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in its purest form the cuing context is presented simultaneously 
with the target; there is no antecedent bias to a particular location 
or target feature like the cues used in a Posner task.

One of the first demonstrations of probabilistic cuing in the 
Posnerian sense, was by Geng and Behrmann (2002). In this study, 
participants identified a letter target (L or F) hidden in an array of 
distractor letters (T and E). Items appeared on a grid of six columns 
and three rows. Participants were first tested in a baseline condi-
tion where each column was equally likely to contain the target 
and then in an “uneven” condition where the three columns on 
one side of the computer screen contained the target 80% of the 
time. Geng and Behrmann (2002) found that participants improved 
from the first to the second session, but that there was an additional 
improvement for targets occurring in the high-probability columns 
when compared with the columns on the low-probability side of 
the screen. To evaluate if some component of the benefit could be 
attributed to attentional mechanisms, Geng and Behrmann (2002) 
tested seven participants with hemi-spatial neglect and found that 
these participants too showed an improvement in their reaction 
time to targets in the high-probability columns.

Subsequently, the basic result has been confirmed, but the mech-
anism has been challenged. Walthew and Gilchrist (2006) con-
firmed an RT and accuracy benefit for visual targets appearing on a 
high-probability or “rich” side. However, the authors conclude that, 
“When short-term target location repetitions were restricted, there 

IntroductIon
Experimental demonstrations of attention often report changes 
in performance as correlates of changes in information. For 
example, in the paradigmatic Posner cuing task (Posner, 1980), 
participants report whether a visual target appears on their left 
or right. Shortly before the target’s appearance, a cue is displayed. 
The cue may be symbolic, such as an arrow pointing to one side 
(endogenous) or physical, such as a flash of light (exogenous). 
Participant responses are faster when the cue indicates the side of 
the target. One reason for the fecundity of the Posner paradigm 
is that it captures, simply, the essence of many complicated real 
world contingencies. Driving down the highway one is constantly 
cued by arrows pointing toward on-ramps and off-ramps, and 
flashing lights indicate merging vehicles. But many searches occur 
without the explicit guidance of external cues. The morning’s 
search for your house keys is not guided by indicative arrows or 
flashing lights, but by the knowledge of where you expect them, 
and where you expect to find them is related to where it was likely 
that you left them.

This “probabilistic” cuing seems in keeping with other demon-
strations of statistical influences on behavior. In statistical learning, 
the probabilistic contingency between stimuli and rewards influ-
ences choice behavior; however it is not clear that it affects percep-
tion and detection. In contextual cuing (Chun and Jiang, 1998), the 
familiar structure of a search array makes search more efficient, but 
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While the effects of spatial probability and repetition priming 
in visual discrimination and visual search tasks are intrinsically 
interesting, and may have some practical import for occupations 
in which visual search is prominent, we feel there is a more 
important motivation for this type of research. As a great deal of 
recent work reveals, the statistical structure of the environment 
has an important effect on perceptual and motor performance 
(Ernst and Banks, 2002; Guo et al., 2004; Kersten et al., 2004; 
Knill and Pouget, 2004; Tassinari et al., 2006; Schwartz et al., 
2007). As a consequence, it has become increasingly popular 
to evaluate if people are Bayesian observers. Do people, when 
they perform under conditions of noise and changes in stimulus 
probability, achieve results that would be ideal for a true Bayesian 
observer? Our data are relevant to this question because they 
demonstrate that people can learn to use on-line, and without 
awareness a prior probability distribution and that these ben-
efits cannot be accounted for by recourse to short-term priming 
effects. While not demonstrative that we are “Bayesian attend-
ers,” our data, and data like them, make it more probable that 
Bayesian accounts, which are so prevalent in motor control and 
perception, may also have a place in providing accounts for 
attentional effects.

MaterIals and Methods
Both of the experiments in this report used variants of the same 
simple visual classification task. Participants viewed a centered fixa-
tion cross and then a small circle appeared in one of two colors. 
Participants pressed one of two buttons to indicate the color. Trial 
pacing was rapid. Spatial locations for targets were drawn from 
non-uniform, spatially continuous probability distributions, and 
this was the principal experimental manipulation; participants were 
naive to the spatial distribution of locations. Response measures 
were RT and accuracy.

experIMent 1
Twelve university students (seven female) participated in the 
experiment for course credit. This research was approved by the 
University of Waterloo Office of Research Ethics and informed 
consent was obtained from all participants.

