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In comparison to spatial perception, relatively little is under-
stood about the neural basis of temporal perception. Internal clock 
models are commonly invoked to explain processing of sub- second 
intervals (Treisman, 1963; Gibbon, 1977). Though it remains 
unclear how brain regions map onto an internal clock, cortical 
regions such as inferior parietal cortex, superior temporal cortex, 
supplementary motor area (SMA) and dorsal-lateral prefrontal 
cortex are frequently implicated in processing temporal informa-
tion such as intervals (Onoe et al., 2001; Rao et al., 2001; Lewis and 
Miall, 2003a; Wencil et al., 2010), temporal order (Battelli et al., 
2007) and temporal orienting (Coull and Nobre, 1998; Nobre et 
al., 2007). Recently, based largely on temporal order and motion 
literature, right posterior superior temporal cortex and temporal-
parietal junction (TPJ) have been hypothesized to serve as part 
of a “when” pathway (Battelli et al., 2007) thought to be distinct 
from yet highly interactive with the adjacent “what” and “where” 
pathways. However, others have emphasized left posterior parietal 
cortex involvement in sequencing of events and temporal orienting 
(Coull and Nobre, 1998; Coull, 2004; Davis et al., 2009).

Functional overlap of encoding spatial and temporal extent sup-
ports the interaction of space and time processing broadly defined. 
Neural representations of durations have been linked to spatially 
selective cells; specifically, spatially tuned lateral intraparietal (LIP) 

IntroductIon
Perceiving spatial and temporal dynamics arguably underlies all 
thought and actions (Kant, 1929; Fraisse, 1963). Although the tem-
poral dimension is often overlooked, precise representation of how 
events unfold in time is necessary for such diverse activities as 
speech perception, object identification and motor coordination. 
While many aspects of spatial processing have been extensively 
examined, how the cortex processes temporal information, such 
as determining the duration of intervals (Rao et al., 2001; Coull 
et al., 2008) or sequencing of events remains unclear (for review 
Battelli et al., 2008).

A large body of research arising from the animal literature 
describes the flow of visual spatial information from primary visual 
cortex (V1) along the dorsal or “where” pathway to the parietal 
cortex (Mishkin and Ungerleider, 1983; Goodale and Milner, 1992). 
Size, a variable of spatial extension, may be represented, in parallel, 
by both the dorsal and ventral (“what”) streams. Behavioral double 
dissociations in patient studies and anatomical double dissocia-
tions in neuroimaging studies implicate the intraparietal sulcus 
within the dorsal stream, when computing size for grasping and 
the lateral occipital cortex of the ventral stream when perceiving 
size for object discrimination (Goodale et al., 1991; Faillenot et al., 
1997; Cavina-Pratesi et al., 2007).
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cells of monkeys also encode elapsed durations (Leon and Shadlen, 
2003) and millisecond duration judgments can be spatially localized 
(Burr and Morrone, 2006; Johnston et al., 2006). Direct behavioral 
evidence for the integration of space and time is provided by the 
finding that saccadic eye movements cause compression of both 
duration and space (Morrone et al., 2005). Psychophysical studies 
also suggest that size affects time estimation. For example, larger 
stimuli are judged to last longer (Xuan et al., 2007) and spatial 
scale influences elapsed duration (DeLong, 1981; Mitchell and 
Davis, 1987). Spatial terms are commonly used to describe time 
(Casasanto and Boroditsky, 2008).

Evidence that the “what” and “where” pathways might link with 
the putative “when” pathway is provided by behavioral deficits of 
patients with right cortical lesions. Patients with right parietal 
damage show co-occurring spatial and temporal attention defi-
cits (Critchley, 1953; Rorden et al., 1997; Shapiro et al., 2002). 
Furthermore, impairments in temporal order can be ameliorated 
by spatial separation (Snyder and Chatterjee, 2004). Patients with 
attentional disorders such as neglect show impairments not only in 
spatial attention, but in size (Milner and Harvey, 1995; Milner et al., 
1998; Ferber and Karnath, 2001), temporal perception (Danckert 
et al., 2007) and temporal order (reviewed in Becchio and Bertone, 
2006; Danckert et al., 2007). Furthermore, impairments of neglect 
patients of orienting in time are more severe than impairments 
seen in patients with similar cortical damage without neglect 
(Husain et al., 1997).

