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The anatomical connectivity of the primate 
auditory system suggests that sound percep-
tion involves several hierarchical stages of 
analysis (Kaas et al., 1999), raising the ques-
tion of how the processes required for human 
speech comprehension might map onto such 
a system. One intriguing possibility is that 
earlier areas of auditory cortex respond to 
acoustic differences in speech stimuli, but 
that later areas are insensitive to such fea-
tures. Providing a consistent neural response 
to speech content despite variation in the 
acoustic signal is a critical feature of “higher 
level” speech processing regions because it 
indicates they respond to categorical speech 
information, such as phonemes and words, 
rather than idiosyncratic acoustic tokens. 
In a recent fMRI study, Okada et al. (2010) 
used multi-voxel pattern analysis (MVPA) 
to investigate neural responses to spoken 
sentences in canonical auditory cortex (i.e., 
superior temporal cortex), using a design 
modeled after Scott et al. (2000). Okada et al. 
(2010) used a factorial design that crossed 
speech clarity (clear speech vs. intelligible 
noise vocoded speech) with frequency order 
(normal vs. spectrally rotated). Noise vocod-
ing reduces the amount of spectral detail in 
the speech signal but faithfully preserves tem-
poral information. Depending on the reduc-
tion in spectral resolution (i.e., the number 
of bands used in vocoding), noise vocoded 
speech can be highly intelligible, especially 
following training. By contrast, spectral rota-
tion of the speech signal renders it almost 
entirely  unintelligible without any change 

in overall level of spectral detail. Thus, the 
clear and vocoded sentences used by Okada 
et al. (2010) provided two physically dis-
similar presentations of intelligible speech 
that the authors could use to identify acous-
tically insensitive neural responses; spectrally 
rotated stimuli allowed the authors to look for 
response changes due to intelligibility, inde-
pendent of reductions in spectral detail.

In a standard whole-brain univariate 
analysis, Okada et al. (2010) found intel-
ligibility-related responses (i.e., intelligible 
activity > unintelligible activity) in large 
portions of the superior temporal lobes 
bilaterally, as well as smaller activations in 
left inferior frontal gyrus, posterior fusiform 
gyrus, and premotor cortex. The authors then 
chose maxima for each participant within 
anatomically defined regions (bilateral pos-
terior, middle, and anterior superior tempo-
ral sulcus [STS], as well as Heschl’s gyrus) 
and performed MVPA analyses to assess 
the ability of these regions to discriminate 
among the four acoustic conditions. They 
found that Heschl’s gyrus could reliably 
distinguish all conditions, despite showing 
a similar average hemodynamic response 
in the traditional mass univariate analysis. 
Regions of the STS showed varying degrees 
of sensitivity to acoustic information. In the 
left hemisphere, posterior STS was the most 
acoustically insensitive, followed by anterior 
STS and Heschl’s gyrus (no reliable middle 
STS activation was identified). In the right 
hemisphere the greatest acoustic insensitivity 
was observed in middle STS, close to Heschl’s 
gyrus, followed by anterior and posterior STS 
respectively. The authors interpret these find-
ings as generally consistent with a hierarchi-
cal structure for speech processing in the 
temporal lobe, with regions of STS in both 
hemispheres playing a critical role in abstract 
phonological processes as indicated by their 
high acoustic insensitivity.

With these results, Okada et al. (2010) 
partially replicate previous univariate fMRI 
results reported by Davis and Johnsrude 
(2003). Davis and Johnsrude measured 