Participants sat at a viewing distance of approximately 65 cm 
from a flat CRT monitor (36.5 cm × 27.5 cm viewable area, 
approximately 31° × 24° of visual angle computed at screen center) 
running at 85 Hz and at 640 × 480 resolution. Participants com-
pleted a practice block of 100 trials and then four blocks of 400 
trials each.

Each trial began with a 1° × 1° white fixation cross appearing 
at the center of the screen for 600 ms. Participant instructions had 
requested participants to look at the fixation spot for each trial.

Immediately following this interval, the fixation spot was 
removed and a target appeared. Targets were filled red or green 
circles. Participants had been instructed to report the color of 
the target by pressing a button. They were to do this as quickly 
and accurately as possible. The two buttons used were the left and 
right arrow keys of a computer keyboard. The target remained 
visible until the participant’s response, after which the next trial 
immediately began. The result was a rapidly paced and demanding 
experimental session.

was no statistical learning effect.” We do not share this conclusion, 
but will defer further comment until the Section “Discussion.” The 
thesis of Walthew and Gilchrist (2006) is that benefits in discrimi-
nating and detecting visual targets such as that reported by Geng 
and Behrmann (2002, 2005), but also Miller (1988) and Hoffmann 
and Kunde (1999), reflect trial to trial priming rather than the 
learning of a spatial probability distribution (see also Rabbitt et al., 
1977, 1979; Shore and Klein, 2000).

Repetition priming refers to a sensitization of a participant to 
respond to a particular stimulus as a result of some similar stimulus 
having recently been presented; the literature on visual search and 
repetition priming have recently been reviewed (Kristjánsson and 
Campana, 2010). A classic example of repetition priming for visual 
stimuli is the work of Maljkovic and Nakayama (1994, 1996). In 
one experiment, participants reported which side of a diamond 
shape had a wedge removed. There were two distractor shapes 
and the target diamond could occur in either of two positions. 
When Maljkovic and Nakayama (1996) looked at the facilitation 
for response time when the target diamond appeared in the same 
position as it had on a prior trial, they found a facilitation from the 
seven previous trials. As Walthew and Gilchrist (2006) emphasize, 
frequent spatial repeats are a by-product of having one out of a few 
positions be a high-probability position and having trial by trial 
independence. This fact of probability combined with the potent 
potentiation of responses by repetition priming make pertinent 
the suggestion that the appearance of long time frame probability 
effects merely reflects the consequence of local time repetitions.

One common thread in the prior work is that the visual search 
tasks used, in general, few spatial positions. Geng and Behrmann 
(2002) were relatively expansive when they used 18 locations. 
Walthew and Gilchrist (2006) used eight. Some of the experiments 
by Miller (1988) used four while some of Maljkovic and Nakayama 
(1996) used only two. This limitation on spatial locations for targets 
means that only very coarse spatial probability distributions can 
be studied and it makes it difficult to analyze how the effects of 
repeats are modulated by their spatial separation from earlier tri-
als. When such data are analyzed in terms of position, or when the 
data are aggregated into “column” or “side,” the analysis of spatial 
probability effects becomes quite coarse.

We explore these issues in two experiments where we manipulate 
spatial probability with finer resolution. For both the experiments 
that we report, the task of the participants was to perform a color 
classification. In one experiment, we imposed a spatially continu-
ous probability distribution for targets across the computer screen. 
This made true spatial repeats almost non-existent while allowing 
us to have both an inhomogeneous spatial probability distribution 
and sequential independence of trials. In the second experiment, 
we imposed a concentric annular organization for target locations 
with, again, a spatially continuous probability distribution on each 
of the three annuli. One annulus was four times more probable. Our 
results show, as has been shown before, that participants do perform 
better when targets appear in positions of high spatial probability 
and that spatial probability modulates but does not trump other 
performance effects (e.g., targets appearing parafoveally are still 
responded to more quickly than extrafoveal targets). As our task 
can measure repetition priming effects, we also show that repetition 
priming does not solely account for our data.
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The key difference between Experiments 1 and 2 was the probabil-
ity distribution used for target locations. In Experiment 2 the loca-
tions of targets were fixed to one of three distances from the center of 
the screen (3°, 6°, or 9° of visual angle). For each participant targets 
fell at one of these distances from the center of the screen and the 
radial direction from the center of the screen was chosen uniformly 
from 0 to 2π. The result was that target locations were distributed into 
three concentric circles (see Figure 2). Each participant was assigned 
to one of three probability conditions that specified which of the three 
radial distances was most likely to be chosen for the target location. 
There were 12 participants in the inner-heavy, 19 in the middle-heavy, 
and 12 in the outer-heavy conditions. The designation “heavy” means 
that that radial distance was chosen 80% of the time while the other 
two distances were equally probable at 10%.

statIstIcs
For our analyses we used linear mixed models implemented in the 
R system for statistical computing (version 2.10.1; R Development 
Core Team, 2009), via the lmer function in the lme4 package (ver-
sion 0.999375-32; see Bates, 2005; Baayen, 2008).

