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To move beyond assertions based in correlation and directly 
test the hypothesis that the precise spike timing brought about 
by gamma oscillations enhances intracortical communication, it 
is necessary to bring this oscillation under experimental control. 
Enforcing temporal precision within a local network will require 
interventions that are somewhat artificial, but which are essen-
tial for understanding the benefits of gamma. In a recent study, 
Cardin et al. (2009) used optical stimulation to drive parvalbu-
min-positive neurons in the gamma frequency range, inducing 
network effects that mimic physiological gamma. When punctate 
sensory stimuli (brief vibrissa deflections) were presented, the 
precise timing of inhibition relative to sensory input altered the 
evoked response. For certain delays, the overall number of spikes 
was reduced, indicating gamma can change the input gain of a 
region. For other delays, rhythmic inhibition did not decrease the 
total number of spikes, but did cause spiking to occur in a more 
compressed temporal window, increasing the synchrony of the 
evoked response.

In considering dynamics in rate coding, a fundamental question 
is the value that an action potential (or a fixed number of action 
potentials) has in generating firing in a downstream area. Central 
to this question of gain modulation is whether the same number of 
spikes in a local area can generate a greater number of spikes in a 
target area, enhancing the efficacy of signal transmission. Synchrony 
is often cited as a potential mechanism for increasing the value of a 
given spike rate in a local area (König et al., 1996; Azouz and Gray, 

IntroductIon
Cortical oscillations in the gamma range (30–80 Hz) have been 
observed in numerous brain regions in a variety of species (Gray 
and Singer, 1989; Engel et al., 1991; Ribary et al., 1991; Maldonado 
et al., 2000; Nase et al., 2003), and during a wide range of behavioral 
states, from attentive wakefulness to REM sleep (Maloney et al., 
1997; Gruber et al., 1999). The appearance of gamma at specific 
times relative to task performance implicates these rhythms in 
sensory processing, perceptual binding, memory formation, and 
conscious experience (Tallon-Baudry et al., 1997; Tallon-Baudry 
and Bertrand, 1999; Fries et al., 2001; Womelsdorf et al., 2006; 
Jensen et al., 2007; Fries, 2009; Gregoriou et al., 2009). However, 
the correlation between gamma expression and enhanced process-
ing is nevertheless a debated issue, particularly in primary sen-
sory neocortex (Chalk et al., 2010). In apparent contrast to the 
diversity of conditions under which gamma has been detected, 
studies performed in vitro, in vivo, and in silico point to a unifying 
mechanism for gamma: volleys of alternating inhibition and excita-
tion between parvalbumin-positive fast-spiking interneurons and 
pyramidal cells (Freeman, 1968; Wang and Buzsáki, 1996; Fisahn 
et al., 1998; Whittington et al., 2000; Traub et al., 2005; Bartos 
et al., 2007; Börgers et al., 2008; Börgers and Kopell, 2008; Atallah 
and Scanziani, 2009; Cardin et al., 2009; Paik et al., 2009); but see 
also (Galán et al., 2006). If gamma-range oscillations enhance sig-
nal processing, their common mechanism may reflect an essential 
temporal structure in the functioning of neural circuits.
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2000, 2003; Pinto et al., 2000; Börgers and Kopell, 2005; Bruno and 
Sakmann, 2006; Wang et al., 2010), though relatively little direct 
experimental evidence has been offered for this idea.

Presuming efficacy can be modulated, we can begin to explore 
the boundaries on this improvement in transmission. For example, 
it is important to know the limit beyond which firing in the local 
area cannot be further optimized, leading to diminishing returns 
when more local spikes are added. We refer to this as the efficiency of 
transmission, as additional, less useful spikes would reflect “wasted” 
effort of the pre-synaptic area.

Using a computational model consisting of 4488 neurons with 
realistic Hodgkin–Huxley biophysics, we addressed three ques-
tions regarding neural gain and gamma posed by the Cardin et al. 
(2009) findings. First, we delineated a potential local network 
mechanism that can explain the local gain change observed, i.e. 
the increased firing rate during the early part of the response 
at specific phases of alignment between sensory stimulus and 
gamma cycle. Second, we asked how an imposed gamma oscil-
lation can impact the efficacy of signal transmission, and third, 
how it may impact its efficiency. Though the oscillations induced 
in our network (and in Cardin et al., 2009) lack the spatial and 
temporal flexibility of natural rhythms, they are a potentially 
powerful tool for probing the importance of spike timing in 
intracortical communication. Limitations of this approach in 
general and specific ways that it is non-natural are presented in 
the  section “Discussion”.

