original pho-
tographic histological section images after they were converted 
to grayscale.

Similarly to the process described in Section “2D rigid registra-
tion of histological sections”, each grayscale section was registered 
to the previous section starting from the second. Then, each sec-
tion was registered to the next section starting from the one before 
last section. The intensity profiles of tissues and layers were very 
different across sections after the grayscale conversion. Thus, the 
minimization of the least-squared difference cost function was not 
suitable to calculate the rigid transformation parameters and to 
register the grayscale histological sections. Instead FMRIB’s linear 
image registration tool (FLIRT) (Jenkinson and Smith, 2001) which 
minimizes the negative of the normalized mutual information cost 
function (Maes, 1998; Studholme et al., 1999) was used to calculate 
the transformation parameters. FLIRT uses a global optimization 
method that includes a multi-resolution approach and Powell’s 
method (Press et al., 1995) for local optimization to minimize the 
cost function iteratively.

After the consecutive alignment of the grayscale histological 
images, the intensity differences between sections were also cor-
rected. First, the intensity range of every section image was scaled 
to [0,255]. Then, one of the middle sections was selected as the 
target section and the histogram of all the sections were matched to 
the histogram of the target section using the histogram-matching 
algorithm described in Section “Histogram matching”.

The intensity corrected section images were stacked to form a 
second set of 3D images for each subject. The other steps of our 
multistage registration method were repeated. Manually segmented 
tissue boundaries were transformed using the computed transfor-
mations. Finally, the tissue boundary surface distances between the 
MRI volume and the 3D histological images at each registration 
step were calculated.

results
The intermediate results at different registration steps are illustrated 
for one subject. The irregular, non-smooth, GM/CSF and WM/GM 
boundaries observed in the stacked histological image without any 
serial alignment (Figure 3, top row) were transformed into smooth, 
spatially consistent 3D GM/CSF and GM/WM boundaries, with 
2D rigid registration (Figure 3, bottom row).
After stacking, the 3D histological image was aligned to the 
MRI volume with the 3D affine transformation. In theory, aff-
ine registration following the 2D rigid alignment and stacking 
improves the correspondence between GM/CSF and WM/GM 
surfaces in the histology images and the MRI images by calculat-
ing the optimal global axes stretch that would compensate for 
differences in slice thicknesses across different histology slices. 
However, because the resolution of the stacked histology image 
are estimates from slice thicknesses, the distance between cor-
responding surfaces in the MRI volume and stacked histology 
image (i.e., quantification of such correspondence) cannot be 
exactly computed.

(2) Calculate the cumulative distribution functions (CDF) for the 
images I0 and I1 using

  

c r p r n n k Lk k
j

k

k
j

k

( ) ( ) / , , ,...,= = = −
= =
∑ ∑

0 0

0 1 1

(3) If c0 and c1 are the calculated CDFs for the images I0 and I1, 
calculate the mapping T  between the intensity level indices of 
these images using

  
T l k c r c r k l L

k
k l( ) arg min ( ( ) ( )) , , , ,...,= = −( ) = − abs 1 0 0 1 1

(4) Update the intensities in image I0 using the transformation T .

Non-linear registration with LDDMM
Registration between the 3D histological image and the 3D MRI 
volume is completed via LDDMM. For two images I0 and I1 in a 
collection of anatomies, there exists a diffeomorphism (one-to-
one, differentiable, invertible and smooth mapping) φt such that 
I I0 1

1
1ϕ−( ) = . The map is constructed as a flow of ordinary differ-

ential equations d dφ ν φt t tt t/ ( ), [ , ]= ∈ 0 1  where νt V t∈ ∈, [ , ]0 1  is 
smooth time-dependent vector field. The optimal transformation 
between the two images is obtained from the vector field satisfying 
the variational problem (Beg et al., 2005; Ceritoglu et al., 2009).

ˆ arg min
: / ( )

ν ν ϕ
ν φ ν φ

= + ( ) −





=

−∫
d d

d
t t tt

t V R
t I I

2

0

1

0
1

1

2

3

Large deformation diffeomorphic metric calculations were per-
formed using the Diffeomap software (Li et al., 2001).