In the current study we use voxel lesion symptom mapping 
(VLSM) to determine the shared and unique contributions of brain 
damage to judgments in time and space. We assess temporal order, 
one aspect of temporal processing by performance on a tempo-
ral order judgment (TOJ) task with stimulus-onset-asynchronies 
(SOA) ranging from 40–80 ms. This time scale, referred to as auto-
matic timing (Lewis and Miall, 2003b), is crucial in determining the 
sequencing of objects in the world and to control motor behavior 
(Battelli et al., 2007). TOJ tasks are widely used and performance 
is altered by right hemisphere dysfunction (Rorden et al., 1997; 
Robertson et al., 1998; Snyder and Chatterjee, 2004; Woo et al., 
2009); to date detailed lesion mapping has not been performed. We 
will compare TOJ performance with performance on a spatial task 
well matched for visual perception and motor response demands. 
Specifically, we assess spatial processing with a size judgment task 
where the area of two circles differs between 5–13%. Recently, TOJ 
performance was shown to activate temporal-parietal junction 
more than a shape task (Davis et al., 2009). We attempt to strengthen 
these fMRI findings by using VLSM. Convergent methodologies 
are necessary in the cognitive neurosciences to compensate for dif-
ferent strengths and weaknesses of each method (Devinsky and 
D’Esposito, 2004; Farah and Wolpe, 2004; Rorden and Karnath, 
2004). Functional imaging studies have grown in popularity and 
impact (Chatterjee, 2005; Fellows et al., 2005) yet lesion studies 
remain an important compliment to the correlation nature of func-
tional imaging results. Compared to functional imaging, lesion 
studies provide stronger evidence that the localized brain area is 
necessary for the underlying cognitive processes. By using VLSM 
over traditional lesion techniques we increase the specificity of 
neuroanatomical claims without the pitfalls of ignoring variability 
in participant’s performance.

MaterIals and Methods
PartIcIPants
Forty adults with chronic unilateral lesions (20 with left involve-
ment and 20 with right involvement) were recruited from the Focal 
Lesion Database (Center for Cognitive Neuroscience, University 
of Pennsylvania). One participant was removed from analysis 
due to concomitant psychiatric disturbances not identified at 
screening. Participants were not selected based on their lesion 
locations or patterns of cognitive impairment. They ranged in 
age from 32 to 81-years old with a mean age of 57-years old; 24 
were female. For further demographic information see Table 1; 
for basic  neuropsychological performance see Table 2. The left 
and right hemisphere patient populations did not differ by age 
(t(37) = −0.851, p = 0.4), chronicity (t(37) = −0.07, p = 0.945) nor 
size of lesion (t(37) = 0.147, p = 0.159). Twenty matched neurologi-
cally intact controls (average age 60-years old, 14 females) were 
also recruited. All control participants were right-handed, native 
English speakers without history of neurological or psychiatric 
symptoms. All participants and neurologically intact controls pro-
vided written, informed consent in accordance with the policies of 
the University of Pennsylvania’s Institutional Review Board.

BehavIoral tasks
The experiment was conducted with e-prime (Psychology Software 
Tools) on a 40 cm monitor positioned approximately 57 cm from 
the participant. The stimulus display consisted of a light-gray back-
ground with a black central fixation asterisk. The visual targets con-
sisted of two black circles measuring 1.0° in height and in width (see 
Figure 1). One circle contained an “×” while the other contained 
a “+”. Participants performed a minimum of 16 trials of a target 
detection task to get familiar with the stimulus set and response 
mapping. Following training, participants performed eight blocks 
of a size judgment task and eight blocks of a temporal order judg-
ment task. Each block contained 16 trials. Blocks and trials were 
randomized. Participants responded by keypress with their ipsile-
sional hand. Control participants were counterbalanced to left or 
right-handed responses.

target detectIon traInIng task
Participants performed a target detection task to gain familiarity 
with the stimuli set and comfort with the response mapping. Each 
training trial began with a central asterisk that participants were 
instructed to fixate on for the duration of the trial. After 2000 ms, 
the target circle appeared with equal probabilities in one of the four 
quadrants (i.e., top left, top right, bottom left or bottom right) of 
the display. The target circle, containing either an “×”or a “+”, was 
presented for 500 ms. Following target offset, subjects were given 
3500 ms to indicate which circle was presented (either with the 
internal “×”or internal “+”). The participants repeated blocks of 
16 trials of this training task until they reached a criterion of 80% 
accuracy. Once this criterion was reached they began the experi-
mental conditions.