Linear mixed modeling is a statistical technique that uses both 
fixed and random effects. It is gaining prominence in the analysis 
of psychological data because it allows for increased power over 
conventional methods based on cell means such as ANOVAs. In an 
ANOVA, reliably different parts of a participant’s data can contribute 
little when pooled with variable participants. In linear mixed models 
participants can be considered as a random effect, thus accounting 
for the between-participant differences but still utilizing all data 
points. The result is a better use of available data and increased 
power; this is particularly relevant for assessing small RT differences 
in a task where participants have very different mean RTs.

Although these linear mixed models can yield conventional t 
statistics, the appropriate corresponding degrees of freedom are 
yet uncertain. Current best practice is to compute the statistical 
significance of fixed effects by estimating the parameters from the 
model with Markov Chain Monte Carlo resampling methods. These 
are implemented in the function pvals.fnc in the languageR 

Participants were not given feedback. Stimuli were equally likely 
to be red or green, and the screen background was black throughout 
the experiment. An eye tracker was not used.

The principal experimental manipulation was where the targets 
could appear. The spatial distribution of stimuli was composed of an 
off-center high-probability area overlaid on a spatially uniform prob-
ability distribution (see Figure 1A). We refer to this distribution as the 
“hotspot” distribution as there was a single point of highest probability 
with a steep, but gradual, fall off, to a uniform background level1. All 
points on the screen had some probability of being selected as the 
target location for any given trial and targets were spread across the 
extent of the screen for all participants, however, there was a hotspot 
and the closer a location was to this hotspot the more likely it was to be 
chosen as a target location (see Figure 1B). The hotspot was centered 
in the vertical dimension of the computer screen and offset to either 
the right or the left horizontally. The side of the hotspot and response 
key mapping were counterbalanced across participants.

experIMent 2
Forty-three university students (28 female) participated in the 
experiment for course credit. This research was approved by the 
University of Waterloo Office of Research Ethics and informed 
consent was obtained from all participants.

The experimental set-up and presentation was the same as in 
Experiment 1 except for the following variations. The two colors 
used for the two dots were blue and yellow. Participants completed 
a practice block of 50 trials and then six blocks of 200 trials. To 
make the timing of target onset less predictable, we presented the 
1° × 1° white fixation cross for 400 ms followed by a blank interval 
of 100–300 ms; the duration of this blank interval was chosen from 
a uniform distribution.

Figure 1 | (A) Left: The probability distribution for the left sided hotspot 
distribution is shown. The screen dimensions were 31° × 24° of visual angle and 
the center of the hotspot distribution was offset 5.6° to the left. The distribution 
had a linear decrease over a radius of 7.3° at which point it blended in to 

a background uniform probability. (B) Right: The actual experimental distribution 
collapsed across all 12 participants. Each point indicates the location of one trial for 
one participant. Note that for half of the participants the hotspot was actually on 
the right side, but we have reflected the data here to aid visualization.

1The specific distribution was cone-shaped. There was a circular radius of 150 pixels 
which was displaced to the left or right by 115 pixels from the center of the scre-

en. Probability density linearly decreased from the center of this distribution to its 
edge. The stimulus location angle around this center was uniformly chosen and the 
distance to it was generated as 150 × (1 - sqrt(1 - sqrt(z))), for z uniformly chosen 
from [0.0, 1.0].
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in their RTs [one-way ANOVA F(11, 18714) = 379.02, p < 0.001], 
we used a linear mixed effects (LME) model with participants as 
a random effect (Baayen, 2008) and whether the target fell on the 
high-probability side as a categorical fixed effect. Limiting the 
comparison to correct trials only (pruned to eliminate anticipa-
tions and lapses by requiring RTs >150 ms and <1000 ms) showed 
that being on the high-probability side reduced the RTs by 16 ms 
[p = 0.001, 95% confidence interval (CI) 12–19 ms]. The high-
probability benefit was not driven by a minority of participants, and 
Figure 3 shows that while RT and accuracy effects were variable in 
magnitude, they were consistent in direction for most participants. 
All participants but two showed a decrease in RT for the targets 
on the high-probability side and in general they also increased in 
accuracy. Thus, targets on the high-probability side were responded 
to more quickly and with no decrease in accuracy. Figure 4 shows 
that most participants individually showed linear RT increases with 
increasing distance to the high-probability hotspot. Is the ben-
efit of high-probability location due simply to positional priming 
effects? Before considering this directly we first demonstrate that 
our methods and data are sufficiently sensitive to demonstrate 
priming effects.