MeasureMent of regIstratIon qualIty
To measure the registration accuracy we compared the distances 
between GM/CSF and WM/GM boundaries in the MRI volume 
with the same boundaries in the 3D histological images at each 
registration step. These boundaries were defined as 3D surfaces 
represented by triangulated meshes via isosurface generation 
(Gueziec and Hummel 1995). The distance D xS S1 2, ( ) between 
two surfaces S1 and S2 was calculated for each vertex x S∈ 1 as the 
Euclidian distance to the nearest vertex y  of the surface S2 from 

D x x y x SS S
y S1 2

2
2 1, ( ) min= −( )∀ ∈

∈
 (Ceritoglu et al., 2009).

The CDF of the distances between the histology image surfaces 
and the corresponding MRI surfaces was used to compute the 90th 
percentile distance. The mean and the SD of these distances were 
also computed.

applIcatIon to delIneatIon of area 46 and cortIcal layers
Prefrontal cortical area 46 borders with neighboring cortical areas 
and the boundaries between layers I/II and IV/V were segmented 
manually in the histological sections based on cytoarchitectonic cri-
teria (Walker, 1940). Previously calculated 2D rigid transformations 
were used to align the 2D area 46 layer images. They were stacked 
to reconstruct a 3D ROI. Finally, the 3D affine and the LDDMM 
transformations were applied to the area 46 ROIs to transform 
it onto the MRI space for morphometric analysis of area 46 and 
its layers.
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slicing process, a curved object cannot be absolutely recovered 
without external information. In our method, we aim to correct 
the banana problem with LDDMM transformation using the MR 
images as the external reference assuming that the object is smooth 
enough. The method that we developed seems to visually correct 
the curvature problem (Figure 5, middle row).

After the multistage registration was complete, the borders of 
area 46 and laminar boundaries were transferred from the histology 
to the MRI volumes (Figure 6, top and middle rows respectively). 
Area 46 layers for two subjects were also represented on a 3D surface 
in the MRI space (Figure 6, bottom row).

In order to evaluate whether labor-intensive manual segmentation 
of histology sections had an appreciable effect on the serial alignment 
of the histology sections to generate a 3D volume, we repeated the 
alignment using the intensity information in photographic images. 
As described in Section “Histology to MRI Registration using gray-
scale histological section images”, we converted the photographic 
images to grayscale and we did serial alignment of consecutive slices 
rigidly using an algorithm based on maximization of normalized 
mutual information. After intensity correction between sections and 
after repeating other steps of our method, distances between tissue 
surface boundaries were calculated.

When the grayscale histological images were used, mean GM/
CSF distance was 1.32 ± 2.20 mm after affine registration; the 
mean distance decreased to 0.55 ± 1.06 mm following LDDMM 
(Table 2). Mean WM/GM distance following affine registra-
tion (0.83 ± 1.16 mm) decreased to 0.45 ± 0.66 mm following 

After affine registration, the histogram of the histological image 
was matched to the histogram of MRI volume (Figure 4) before 
LDDMM registration. The smoothed and histogram matched his-
tology image and the MR volume was used in LDDMM computa-
tions to calculate a transformation. Then the transformation was 
used to transform the unsmoothed histology image.

Correspondence between GM/CSF and WM/GM surfaces in the 
affine-registered histology images (Figure 5, top row) and the MRI 
images was further improved by LDDMM registration (Figure 5, 
middle row), resulting in better registration with the correspond-
ing MRI surfaces (Figure 5, bottom row). The improvement was 
quantified via distances between corresponding surfaces in the MRI 
volume and histological sections. After affine registration, mean 
GM/CSF distance was 0.76 ± 0.41 mm; the mean distance decreased 
to 0.39 ± 0.13 mm following LDDMM. For LDDMM, 90% of the 
histology surface vertices were within 0.5 mm of the MRI surfaces 
(Table 2). Likewise, mean WM/GM distance following affine reg-
istration (0.54 ± 0.39 mm) decreased to 0.28 ± 0.16 mm following 
LDDMM (Table 2). For WM/GM surfaces, 90% of the histology 
WM/GM surface vertices were within 0.6 mm of the MRI surfaces 
after LDDMM (Table 3).