We found, in agreement with previous suggestions, that a sharper 
onset in the rate of pre-synaptic spiking enhanced the efficacy of 
signal transmission. We further found that spiking efficiency was 
crucially dependent on the shape of the sensory evoked “spike 
packet,” defined as local spikes within a temporal window on the 
scale of a single cycle of gamma (see Tiesinga and Sejnowski, 2009 
for explication of a similar term, “spike volleys”). Under model 
conditions in which the recipient neocortical area exhibited strong 
recurrent inhibition, spiking beyond the gamma-defined window 
did not contribute to additional downstream activation, decreasing 
the net gain between areas. Given that such conditions are observed 
during enhanced attention and arousal and during processing of 
naturalistic stimuli, these findings suggest a fundamental time scale 
for the effective transmission of signals through the neocortex dur-
ing active sensory processing.

MaterIals and Methods
The model was organized in a sequence of three processing stages. 
An input stage (I) provided excitatory feed-forward input (simu-
lating a sensory stimulus) to the first processing stage (X1), which 
is the site of “optical” modulation, and the output of X1 was fed 
into the second processing stage (X2). Both processing stages were 
identical except for the strength of recurrent inhibition. In addi-
tion, a separate stage (B) provided both excitatory and inhibitory 
background input to simulate individual variability of each neuron 
in cortex.

The input and background stages were modeled as spike genera-
tors without further processing. Each processing stage consisted of 
pyramidal cells (P) and fast-spiking inhibitory cells (FS). Both cell 
types received inputs from the P cells of the previous stage, and 
made local connections with both cells types within each stage.

Each stage contained 1024 pyramidal cells and each processing 
stage also contained 196 fast-spiking interneurons, approximat-
ing the cortical proportions of these different cell types (Markram 
et al., 2004). The time constants for P and FS cells were tuned to 
approximate the physiological properties of pyramidal cells and 
fast-spiking interneurons, respectively.

cell Models
Input (B and I) cells were modeled as independent variable rate 
Poisson process spike generators with a time step of 100 μs.

Pyramidal (P) cells had a single somatic compartment with six 
attached dendritic compartments. The somatic compartment was 
based on the single compartment Hodgkin–Huxley type model 
(Golomb and Amitai, 1997), and adapted to include additional den-
dritic compartments. The membrane potential was determined by 
the membrane equation summing currents from different intrinsic 
currents through channels present in the membrane with synaptic 
and injected currents.

For the soma:
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Fast-spiking cells show different properties including fast 
spikes, higher firing rates, lack of spike rate adaptation (Beierlein 
et al., 2003; Ma et al., 2006; Caputi et al., 2008) and were mod-
eled as single compartments after the Hodgkin–Huxley type 
equations in a previous model (Wang and Buzsáki, 1996):
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dV

dt
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Leak current:
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The dendrites were modeled analogously but only contained 
passive (leak) channels.
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sIMulatIon envIronMent and global paraMeters
All simulations were carried out using the cortical network simu-
lator (CNS, Mutch et al., 2010) package written in Matlab (The 
Mathworks, Natick, MA, USA) and C, running on custom PCs 
with an Nvidia GeForce GTX285 or GTX480 GPU (EVGA, Brea, 
CA, USA). All differential equations were solved with the Crank–
Nicolson method. The time step for intracellular and synaptic com-
putations was 10 μs, inter-cellular spike-based communication was 
performed with a time step of 100 μs.

analysIs
Post-stimulus time histograms (PSTHs) were computed using a bin 
size of 2 ms. Total spike count was defined as the number of elicited 
spikes up to 50 ms after the stimulus. Synchrony was measured as the 
inter-quartile range of spikes times in the population during a single 
trial. Gain was defined as the ratio between the spike count in the tar-
get area and the spike count in the source area. Statistical significance 
of differences was assessed using an ANOVA with Dunnett’s test for 
comparisons between different phases or delays and the baseline con-
dition, and t-tests for comparisons between only two conditions.