Since participants responded to targets that were equally likely to 
be red or green with consistent button presses, about one half of all 
trials involved a repeat of color and button press. We refer to this as 
stimulus–response priming. Figure 5 shows the stimulus–response 
priming effect for both RT and accuracy when the priming trial was 
“n” back, similar to the manner of presentation in Maljkovic and 
Nakayama (1996). Decreases in RT are evident for the preceding 
four trials and there is a suggestion of an improvement in accuracy 

package (version 0.955; see Baayen, 2008) and were used for the 
significance tests we report. Improvement in model fit was tested 
with likelihood ratio tests using the R function anova on lmer 
models fit to optimize the log-likelihood.

results
experIMent 1
The primary finding of Experiment 1 is that participants were faster 
to respond to targets when they appeared in a high-probability 
location. This benefit of proximity to the high-probability hotspot 
was beyond that which could be explained by priming effects or 
eccentricity effects (Carrasco et al., 1995), and participants were 
generally unaware of the probability manipulation.

We conclude that participants were generally unaware of the 
probability manipulation from their responses to a post-session 
questionnaire. After completing the task, participants were asked, 
in writing, “Did anything about the experimental task stand out 
to you?” Only 1 of the 12 participants stated that there were more 
targets on one side of the screen. However, it should also be noted 
that several other participants reported spurious correlations, e.g., 
more targets of a particular color on one side and more of the other 
color on the other side, or that particular color sequences were 
common. The next question asked whether there was any pattern 
in the location of the targets. Two participants (one the same as 
before) reported more targets on one side of the screen, with one 
participant reporting more on the lower half of the screen, and 
another reporting a star pattern. When directly asked to respond 
which side of the screen had more targets, 10 of the 12 participants 
gave the correct response.

Prior to directly addressing the effects of target location and the 
high-probability hotspot we first report an analysis similar to that 
of Geng and Behrmann (2002) and Walthew and Gilchrist (2006) 
where we examine the effects of targets appearing on the high-prob-
ability half of the screen. Since participants were  heterogeneous 

Figure 2 | Stimuli in experiment 2 were located in concentric circles at 
3°, 6°, and 9° of visual angle from fixation, with one circle containing 80% 
of stimuli and the other two containing 10% each. Plotted here is the full 
set of stimulus locations for one participant in the middle-heavy condition. Five 
centimeters near fixation subtended just over 4° of visual angle.

Figure 3 | There is a benefit in rT and accuracy for individual 
participants when targets from the high-probability, hotspot, side are 
compared to targets from the low-probability side. Participants are 
ordered by the magnitude of the RT benefit. Trials with RT <150 ms or 
>1000 ms are excluded, and RT is computed for correct trials only.
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effect on RT for stimulus–response priming was present for the four 
prior trials. We therefore first compared priming measures based 
on the immediately preceding trial and the minimum distance to 
any of the four preceding trials, or “priming distance.” We found 
that the latter had a stronger statistical relationship to RT than the 
distance to the immediately preceding trial. Models that included 
the priming distance did not improve their fit when adding in the 
distance to the immediately preceding trial, so we only used the 
priming distance as a covariate. In addition, since objects at fixation 
are seen better, and since response times in attentional tasks vary 
with visual eccentricity (Carrasco et al., 1995), we also included 
the distance to the center of the screen as a covariate. The critical 
test was to evaluate whether there was a significant improvement 
in fit when the distance to the high-probability hotspot was added 
to the model.

as well, perhaps with an even longer time frame. Our LME model 
examined as the only factor whether the prior trial was of the same 
color and included the participants as a random effect. A repeat in 
the stimulus–response was associated with an average decrease in 
RT of 28 ms (p = 0.0001, 95% CI 25–32 ms).