sIze JudgMent task
Each trial began with a central asterisk that participants were 
instructed to fixate on for the duration of the trial. After 2000 ms, 
the visual targets appeared in one of four arrangements: (a) two 
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testing so that there was a scaled level of difficulty that ranged from 
90% accuracy with the largest size asynchrony to 75% accuracy in 
smallest size asynchrony.

teMPoral order JudgMent task
Similarly to the size judgment task, each trial began with a 2000 ms 
fixation asterisk. Following fixation the target circles appeared in 
the same spatial configuration as in the size judgment task. The 
TOJ task differed in that the second circles had a delayed onset of 
40, 53, 67, or 80 ms following the target circle. The visual targets 
then remained on the screen for a total of 500 ms. Participants 
were given 3500 ms to indicate whether the circle with the internal 

circles with 7° of horizontal separation 3.5° above the horizontal 
axis; (b) two circles with 7° of horizontal separation 3.5° below 
the horizontal axis; (c) two circles with 7° of vertical separation 
3.5° left of the vertical axis and (d) two circles with 7° of vertical 
separation 3.5° right of the vertical axis. In each trial, one circle 
was the standard diameter (1°) while the other circle was either 
5, 8, 10, or 13% larger in area. The visual targets were presented 
for 500 ms. Following target offset, subjects were given 3500 ms 
to indicate whether the circle with the internal “+” or the circle 
with the internal “×” was larger. All trials were counterbalanced 
for target location and whether the circle with “+” or “×” was the 
standard size. The diameter increments were chosen based on pilot 

Table 1 | Participant demographic data.

Participant Gender Age Hemisphere Location Chronicity # Lesioned voxels Cause

MB_101 F 51 R T 30 years 3952 Stroke

HQ_337 M 80 L P 4 years 6111 Stroke

KT_325 F 43 R F T 4 years 12698 Stroke

DX_444 F 74 R P T 3 years 1844 Stroke

KN_313 M 52 R T 10 years 2345 Surgery for aneurysm

MK_428 M 49 L ACC F 2 years 633 Stroke

XD_3 M 43 L F T 6.5 years 193601 Stroke

TL_553 M 39 R T 1 year 6525 Tumor resection

KE_205 F 77 R F 7 years 4228 Stroke

MN_93 F 70 L T 6 years 7980 Hemorrhage

MF_560 M 58 R F P 2.5 years 428 Stroke

SR_489 M 70 L T 9 years 121 Radiation necrosis

DF_552 F 55 R F 4 years 4080 Aneurysm

NW_561 F 32 L F 1 year 2175 Stroke

OM_559 F 54 L P 2.5 years 474 Stroke

DF_316 F 81 R P 5 years 2981 Stroke

LM_292 M 59 L T BG 5 years 37838 Stroke

CC_517 F 57 L F 5 years 5641 Stroke

KX_570 M 54 R P 4 months 1783 Hematoma

CD_141 F 46 L T 5 years 1068 Stroke

FC_83 M 64 R F T P 8 years 8040 Stroke

SL_41 M 63 L P T 7 years 37402 Stroke

UM_103 M 49 L BG 6 years 22093 Stroke

TD_440 F 55 R F 6 years 3945 Tumor resection

NF_113 F 55 R F 12 years 7158 Stroke

TM_544 F 40 R F P 3 years 9092 Aneurysm

BE_249 M 69 L P 8 years 30940 Stroke

DU_532 M 69 L T 4 years 1204 Encephalomalacia, herpes

CP_430 F 71 L F 13 years 1070 Encephalomalacia, aneurysm

KG_215 M 56 L F 6 years 2839 Stroke

GU_412 F 42 L F 4 years 5552 Stroke

KX_481 F 64 R P 3 years 5206 Stroke

NS_569 F 67 R F T P BG 1 year 5280 Stroke

NQ_87 F 65 R F 8 years 1020 Stroke

CN_541 M 41 L F 2.5 years 1348 Tumor resection

NE_567 F 40 L F 11 years 11180 Stroke

QN_573 F 43 L F P 13 years 1719 Stroke

NC_486 F 54 R P T 5 years 2784 Stroke

DS_564 F 73 R F P 5 years 578 Stroke

T, temporal; P, parietal; F, frontal; BG, basal ganglia, ACC, anterior cingulate cortex.