If the sagittal and coronal slices of the histological image after 
affine transformation (Figure 5, top row) and the same slices of 
MR image (Figure 5, bottom row) are compared, it can be seen 
that some of the curvature of white matter structures was lost after 
2D rigid registration and stacking of sections. This is the banana 
problem explained in Malandain et al. (2004) in detail. After the 

FIguRe 3 | Axial (left), sagittal (middle), and coronal (right) slices of reconstructed 3D histology image without (top) and with (bottom) 2D rigid 
registration.
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a progressively more accurate alignment of the WM/GM and 
GM/CSF boundaries in the histological and the MRI volumes 
with each step in the registration algorithm. Smooth 3D WM/
GM and GM/CSF surfaces were generated after the 3D histol-
ogy image reconstruction, and these surfaces were registered 
to the same surfaces in the MRI volume with an average error 
less than 0.4 mm. As illustrated in this report, our method 
can be used to transfer cortical and laminar boundaries from 
the histology sections to the MRI volumes and therefore may 
facilitate analysis of cytoarchitectonically parcellated and there-
fore more functionally homogeneous regions of interest in the 
MRI scans.

LDDMM (Table 3). For some of the subjects, GM/CSF mean 
distances were comparable with the results obtained when the 
segmented histological images were used in registration (Table 2, 
subject numbers in red). However, because of the torn and miss-
ing tissues in some of the histological sections, using intensity 
information directly in registration resulted in large errors for 
other subjects.

dIscussIon
We have described a novel, multistage, method for registration 
of post mortem histology sections, to in vivo MRI sub-volumes 
of the same brains. We demonstrated that our method yielded 

FIguRe 4 | Axial (left), sagittal (middle), and coronal (right) slices of histology image before (first row) and after histogram matching (second row), the 
corresponding MRI slices (third row). Histograms of the histology image before (fourth row left) and after (fourth row right) histogram matching together with the 
histogram of MRI volume.
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FIguRe 5 | Axial (left), sagittal (middle), and coronal (right) slices of 
histology image after affine transformation (top row) and after LDDMM 
(middle row). Last row shows corresponding MR image slices. In each image, 

the GM/CSF boundaries (cyan) and the WM/GM boundaries (red) defined in the 
MRI volume are overlaid to illustrate the improvement of registration accuracy 
with LDDMM.

Table 2 | gM/CSF surface distance errors (mm).

 Segmented histological sections used grayscale histological sections used

 Affine LDDMM Affine LDDMM Affine LDDMM Affine LDDMM

Sub. no Mean ± SD Mean ± SD 90th percentile 90th percentile Mean ± SD Mean ± SD 90th percentile 90th percentile