Having demonstrated that we can detect a priming effect for 
target color and button press response, we proceeded to test if spa-
tial repetition priming could explain the decrease in RT for targets 
located on the high-probability side. As can be seen from Figure 1A, 
the probability of a target repeating at exactly the same location 
was very small. However, targets were frequently close by. Rather 
than picking an arbitrary distance to define priming, we used the 
actual distance between target locations in our models. This permits 
us to examine a graded effect of spatial priming without enforcing 
an either-or categorization. Inspection of Figure 5 shows that the 

Figure 4 | Scatterplots of rT versus distance to high-probability hotspot 
for each participant in experiment 1. The trend lines superimposed on each 
participant’s data are for visualization purposes and are created from locally 

weighted scatterplot smoothing using the xylowess function in the R Statistical 
Language. Linear regression on the individual plots showed ten out of the 12 
regression slopes were significantly positive, at p < 0.05.
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a strategy of shifting the eyes away from the center of the screen. 
The use of circular distributions also meant that while sequential 
trials were more likely to occur on the high-probability ring they 
were less likely to be physically near each other.

Similar to Experiment 1 there seemed to be little awareness of, or 
little emphasis placed by participants on the uneven spatial distribu-
tion of target locations. On the post-session questionnaire, only one 
participant volunteered information about a non-random spatial dis-
tribution of target locations, noting that target locations favored the 
center of the screen and not the corners. Again, there were also several 
comments reporting non-existent associations such as patterns in the 
sequence of colors or an association between color and side.

Our primary interest was in comparing the pattern of results 
for the three rings as a consequence of the probability manipula-
tion. We expected target locations near the center of the screen to 
be responded to faster, but we wished to determine if there was 
an additional benefit of being on the high-probability ring. As in 
Experiment 1, our statistical analysis used LME modeling.

To test this hypothesis, we first constructed an LME model with 
participants as a random effect and fixed factors of circle (which is 
equivalent to distance from the center of the screen) and the “prim-

We compared the fits of two LME models for the data. Both 
models included the priming distance, the distance of the target 
location to the center of the screen, and a random effect of partici-
pant. One model included as an additional covariate the distance of 
the target from the high-probability hotspot. Including this distance 
resulted in a significant improvement in fit [χ2(1) = 6.3, p = 0.01]. 
Within this model there were effects of priming distance (p = 0.004, 
0.9 ms increase per degree of visual angle, 95% CI 0.3–1.5 ms) and 
eccentricity (p < 0.001, 1.9 ms increase per degree of visual angle, 
95% CI 1.2–2.6 ms), as well as of distance to hotspot (p = 0.01, 
0.7 ms increase per degree of visual angle, 95% CI 0.1–1.2 ms). 
Thus, even when accounting for important covariates, including 
spatial priming, there is still an additional benefit to being nearer 
the point of highest probability.

experIMent 2
The primary findings of Experiment 2 were similar to Experiment 
1. Participants benefited when targets appeared near the center of 
the screen, but there was an additional benefit when targets were 
in high-probability regions. This probability benefit occurred even 
though the use of circular distributions precluded any benefit from 

Figure 5 | Accuracy (above) and correct trial rT (below) in experiment 1 
as a function of whether the trial n back had the same stimulus color and 
thus required the same response. Mean values are seen at n = 0 and at the 

corresponding horizontal lines. A future stimulus cannot prime a current one, so 
the future trial contingencies serve as a visual reference for variability in 
the data.
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accepted, since, for example, contextual cuing does not modulate the 
efficiency of search as inferred from RT × distractor number slope 
(Kunar et al., 2007). But the main point is that while phenomena 
like contextual cuing are suggestive, such indirect demonstrations 
of the effect of probability manipulations on attention and search 
are insufficient to a full understanding of the relationship.

A recent explicit and quantitative manipulation of probability in 
a visual search task was the probabilistic cuing experiments of Geng 
and Behrmann (2002). These authors showed that when stimuli in 
a visual search and classify task appeared disproportionately on one 
side of a computer screen, the target classification was performed 
more quickly for trials appearing in the high-probability locations 
when compared to locations on the lower-probability side of the 
screen. Walthew and Gilchrist (2006) confirmed the basic effect, but 
also reported this benefit was eliminated if short-term positional 
repeats were precluded.

ing distance” (the minimum distance between the current target 
and the position of any of the four preceding, as in Experiment 
1). After fitting this model, we fit a second model with an addi-
tional fixed factor to indicate if the target location was on the high-
 probability circle. This model produced a significant improvement 
in fit [χ2(1) = 9.6, p = 0.002].