 neural activity in response to multiple speech 
conditions that were equally intelligible but 
differed  acoustically. To achieve this, three 
different forms of speech degradation were 
employed: noise vocoded speech, speech 
segmented by noise bursts, and speech in 
continuous background noise. Within each 
type of speech degradation there were three 
matched levels of intelligibility (confirmed 
by pre-tests and behavioral ratings collected 
in the scanner). The authors first identified 
regions sensitive to speech intelligibility by 
correlating neural activity with behavioral 
performance, and then examined the degree 
to which each of these regions was also sensi-
tive to the acoustic form of the stimuli. Activity 
in regions close to primary auditory cortex 
depended on the type of degradation, but 
other  intelligibility-responsive regions were 
insensitive to this acoustic information. These 
acoustically insensitive areas included regions 
located anterior to peri-auditory areas bilater-
ally, posterior to left peri-auditory cortex, and 
left inferior frontal gyrus. This arrangement 
is broadly consistent with the anatomical 
organization of primate auditory cortex (Kaas 
et al., 1999) and suggests high levels of acous-
tic insensitivity in both anterior and posterior 
regions of left superior temporal cortex – con-
sistent with the univariate analysis reported by 
Okada et al. (2010), but in contrast to their 
multivariate results. These conflicting findings 
regarding acoustic sensitivity in anterior tem-
poral regions could be a result of either (a) the 
experimental design and specific stimuli used 
or (b) differing sensitivity of multivariate and 
univariate analysis methods, a question that 
requires further investigation.

Moving beyond the temporal lobe, the 
results of Davis and Johnsrude (2003) high-
light the role of left inferior frontal cortex in 
speech comprehension. Activity in left infe-
rior frontal cortex is common, although not 
universal, in neuroimaging studies of con-
nected speech (e.g., Humphries et al., 2001; 
Davis and Johnsrude, 2003; Crinion and 
Price, 2005; Rodd et al., 2005, 2010; Obleser 
et al., 2007; Peelle et al., 2010). Regions of 



Peelle et al. Hierarchical processing for speech

Frontiers in Human Neuroscience www.frontiersin.org June 2010 | Volume 4 | Article 51 | 2

and downstream effects of listening effort 
(McCoy et al., 2005; Wingfield et al., 2006). 
To date effects of  scanner noise have been asso-
ciated with changes in neural activity using 
univariate approaches (Seifritz et al., 2006; 
Gaab et al., 2007; Peelle et al., 2010); the effect 
on multivariate results is unknown. Generally, 
however, the results of auditory fMRI studies 
employing a standard continuous scanning 
sequence must be viewed with caution given 
the additional perceptual processes required.

Despite the caveats discussed above, 
how might the results of Okada et al. 
(2010) inform our understanding of speech 
processing? The authors suggest that their 
findings are consistent with a hierarchy for 
intelligible speech processing that starts 
with Heschl’s gyrus, followed by anterior 
and posterior-going streams that progres-
sively increase in acoustic invariance. In 
particular, their finding of acoustic sensi-
tivity in anterior temporal regions stands 
in direct opposition to the original Scott 
et al. (2000) study and several follow-ups 
(Narain et al., 2003; Scott et al., 2006), as 
well as Davis and Johnsrude (2003), which 
argue that anterior temporal responses are 
largely acoustically invariant. Because of 
their focus on canonical regions of auditory 
cortex, Okada et al. (2010) do not discuss 

 differences between stimuli. One way to con-
trol for these effects would be to match (below-
ceiling) intelligibility across different types of 
acoustic degradation. Using this approach, 
Davis and Johnsrude (2003) observed that both 
inferior frontal and peri-auditory regions of 
the STS showed elevated signal for intelligible 
but degraded speech compared to both clear 
speech and noise. Like  intelligibility-sensitive 
regions, the areas responding to listening effort 
demonstrated a hierarchical organization (i.e., 
differential degrees of acoustic sensitivity), and 
hence it might be that these two effects are con-
founded in temporal lobe responses observed 
by Okada.