Frontiers in Human Neuroscience www.frontiersin.org September 2010 | Volume 4 | Article 171 | 4

Wencil et al. Size and TOJ

Voxel lesion symptom mapping
Clinical CT or MRI brain scans of each participant were provided 
through the Focal Lesion Database. Lesion masks for each partici-
pant were drawn by a senior neurologist blind to patient’s perform-
ance using MRIcro software (Rorden and Brett, 2000). Lesions were 
drawn on 2 mm × 2 mm × 2 mm MNI templates tilted in the same 
axial planes of the source images. Each template was then realigned 
to a common axial angle. We engaged VLSM, a form of statistical 
parametric mapping, to map behavioral performance to brain dam-
age on a voxel-by-voxel basis (Kimberg et al., 2007).

Statistical analysis was conducted with Voxbo image-analysis 
software (www.voxbo.org). In contrast with BOLD analysis, where 
the dependent value is the signal value in a given voxel and behavior 
the independent value, in VLSM the presence or absence of a lesion 
in each voxel represents the independent variable and behavioral 
performance is the dependent variable. In the current study, we 
regressed z-scores for TOJ performance and z-scores for size dis-
crimination performance on lesion status scores across participants. 
To assess statistical significance, we conducted non-parametric 
 permutation tests where 1000 randomly generated permutations 
of the lesion status mapped to the z-score serve as a null distribution 
of the data. A maximum statistic across the brain is calculated for 
each permutation and thresholds for significance calculated from 

“+” or the circle with the internal “×” appeared first. The tem-
poral offsets were chosen based on pilot testing so that there 
was a scaled level of difficulty that ranged from 90% accuracy 
with the longest temporal asynchrony to 75% accuracy in briefest 
temporal asynchrony.

Figure 1 | (A) Size judgment task. Four different areas (104, 108, 110, 113% 
of standard) (B) Temporal order judgment task. Four temporal offsets (40, 53, 
67, 80 ms).

Table 2 | Participant neuropsychological performance.

 Verbal Visuo-spatial

Participant Hemisphere WAiS- AMNArT Line Line 

  info  cancellation bisection

MB_101 R 20 121 na −9

HQ_337 L 10 na 39 −10.5

KT_325 R na na 39 −5

DX_444 R na 99 40 −4

KN_313 R 17 118 40 6

MK_428 L na na 40 2.5

XD_3 L na na na na

TL_553 R 22 121 na na

KE_205 R 23 115 40 −1

MN_93 L 11 102 40 −8

MF_560 R 10 97 40 na

SR_489 L 20 118 40 na

DF_552 R na 106 40 na

NW_561 L 21 111 40 na

OM_559 L na na  na

DF_316 R na na 40 6

LM_292 L na na 40 1

CC_517 L 14 107 39 na

KX_570 R 18 103 40 na

CD_141 L 11 113 40 −4

FC_83 R 26 114 40 −4

SL_41 L na na 40 −12

UM_103 L 10 na 40 0

TD_440 R na na 40 0

NF_113 R na 123 40 −1

TM_544 R na na na na

BE_249 L 18 105 40 na

DU_532 L 9 106 40 na

CP_430 L na na 40 −13.5

KG_215 L 14 106 40 −1

GU_412 L 7 na 40 6

KX_481 R na na 40 3

NS_569 R 24 125 40 na

NQ_87 R 16 113 na −0.15

CN_541 L 23 na 40 na

NE_567 L 18 115 40 na

QN_573 L na na 40 na

NC_486 R na na na na

DS_564 R na na na na

AMNART (American National Adult Reading Test) score is an estimated verbal IQ 
with a mean of 100 ± 15. Line Cancellation data are the number of lines cancelled 
with a max of 40. Line bisection is in mm with – corresponding to leftward 
deviations. na indicates not administered. WAIS-III Information subsection, data 
are the number correct with a max score of 28. 
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(F(3,17) = 65.41, p < 0.001). However, performance also varied by 
task (F(1,19) = 15.362, p < 0.01) where control participants were 
less accurate on the TOJ task (80%) than the size discrimination 
task (88%). Performance across both tasks correlated significantly 
(r = 0.46, p < 0.05) (see Figure 3A).

the 95th percentile of this distribution to ensure a family-wise false 
positive rate of 0.05. Thus, using this maximum statistic corrects 
for multiple comparisons, without the assumptions that underlie 
parametric statistics (Nichols and Holmes, 2002).