Next, we looked at the significance of the individual factors, as 
described in Section “Statistics.” The largest effects were seen for the 
circle factor, as expected. Responses were slower for targets further 
away from the center of the screen, and this was most pronounced 
for the outer circle location (9° of visual angle from screen center; 
p = 0.0001, 10.0 ms increase over inner circle, 95% CI 6.8–13.3 ms). 
The priming distance was also found to have an effect (p = 0.001, 
0.6 ms decrease per degree of visual angle, 95% CI 0.3–0.9 ms). 
Location on a high-probability circle resulted in a decrease, on 
average, of 3.7 ms in RT (p = 0.002, 95% CI 1.3–6.0 ms).

To visualize these effects we plotted the mean RTs for all three 
circles in Figure 6, with targets subdivided by whether the condition 
had the circle as the high-probability circle. Figure 6 can be viewed 
in two different ways. One can compare across the circle locations 
within a probability condition or by focusing on the effect of prob-
ability condition for each circle position. The basic pattern suggests 
that the middle condition was the least affected by the probability 
manipulation while the rings on the edge of the target location zone, 
the inner most and outer most, were most affected by being high- 
and low-probability locations. The slowest location, the outer circle, 
benefited the most from being the high-probability location.

Table 1 shows the accuracy data, which indicates that our data 
were not due to speed-accuracy trade-offs.

dIscussIon
The motivation for these experiments was to examine the phenom-
ena of probabilistic cuing. If it were established that people learn 
complex and arbitrary probability distributions for the location 
and character of search targets then developing detailed probability 
based models of visual attention would be warranted. However, if 
the effect of probability on search is simply a matter of response 
selection or short-term biases toward recently visited locations then 
such models would probably not be warranted, or at least they 
would be much simpler and less far-reaching in their explanatory 
scope. Below we argue that our experiments provide evidence that 
participants can learn graded and complex probabilistic contin-
gencies, and that the effects of probability are not explained by 
 short-term priming effects. Moreover, we claim that this is also seen 
in the no-repeats experiment of Walthew and Gilchrist (2006), in 
direct opposition to those authors’ interpretation. We believe fur-
ther investigation of probability effects on attention is warranted.

While probability considerations have been prominent in psy-
chology for some time (for an early review see Estes, 1962), their 
application was mostly in the area of learning, where the emphasis 
was on a condition and a response. Despite an impressive beginning 
(Shaw and Shaw, 1977), extensions of probability manipulations to 
attention have been less extensive and less quantitative. For example, 
the phenomenon of contextual cuing demonstrates that the repeti-
tive pairing of displays with target locations leads to an improve-
ment in target detection. While contextual cuing is often described 
as involving visual attention (Chun, 2000) this is not uniformly 

Figure 6 | Mean reaction time as a function of target location and 
probability; error bars are 95% confidence intervals for each 
location × probability condition. Targets were either on the inner, middle, or 
outer circle. For each circle, the right (red) point is for the trials where that 
circle was the high-probability location, and the left (black) point is for trials 
where the circle was a low-probability location. This graph is intended to 
visualize the magnitude and directions of the effects and thus excludes the 
data from two participants who had mean RTs two standard deviations away 
from the sample mean. Statistical analyses reported in the text include the 
data from all participants.

Table 1 | Accuracy as a function of probability distribution and stimulus 

location for trials with rT >150 ms and <1000 ms (as for the other 

analyses).

 inner-heavy  Middle-heavy  Outer-heavy  

 condition (%) condition (%) condition (%)

Inner circle 94.4 93.6 94.0

Middle circle 94.8 93.2 93.7

Outer circle 92.5 91.6 92.0
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participants. If the average location of targets is calculated it is at 
the center of the screen, even though no targets actually appears 
there. The strategy that will minimize the average distance between 
eye fixation and targets is to look at the center of the screen. And 
in this circumstance we still find a benefit for trials when they are 
on the high-probability circle.

If participants could allocate their resources in a perfect match 
to the target location distributions they would have required a 
doughnut shaped spotlight (Egly and Homa, 1984; Eimer, 1999; 
Müller and Hübner, 2002). Our findings suggest that this may be 
practically difficult for participants to achieve. The greatest effect 
of probability seems to be for targets appearing on the edges of 
the target zone. When more targets were on the inner circle there 
seemed to be a particularly high cost for the occasional outer circle 
trial, but not for the middle circle trials. Conversely, when outer 
targets were frequent, there was an improvement in RT for the 
common outer targets that hurt infrequent inner trials, but not 
infrequent middle circle trials. It is interesting to note that high-
probability targets on the outer ring were classified about as quickly 
as the low-probability inner circle trials.

Our demonstration of a probabilistic cuing effect not explained 
by spatial repetition priming contradicts the conclusion of Walthew 
and Gilchrist (2006). We therefore return to examine the support 
for their claim that “when short-term target location repetitions 
were restricted, there was no statistical learning effect.”