On a related topic, we also note that Okada 
et al. (2010) used continuous fMRI, mean-
ing that the auditory stimuli were presented 
in the midst of considerable background 
noise. Although one might assume that any 
such confounds would apply equally to all 
conditions tested, in fact, vocoded and clear 
sentences are not equally intelligible in the 
presence of background noise, even if word 
report scores are equivalent (at ceiling) 
when tested in quiet (Faulkner et al., 2001). 
Furthermore, even if participants are able to 
hear the sentences, scanner noise introduces 
significant additional task components related 
to segregating the auditory stream of  interest 

prefrontal cortex have extensive anatomical 
connections to auditory belt and parabelt 
regions (Hackett et al., 1999; Romanski et al., 
1999) and are thus well positioned to mod-
ulate the operation of lower-level auditory 
areas. Davis and Johnsrude (2003) provided 
evidence linking this fronto-temporal modu-
lation with the recovery of meaning from an 
impoverished acoustic signal by showing that 
inferior frontal responses were elevated for 
distorted-yet-intelligible speech compared to 
both clear speech and unintelligible noise. 
This result suggests that activation of inferior 
frontal regions is a neural correlate of the 
more effortful listening that is required for 
the comprehension of degraded speech.

Indeed, the relationship between intel-
ligibility and listening effort also deserves 
consideration in interpreting temporal lobe 
responses to degraded speech. Okada et al. 
(2010) treated clear and vocoded speech 
as having similar intelligibility. This may be 
true in the sense that word report is equiva-
lent (at ceiling); however, clear and vocoded 
conditions differ substantially in whether this 
intelligibility is achieved effortlessly (as for 
clear speech), or with considerable effort (for 
vocoded speech). In the Okada et al. (2010) 
study this difference in listening effort cannot 
be distinguished from sensitivity to acoustic 
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Figure 1 | Hierarchical models of processing intelligible speech. (A) 
Hierarchical processing in the temporal lobe, showing a posterior-anterior 
gradient in acoustic insensitivity moving away from primary auditory cortex. 

Posterior and anterior regions of STS discussed by Okada et al. (2010) are 
outlined in white. (B) An expanded model of hierarchical processing for speech 
that includes prefrontal, premotor/motor, and posterior inferotemporal regions.
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regions outside the superior temporal lobe 
as part of this hierarchy (Figure 1A).

Expanding on this description, we argue 
that a hierarchical model of speech com-
prehension necessarily includes regions 
of motor, premotor, and prefrontal cortex 
(Figure 1B) as part of multiple parallel 
processing pathways that radiate outward 
from primary auditory areas (Davis and 
Johnsrude, 2007). Electrophysiological 
studies in non-human primates demon-
strate auditory responses in frontal cortex, 
suggesting not only strong frontal involve-
ment, but that these regions may indeed be 
viewed as part of the auditory system (Kaas 
et al., 1999; Romanski and Goldman-Rakic, 
2002). In addition to prefrontal cortex, left 
posterior inferotemporal cortex is also criti-
cally involved in the speech intelligibility 
network, especially in accessing or inte-
grating semantic representations (Crinion 
et al., 2003; Rodd et al., 2005). Although 
anatomical studies in primates have long 
emphasized the extensive and highly paral-
lel anatomical coupling between auditory 
and frontal cortices (Seltzer and Pandya, 
1989; Hackett et al., 1999; Romanski et al., 
1999; Petrides and Pandya, 2009), frontal 
regions have only recently become a promi-
nent feature of models of speech processing 
(Hickok and Poeppel, 2007; Rauschecker 
and Scott, 2009). Unfortunately, discus-
sions of auditory sentence processing often 
focus almost exclusively on the importance 
of superior temporal responses, even when 
frontal or inferotemporal activity is present 
(Humphries et al., 2001; Obleser et al., 2008; 
Okada et al., 2010), resulting in an incom-
plete picture of the neural mechanisms 
involved in speech comprehension.

In summary, there is now consensus that 
hierarchical processing is a key organiza-
tional aspect of the human cortical auditory 
system. The results of Okada et al. (2010) 
uniquely bring into question the degree to 
which anterior temporal cortex is acousti-
cally insensitive, suggesting a more posterior 
locus for abstract phonological processing. 
Challenges for future studies include plac-
ing hierarchical organization in the tempo-
ral lobe within the broader context of larger 
networks for auditory and language process-
ing, and clarifying the functional contribu-
tion of different parallel auditory processing 
pathways to comprehension of spoken lan-
guage under varying degrees of effort.
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