Voxel lesion symptom mapping analysis, in accordance with Bates 
et al. (2003) seminal paper is conducted with all participants, both 
those with and without deficits. By incorporating the lesions of both 
“normal” and “deficit” participants and by using their performance 
as a continuous rather than a categorical variable, VLSM overcomes 
limits of traditional lesion analyses. By including lesions of partici-
pants with normal performances, VLSM increases specificity. For 
example, if every patient with a deficit had left angular gyrus lesions, 
but every patient without a deficit also had left angular gyrus lesions, 
traditional analyses would erroneously conclude that left angular 
gyrus lesions was causally related to the deficit. In addition, unlike 
traditional lesion analysis, consideration can be given to parametric 
variation in performance which means that one does not have to 
adopt conventional thresholds (such as 2 SD), create dichotomous 
groups and then ignore variability within these groups. For further 
details of this logic, see Kimberg et al. (2007) and for recent applica-
tions see Wu et al. (2007) and Amorapanth et al. (2009).

Given that VLSM results differ in dependence of used param-
eters it is important to consider factors such as lesion size in VLSM 
analysis (Kimberg et al., 2007). In our population there was no cor-
relation between performance on TOJ or size judgment with either 
chronicity (TOJ: r = −0.221, p = 0.18; size: r = −0.055, p = 0.74) or 
lesion size determined by number of lesion voxels (TOJ: r = 0.09, 
p = 0.59; size: r =  = 0.026, p = 0.88). Therefore we did not include 
either of these as factors in our VLSM.

Results
BehavioRal Results
Group analyses
The 20 matched controls performed well on both the size discrimi-
nation and TOJ tasks (see Figures 2A,B). As expected, perform-
ance scaled with increased size and increased temporal asynchrony 

Figure 2 | group-wise Behavioral results. (A) Performance of left 
hemisphere involvement, right hemisphere involvement and age-matched 
participants on size judgment task and (B) Performance of left hemisphere 
involvement, right hemisphere involvement and age-matched participants on TOJ.

Figure 3 | Plots of TOJ versus Size Judgment performance for (A) age-matched controls and (B) patient participants.
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Table 3 | interaction of difficulty × group for TOJ and size judgment 

tasks.

 Time condition Size condition

 F p F p Hemisphere Location

MN_93 8.984 0.007 1.097 0.308 L T

LM_292 15.38 0.001 3.371 0.082 L T BG

DS_564 6.248 0.022 3.797 0.066 R F P

MK_428 0.004 0.952 10.161 0.005 L ACC F

NC_486 0.134 0.718 15.81 0.001 R P T

MF_560 1.319 0.265 14.069 0.001 R F P

NW_561 0.396 0.537 0.235 0.634 L F

CC_517 0.134 0.718 0.138 0.714 L F

KG_215 0.087 0.771 0.092 0.764 L F

GU_412 0.087 0.771 0.96 0.339 L F

CN_541 2.198 0.155 0.001 0.973 L F

NE_567 0.336 0.569 0.092 0.764 L F

XD_3 0.71 0.41 0.006 0.938 L F T

OM_559 1.012 0.327 0.001 0.973 L P

BE_249 0.237 0.632 0.006 0.938 L P

SR_489 0.521 0.479 0.067 0.798 L T

CD_141 0.746 0.398 0.037 0.85 L T

DU_532 2.053 0.168 2.97 0.101 L T

KE_205 0.595 0.45 0.504 0.487 R F

DF_552 0.336 0.569 0.28 0.603 R F

TD_440  < 0.001 0.992 0.874 0.362 R F

NQ_87 0.835 0.372 0.037 0.85 R F

NF_113 0.423 0.523 0.138 0.714 R F

NS_569 0.491 0.492 2.244 0.151 R F T P BG

TM_544 0.05 0.825 0.021 0.885 R F P

KX_570 1.992 0.174 0.412 0.529 R P

KX_481 0.629 0.438 0.006 0.938 R P

MB_101 1.666 0.212 1.346 0.26 R T

KN_313 0.746 0.398 0.356 0.558 R T

TL_553 2.414 0.137 0.174 0.682 R T

UM_103 13.23 0.002 44.616 <0.001 L BG

CP_430 11.723 0.003 22.702 <0.001 L F

HQ_337 7.359 0.014 13.237 0.002 L P

SL_41 8.562 0.009 52.457 <0.001 L P T

QN_573 11.241 0.003 4.726 0.043 L F P

KT_325 8.984 0.007 21.641 <0.001 R F T

FC_83 8.562 0.009 29.599 <0.001 R F T P

VQ_230 9.415 0.006 44.616 <0.001 R P

DF_316 8.151 0.01 22.702 <0.001 R P

Overall participants were less accurate than controls on the 
TOJ and size discrimination tasks, with 70% and 76% perform-
ance respectively (F(2,56) = 5.18, p < 0.01). Paired contrasts, with 
correction for multiple comparisons, revealed significant differ-
ences in performances between participants with left hemisphere 
involvement and controls (p = 0.018) as well as significant dif-
ferences in performance between participants with right hemi-
sphere involvement and controls (p = 0.027) collapsed across 
conditions. Interestingly, there was no difference on performance 
between participants with left versus right hemisphere involve-
ment (p = 0.999).