1 0.66 ± 0.93 0.38 ± 0.66 1.56 0.82 0.72 ± 1.01 0.40 ± 0.78 1.66 0.62

2 0.63 ± 1.34 0.51 ± 1.34 1.07 0.37 0.85 ± 1.46 0.51 ± 1.20 1.78 0.56

3 0.84 ± 1.45 0.43 ± 0.95 1.95 0.60 1.06 ± 1.81 0.42 ± 1.06 2.64 0.43

4 0.63 ± 1.30 0.40 ± 1.16 1.03 0.25 0.59 ± 1.07 0.43 ± 1.14 0.94 0.34

5 0.40 ± 0.49 0.18 ± 0.22 0.94 0.31 1.02 ± 1.37 0.35 ± 0.43 2.76 0.82

6 0.38 ± 0.56 0.23 ± 0.32 0.85 0.30 1.09 ± 0.60 0.73 ± 0.99 2.66 2.06

7 0.59 ± 0.90 0.33 ± 0.73 1.29 0.24 0.95 ± 1.91 0.33 ± 0.61 1.59 0.35

8 1.05 ± 1.68 0.54 ± 1.42 2.26 0.43 3.38 ± 4.99 0.87 ± 1.62 10.13 1.83

9 1.70 ± 2.94 0.52 ± 0.94 4.21 0.95 2.26 ± 4.58 0.88 ± 1.72 4.95 1.92

mean 0.76 ± 0.41 0.39 ± 0.13 1.68 0.48 1.32 ± 2.20 0.55 ± 1.06 3.24 0.99

Subject numbers in red have comparable mean distance errors in both cases (segmented or grayscale histological sections were used in registration).
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The method we have developed is unique in several important 
ways. Perhaps the most important innovation in our method is the 
incorporation of LDDMM (Beg et al., 2005; Ceritoglu et al., 2009). 
LDDMM ensures that disjoint shapes remain disjoint and there is 
no fusion of points because of the one-to-one property of diffeo-
morphisms. Connected shapes remain connected because of the 
continuity property and the smoothness of the object boundaries 
are preserved because of the smoothness property of the diffeo-
morphisms. This ensures that sub-structures within transformed 
structures are preserved during the mapping (Boothby, 2002) such 
as the cortical layers delineated in the histological volumes. Recently, 
Klein et al. (2009) reviewed 14 different registration methods and 
showed increased fidelity is associated with increased dimensions. In 
particular, diffeomorphic mappings were among those that yielded 
increased fidelity. Although LDDMM was not included in that study, 
its infinite dimensional formulation ensures high registration fidel-
ity and therefore should compare favorably with other methods.

If the two images that are registered with LDDMM have same 
modality or if they have similar structures and similar intensity pro-
files on these structures, the highly elastic LDDMM transformation 
improves registration accuracy (Miller et al., 2005; Ceritoglu et al., 
2009). In histology to MRI registration, although the photographic 
images of the histological sections and the MRI have similar tissues 
(GM and WM regions), some subjects have substantial number 
of sections featuring large tears or missing areas and they have 
sections with different intensity profiles. Therefore, it is difficult 
to apply LDDMM directly on the original histological images. In 
our method, we used manually segmented histological sections to 
reconstruct a 3D histological volume that has tissue regions with 
smooth boundaries and intensity profiles similar to the MRI data 
which allows LDDMM to perform better.

We used a simple rigid registration procedure for between-
section registration of manually segmented histology images. In 
comparison, existing methods align serial 2D biological images 
(histological sections or autoradiographs) to reconstruct a 3D vol-
ume using principal axes (Hibbard and Hawkins, 1988; Schormann 
et al., 1995; Schormann and Zilles, 1998), affine transformations 
(Andreasen et al., 1992; Ourselin et al., 2001; Malandain et al., 

Table 3 | WM/gM surface distance errors (mm).

 Segmented histological sections used grayscale histological sections used

 Affine LDDMM Affine LDDMM Affine LDDMM Affine LDDMM

Sub. No Mean ± SD Mean ± SD 90th percentile 90th percentile Mean ± SD Mean ± SD 90th percentile 90th percentile

1 0.33 ± 0.45 0.22 ± 0.31 0.82 0.48 0.52 ± 0.73 0.34 ± 0.54 1.06 0.69

2 0.31 ± 0.42 0.18 ± 0.24 0.77 0.35 0.51 ± 0.63 0.28 ± 0.33 1.37 0.72

3 0.37 ± 0.47 0.20 ± 0.25 0.87 0.52 0.53 ± 0.62 0.27 ± 0.35 1.44 0.64

4 0.29 ± 0.40 0.15 ± 0.18 0.77 0.33 0.32 ± 0.45 0.20 ± 0.25 0.70 0.39

5 0.39 ± 0.50 0.21 ± 0.31 0.89 0.37 0.59 ± 0.73 0.30 ± 0.37 1.68 0.81

6 0.27 ± 0.35 0.14 ± 0.18 0.76 0.28 0.47 ± 0.70 0.42 ± 0.70 1.55 1.37

7 0.74 ± 1.02 0.45 ± 0.81 1.93 0.83 0.82 ± 1.11 0.64 ± 1.05 2.24 1.65

8 0.72 ± 1.01 0.30 ± 0.43 1.83 0.67 2.09 ± 3.17 0.91 ± 1.30 5.77 2.42

9 1.47 ± 1.88 0.62 ± 0.79 4.22 1.39 1.66 ± 2.28 0.70 ± 1.05 4.32 1.67

Mean 0.54 ± 0.39 0.28 ± 0.16 1.43 0.58 0.83 ± 1.16 0.45 ± 0.66 2.24 1.15

FIguRe 6 | Area 46 layers (red: layer I, green: layers II–III–IV, blue: layers 
V–VI) on histological sections (top row) and the same layers on the MRI 
slices (middle row) after registration. Example 3D surfaces for area 46 
layers in the MRI space (bottom row).
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