In their Experiment 3, Walthew and Gilchrist (2006) evaluate 
the effect of spatial repetition priming. To test the effect of spatial 
priming, the authors measured the accuracy of the first saccade 
in a task where the target could appear in any of eight positions 
arranged around a ring, four on the left and four on the right. The 
authors had 10 participants in each of two conditions: repeat and 
no-repeat. In both conditions four positions on one side of the 
screen were in the aggregate twice as likely to be a target location 
(“rich”) as were positions on the other side of the screen (“sparse”). 
In the repeat condition, trials were independent and thus the rich 
side always had a 67% chance of being the target side regardless of 
trial history. In the no-repeat condition, locations were generated 
such that no spatial position was occupied more than once every 
four trials. In a footnote, the authors acknowledge that this results 
in a rich trial increasing the relative chances that the next trial will 
be sparse, but discount this conditional probability as having any 
bearing on their findings.

Walthew and Gilchrist (2006) carried out a 2 × 2 mixed 
ANOVA with a rich/sparse factor within participants and repeat/
no-repeat factor between participants. They found no main 
effects, but did find an interaction; these data were graphically 
presented in their Figure 3. The pairwise comparison for rich 
versus sparse trials within the repeat condition was reported 
 significant, but not for the no-repeat condition. This is the basis 
for the authors concluding that the elimination of repeats abol-
ishes statistical learning.

We have several concerns with this analysis. First, the authors 
conclude that the absence of a statistically significant effect implies 
the absence of an effect. However, failing to reject the null is not 
the same as proving it, and it is not clear what the power of the test 
was. Second, Walthew and Gilchrist (2006) conclude that two com-
parisons are different because one achieved statistical  significance 

We felt that probabilistic cuing and its characterization as a 
spatial priming effect could be clarified if we used spatially graded 
probability distributions and a task that was simple enough to 
allow large numbers of trials to be delivered in an experimental 
session. This would give the participants more experience with the 
probabilistic contingencies and give us a greater amount of data 
for examining the effects within participants.

Our experiments required participants to make a large number of 
simple color discriminations. Trials appeared individually on a com-
puter screen, at randomly (but not uniformly) chosen locations.

In Experiment 1, we used a spatially continuous but non- uniform 
probability distribution with an off-center hotspot of maximal prob-
ability. Since this distribution extended over the entire computer 
display area, the probability of any single location being a target loca-
tion was small, as can be seen by inspecting the z-axis of Figure 1A. 
Thus, precise spatial repeats were infrequent. For each trial we could 
measure its distance to immediately preceding trials and to the point 
of maximal probability. The analyses of these data confirm spatial 
priming and eccentricity effects, but the data also show an effect of 
the distance of a target position from the high-probability hotspot. 
This implies that our participants learned the spatial bias. We find 
additional qualitative support when we examine RT as a function of 
target position distance from the hotspot for individual participants 
(see Figure 4). For almost all participants there is a graded, appar-
ently linear relation, between RT and distance from the hotspot.

The demonstration of probabilistic cuing is separate from the 
question of whether the probabilistic inhomogeneity was con-
sciously appreciated. But based on data from a questionnaire par-
ticipants completed after their experimental session, we infer that 
few participants had high awareness of the nature of our experi-
mental manipulation. Only one participant volunteered a correct 
description of the spatial imbalance of stimuli, and several volun-
teered false associations.

We did not track eye movements. As so few participants had 
much awareness of the spatial probability manipulation, there is 
no reason to suggest that participants adopted a consistent con-
scious strategy. It is possible that a strategy of shifting gaze toward 
the high-probability side in Experiment 1 could have happened 
covertly. If so, it would offer one explanation for how the superior 
performance at high-probability locations is achieved, but it would 
not challenge the conclusion that probability can serve as a cue for a 
visual search, nor would it salvage an explanation in terms of spatial 
repetition priming. We also maintain that it would not eliminate a 
claim that the benefit for high- probability locations is attentional, 
since gaze location and attentional allocation are interdependent 
(Hoffman and Subramaniam, 1995; Corbetta, 1998). We could not 
call it covert attention if there were overtly detectable shifts in gaze, 
but to call it overt attention would also seem to be a misnomer 
given the lack of participant awareness.

Experiment 2 also bears on the issue of eye movements. More 
importantly, it provides additional evidence for the inadequacy of 
a spatial priming account and more evidence for the richness and 
flexibility of participants to adapt to spatial inhomogeneities in 
target location probability.