Performance across TOJ and size judgment tasks was signifi-
cantly correlated (r = 0.70, p < 0.001) (Figure 3B). There were 
no significant correlations between performance on TOJ or size 
judgment with either chronicity (TOJ: r = −0.221, p = 0.18; size: 
r = −0.055, p = 0.74) or lesion size determined by number of 
lesioned voxels (TOJ: r = 0.09, p = 0.59; size: r = 0.026, p = 0.88). 
Performance on TOJ correlated with participant’s age (r = −0.364; 
p = 0.02); performance on size judgment showed a similar trend 
(r = −0.299, p = 0.06).

Case analyses
We analyzed each participant’s performance in a case series manner. 
Each participant’s performance was compared to the control groups’ 
performance by repeated measures ANOVA (difficulty × group) 
independently for size judgment and TOJ. Results of each of these 
tests are presented in Table 3. When comparing a single case versus 
a small control group in this fashion, we accept untestable assump-
tions about the homogeneity of variance and covariance (Corballis, 
2009; Crawford et al., 2009). Without using corrections it is difficult 
to make conclusions about the populations that the case and con-
trol group arise from, nonetheless, these analysis are conservative 
enough to allow us to make claims about the comparison of the 
case to the group of controls. Therefore, impairment on a task was 
defined by a significant main effect of group. Twenty-four of the 
participants had no impairments while nine of the participants had 
impairments across both size judgment and TOJ tasks. Critically, 
six participants demonstrated double dissociations in performance 
on size and temporal order judgments (see Figure 4). Three par-
ticipants had selective TOJ impairment, as defined by significantly 
worse performance than controls on time judgments but not on 
size judgments. Conversely, three participants had selective size 
judgment impairment.

vlsM results
Size judgment task
Permutation analyses revealed that mapwise t-statistic threshold 
with a significance level of p < 0.05 for size discrimination was 
2.9 for left hemisphere involvement and 2.7 for right hemisphere 
involvement. Impairment in size discrimination correlated sig-
nificantly with lesions in left posterior orbital gyrus, left inferior 
frontal gyrus extending across the pars opercularis and pars trian-
gularis, left posterior middle frontal, left white matter undercut-
ting  posterior superior temporal and supramarginal gyrus, right 
posterior superior temporal gyrus, right posterior parietal lobule 
extending across the supramarginal and angular gyri and right 
precentral gyrus. (See Figure 5A)

Since performance on size and TOJ were correlated, some 
 variance in performance on each of these tasks could be accounted 
for by deficits on the complementary task. Therefore, an addi-
tional VLSM performed on the residuals was conducted to for-
mally test for correlations between damaged brain regions and 
impaired performance on size discrimination independent of 
deficits on temporal order discrimination (Amorapanth et al., 
2009). We regressed size discrimination impairment on tempo-
ral order discrimination impairment and derived residuals were 
used for further analysis. Permutation analyses on the resulting 
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We also performed a VLSM analysis on the residuals to formally 
test for correlations between damaged brain regions and impaired 
performance on temporal order discrimination independent of 
performance on size discrimination. Permutation analyses on the 
resulting residuals revealed that mapwise t-statistic threshold with a 
significance level of p < 0.05 was 2.6 for left hemisphere involvement 
and 2.1 for right hemisphere involvement. Impairment on temporal 
order discrimination, independent of deficit on size discrimina-
tion, correlated significantly with lesions in left inferior frontal and 
posterior middle frontal gyri, left posterior parietal gyrus extending 
across the supramarginal and angular gyri, left pre central gyrus as 
well as right supramarginal gyrus. (See Figure 6B)

dIscussIon
Regions of the inferior parietal cortex have previously been impli-
cated in the processing of objects across space and time (Husain 
et al., 1997; Battelli et al., 2001, 2003; Davis et al., 2009). In the 

residuals revealed that mapwise t-statistic threshold with a sig-
nificance level of p < 0.05 was 3.0 for left hemisphere involve-
ment and 3.1 for right hemisphere involvement. Impairment 
on size discrimination, independent of performance on tem-
poral order discrimination, correlated significantly with lesions 
in right posterior superior temporal and right supramarginal 
gyrus. (See Figure 6A)

Temporal order judgment task
Permutation analyses revealed that mapwise t-statistic threshold 
with a significance level of p < 0.05 for temporal discrimination 
was 3.6 for left hemisphere involvement and 3.3 for right hemi-
sphere involvement. Impairment in TOJ discrimination correlated 
significantly with lesions in left inferior frontal pars opercularis, left 
white matter undercutting the posterior superior temporal gyrus, 
left white matter undercutting the supramarginal gyri and right 
angular gyrus. (see Figure 5B)

FiGure 4 | example of two cases that provide evidence of a double dissociation between performance on (A) size judgment and (B) TOJ performance.

FiGure 5 | Statistical maps of neuroanatomic regions in which damage correlated significantly (using permutation statistics) with (A) impairment on size 
discrimination and (B) temporal order discrimination.
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Although a significant correlation between performances on the 
two tasks suggests that size and TOJ processing are interrelated as 
others have shown (Danckert et al., 2007), our data makes the pos-
sibility of a unified, completely overlapping spatial and temporal 
estimators unlikely. There is, at least, partial independence of the 
processing streams.

overlaPPIng cortIcal rePresentatIons
Lesions of left inferior frontal cortex correlated with impaired per-
formance on both the size judgment and TOJ tasks. This region 
is consistent with a reported anterior magnitude system localized 
to left prefrontal cortex involved with complex calculations and 
planning (Walsh, 2003). We are not claiming that TOJ is a simple 
magnitude task but that both the size judgment and TOJ tasks 
share many common cognitive processes, including manipulation 
of magnitude information, that relies upon left inferior frontal 
cortex. Damage to the white matter underlying the left posterior 
superior temporal cortex was correlated with impaired perform-
ance on both the size judgment and TOJ tasks. Posterior temporal 
cortex is part of the classical ventral system that is involved in 
processing for perception (Goodale et al., 1991). Superior temporal 
cortex has also been implicated in automatic, motor timing network 
(Lewis and Miall, 2003b) though more anteriorly than the region we 
observed. More consistent with our localization, posterior regions 
have been activated during duration discrimination (Ferrandez 
et al., 2003; Coull et al., 2004). Recently, right posterior superior 
temporal cortex and TPJ have been hypothesized to serve as part 
of a “when pathway” (Battelli et al., 2007). Though, evidence of 
laterality remains inconclusive, recent fMRI studies implicate left 
TPJ (Davis et al., 2009) and several patient studies selected for 
right hemisphere damage and therefore cannot make claims about 
the role of the left hemisphere. In this context, the left posterior 
superior temporal cortex may be involved with shared processing 

 current study we found double dissociations in performances 
on TOJ and size judgments tasks. This argues that even though 
previous studies have shown TOJ and size rely on similar corti-
cal regions and have been shown to influence each other, they 
are not completely overlapping processing systems. Although we 
found that size and time do have overlapping cortical vulner-
abilities, processing unique to time judgments was impaired pre-
dominantly by damage to left lateralized regions. Conversely, with 
the caveat of reduced power to detect left parietal involvement, 
processing unique to size judgments seems to be impaired pre-
dominantly by damage to right lateralized regions. Importantly, 
we are not arguing against right-sided cortical involvement in 
TOJ tasks or against left-sided cortical involvement in size judg-
ments as evidenced by bilateral posterior parietal found in both 
main effect and residual VLSM analysis. We are arguing that 
the mechanisms involved uniquely in temporal resolution are 
predominantly left lateralized whereas those involved in spatial 
resolution are right lateralized. As the first systematic lesion map-
ping of TOJ, we expand on the previous findings to show that in 
addition to previously identified right parietal regions, left parietal 
and frontal regions also function as part of the “when pathway”. 
This finding helps bridge the previous lesion data with the recent 
fMRI finding of left temporal-parietal junction activation during 
TOJ (Davis et al., 2009).

BehavIoral results suPPort PartIally IndePendent 
ProcessIng streaMs
The forms of the stimuli were similar across conditions; only the 
domain (size or temporal order) differed. Given the very similar 
demands across the two tasks, it is not surprising that performance 
across tasks were highly correlated. However, double dissociations 
were found. Three patients displayed a selective TOJ deficit and 
conversely three patients displayed a selective size judgment deficit. 