In Experiment 2 targets were located on three concentric annuli. 
The radial direction of the targets was uniform. Therefore shifting 
the gaze in one direction or another would not yield any benefit to 
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whereas the other did not, but they did not directly compare the 
two results to see if they were statistically different. We suggest 
that the basis for the significant interaction effect is clear from 
their figure: rich trials were more accurate than sparse in the repeat 
condition, but the opposite was the case for the no-repeat condi-
tion. Numerically the largest pairwise difference was between the 
sparse – repeat trials (0.405 accuracy) and the sparse – no-repeat 
trials (0.517), while the rich – repeat trials (0.481) and rich – no-
repeat trials (0.475) did not seem to differ. The standard error 
bars for sparse trials in the two conditions show no overlap. The 
phenomena that requires an explanation is not the elimination 
of a rich side versus sparse side difference, but the improvement 
in sparse side performance when shifting from the repeat to no-
repeat condition.

Why would the performance on sparse trials have improved in 
the no-repeat condition when the rich trials show little change? 
We contend that it is because the participants have demonstrated 
statistical learning of exactly the kind Walthew and Gilchrist (2006) 
reject. Certainly we are not claiming any carelessness on the part of 
the authors. Their analysis seems a natural assessment given their 
hypothesis, but the details of their experimental design are more 
subtle than they appear. If target locations on the rich side have a 
probability weight twice that of the sparse side, then enforcing the 
no-repeat condition yields sequences of trials that have, in practice, 
only about 60% of the trials on the rich side. In order to obtain a 
sequence which obeys the specified no-repeat rule, and where the 
rich side has 2/3 of the trials, it is necessary to have each of the rich 
sided target locations have a weight approximately 3.3 times that 
of the sparse side.

Assuming this weighting, simple modeling and simulation2 
shows that the effect on the expectation for the sparse side loca-
tions is substantial (Table 2). Unlike the repeats condition, where 
sparse trials are always equally unlikely, here there is large vari-
ability in the probability of seeing a sparse trial. Perversely, almost 
a quarter of trials follow a stretch of three rich trials, and in this 
case the next trial is actually more likely to be sparse than rich. 
Inverting the relationship, over a third of the actual sparse trials 
follow a stretch of three rich trials. This increased predictability of 
sparse trials provides a viable explanation for the reported pattern 

of  performance. Note that this analysis requires that participants 
have some trace of which side of the screen the prior three trials 
were on. The consequence of the conditional probability distribu-
tion is that the improved accuracy of a participant’s first saccade 
doesn’t reflect spatial repetition priming, as in this design there 
were no repeats, but rather the learning of a conditional probability 
distribution. This contradicts the authors’ conclusions.

A rapidly growing literature supports the explanatory value 
of probability based models in psychology. Recently these have 
primarily taken the form of Bayesian models (Ernst and Banks, 
2002; Guo et al., 2004; Kersten et al., 2004; Knill and Pouget, 2004; 
Tassinari et al., 2006; Schwartz et al., 2007). However, explicit 
probabilistic accounts for attention are few (e.g., Eckstein et al., 
2006). The dominant metaphors for attention (Fernandez-Duque 
and Johnson, 1999), despite their problems (Cave and Bichot, 
1999), remain the spotlight of attention (Posner et al., 1980) and 
its relative the zoom lens (Eriksen and St. James, 1986). These met-
aphors posit that attention is a resource that is spatially directed 
and constrained in a contiguous circular area. Our results could 
certainly be cast in this language. For example, in Experiment 
1, stimulus probability caused a translation in the attentional 
spotlight away from fixation. In Experiment 2, shifting more of 
the stimuli away from the center served to dilate the zoom lens 
of attention.

We favor an alternative explanation: that these results stem 
from humans’ ability to function as statistically optimized 
observers. We interpret our experiments and those of Geng and 
Behrmann (2002, 2005) and Walthew and Gilchrist (2006) to be 
demonstrations that performance is proportionate to probability. 
Rather than interpret probability as a cue, perhaps we should 
interpret cues for their consequences on probability? While the 
data here do not decide the issue, they encourage its pursuit. 
A probabilistic account is more parsimonious and more gen-
eral than the spotlight or zoom lens metaphors. The parsimony 
derives from the fact that the results are explained by recourse to 
the experimental manipulation alone, and not to a putative and 
poorly characterized “resource.” It is more general because the 
same variable of prior probability is an effective explanation for 
other results in visual search and attention and provides quan-
titative predictions.
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