FiGure 6 | Statistical maps of neuroanatomic regions in which damage 
correlated significantly (using permutation statistics) with (A) residuals 
resulting from size performance regressed against TOJ performance, 
representing regions where lesions correlate with variance associated with size 

performance independent of TOJ performance and (B) residuals resulting from 
TOJ performance regressed against size performance representing regions 
where lesions correlate with variance associated with TOJ performance 
independent of size performance.
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We found spatially and functionally distinct subregions of the 
right supramarginal gyrus survived the residual analysis for both 
domains. Specifically, the bulk of the size related region was found 
to be more inferior than the bulk of the TOJ related regions, though 
the size region does extend to more superior supramarginal gyrus. 
Taken together, we conclude that within posterior parietal cortex, 
time judgments are represented bilaterally, although more uniquely 
on the left, and processing unique to size judgments are right lat-
eralized. One hypothesis for bilateral involvement during TOJ is 
that the left and right superior temporal/posterior parietal regions 
operate as comparators (Davis et al., 2009) though this has not been 
tested. The nature of the spatial and functional independence of 
size judgment and TOJ processing within right posterior parietal 
cortex remains undefined.

fInal IMPlIcatIons for an Internal clock
Internal clock models are one class of models that describe how 
units of time might be represented. The putative clock stage of 
these models purports a pacemaker that generates a pulse that maps 
lawfully onto the passage of time. These pulses are integrated by 
an accumulator which transforms the pulses to a representation 
that can be manipulated or stored in memory (Gibbon, 1977). 
The TOJ data provides insight to the neural mechanisms under-
lying the clock stage as this task could be viewed as assessing the 
limits of temporal resolution (Correa et al., 2006). We reason that 
impaired performance on the TOJ tasks reflects an increase in the 
just noticeable difference of temporal durations which might map 
onto a widening of the pulse-width input into a neural accumulator 
or slow the “refresh rate” needed for temporal segregation across 
discrete snapshots. Therefore, regions we found to be uniquely 
vulnerable to insensitivity to temporal onset differences, including 
left frontal operculum, left precentral gyrus, left angular gyrus and 
bilateral supramarginal gyrus support subprocesses of the clock 
stage such as generation of the pulses from the pacemaker or entry 
into the accumulator.

acknowledgMents
The authors wish to acknowledge Marianna Stark for coordinat-
ing the patient database and Bianca Bromberger for assistance in 
creating figures.

of spatio-temporal estimations that are used for both motor plan-
ning and perceptual estimations – perhaps integrating the dorsal 
and ventral streams.

Right posterior parietal cortex has been widely implicated in size 
estimations (Milner and Harvey, 1995; Milner et al., 1998; Ferber 
and Karnath, 2001) and more recently in processing in temporal 
order (Battelli et al., 2001; Snyder and Chatterjee, 2004; Becchio and 
Bertone, 2006; Correa et al., 2006). In our sample, damage to the 
white matter undercutting the left supramarginal gyrus and damage 
to right angular gyrus were correlated with impaired performance 
across both domains. The presence of partially overlapping size and 
TOJ representation in posterior parietal cortex is consistent with 
interaction between processing streams; the functional nature of 
how these systems overlap remains undefined.

IndePendent cortIcal rePresentatIons
Voxel lesion symptom mapping performed on the residuals of TOJ 
regressed on size judgment and size judgment regressed on TOJ 
reveal regions that are vulnerable to impairment in each domain 
that cannot be accounted for by vulnerabilities in the other. Left 
frontal operculum damage impaired TOJ judgments not accounted 
for by size judgment deficits. Previously, right frontal operculum 
has been found to be involved with temporal decision-making 
(Rao et al., 2001) while left frontal operculum has been involved 
with temporal cuing (Coull and Nobre, 1998) and perception of 
temporal rhythmic patterns (Schubotz et al., 2000; Schubotz and 
von Cramon, 2001). Therefore, this region of left frontal opercu-
lum may mediate attentional mechanisms directed specifically at 
temporal segments.

Right posterior superior temporal cortex damage impaired 
size judgments that could not be accounted for by TOJ judgment 
deficits. Therefore, while left superior temporal cortex seems to 
be involved in shared processing of size and temporal order as 
described above, right superior temporal cortex appears independ-
ently engaged with size judgments.

Left posterior medial temporal, supramarginal gyrus and left 
angular gyrus damage impaired TOJ performance but not size 
judgment performance. Recently, a theoretical distinction between 
explicit timing and temporal expectation has been proposed (Coull 
and Nobre, 2008). Temporal expectation tasks such as temporal 
cuing or serial prediction tasks that implicitly call upon temporal 
information preferentially activate left premotor and left inferior 
parietal cortices. Though temporal sequencing and simultaneity 
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