results
To investigate the mechanism of timing-dependent modulation of 
sensory responses observed in Cardin et al. (2009), we generated a 
large multi-stage neural network consisting of an input stage (I) and 
two processing stages (X1 and X2) (Figure 1). Each processing stage 
was organized as a two-dimensional layer of excitatory neurons and 
inhibitory interneurons. The input stage consisted of 1024 variable 
rate Poisson spike generators in a 32 × 32 grid. The processing stages 
were identical, each a 32 × 32 grid of pyramidal cells (P) interspersed 
with a 14 × 14 grid of fast-spiking interneurons (FS), modeled as 
Hodgkin–Huxley style multi- and single-compartment cells, respec-
tively. Within each stage, both cell types received inputs from both 
cell types and connectivity was local, i.e. for a given post-synaptic 
neuron, the connection probability for each potential pre-synaptic 
neuron fell off with a Gaussian profile with a sigma equal to 20% of 
the extent of the entire layer. Both cell types also received input from 
pyramidal cells of the previous layer. In addition, each cell received a 
random sequence of excitatory and inhibitory synaptic inputs (driven 
by a random subset of 40 out of 1024 Poisson spike trains for each 
cell) to capture variability between cortical cells. The synaptic weights 
were tuned to approximate basic properties of the anesthetized mouse 
primary somatosensory cortex in general and the results of Cardin 
et al. (2009) specifically. The latency from stimulus to X1 spike was 
8–10 ms for most cells, matching in vivo latencies (Pinto et al., 2000), 
the difference of median spike times in X1 and X2 varied between 
4 and 10 ms, depending on the number of spikes in X1. To model 
light-activated stimulation of fast-spiking cells, we added a strong 
excitatory synapse with activation kinetics paralleling those of chan-
nelrhodopsin-2, which were activated with a 1 ms “light” pulse (Nagel 
et al., 2003; Boyden et al., 2005; Ishizuka et al., 2006).

local effects of synchronous InhIbItIon
We first replicated the experimental data and investigated the local 
effects of synchronized inhibition in the affected area. Dissociating 
the contributions of pre- and post-stimulus inhibition, we then 
determined the mechanism for these effects.

synaptIc dynaMIcs
The model included two synapse types, excitatory AMPA synapses 
and inhibitory GABA

A
 synapses. All synapses were modeled by 

kinetic models with two states representing the open and closed 
states of ion channels (Destexhe et al., 1994). The fraction of open 
channels for a synapse r increased with the rate constant α when 
neurotransmitter was present (T = 1 mM), and decreased with the 
dissociation rate β:

dr

dt
T r r= −( ) −α β1

The total conductance g of a synapse was the product of its 
maximal conductance ĝ and the fraction of open channels r. The 
rate constants for the different synapse types (Destexhe et al., 1994) 
were: AMPA synapses: α = 1.1 × 106 M−1s−1, β = 190 s−1; GABA

A
: 

α = 0.53 × 106 M−1s−1, β = 180 s−1.

connectIvIty
Synaptic connections were made such that each post-synaptic cell 
received input from pre-synaptic cells in a local environment. For 
a given post-synaptic cell, the probability of a synaptic connection 
with a pre-synaptic cell was determined by a Gaussian probability 
distribution with a width of 20% of the total model extent.

All excitatory synapses are modeled as AMPA synapses. Fast-
spiking cells made GABA

A
-ergic synapses onto the soma of pyrami-

dal cells. The conductances within each stage were: g
PP

 = 0.56, 
g

PF
 = 5.0, g

FF
 = 20.0, g

F1P1
 = 3.6, g

F2P2
 = 14.4 nS, and conductance val-

ues between stages were set to be: g
BP(e)

 = 0.8, g
BP(i)

 = 1.2, g
BF(e)

 = 0.6, 
g

BF(i)
 = 0.48, g

IP1
 = g

P1P2
 = 15.0, g

IF1
 = g

P1F2
 = 0.4 nS.

Inputs
B and I cells were modeled as variable rate Poisson spike generators. 
For each B cell, the mean firing rate was fixed at 40 Hz throughout 
the simulation. Each cell in the processing stages received a random 
subset of these spike trains, each connected to either excitatory 
or inhibitory synapses, to mimic random background fluctua-
tions in neocortical cells. The firing rate of I cells was varied with 
the stimulus. At the stimulus time, their rate was determined by a 
Gaussian profile with amplitude 250 Hz and width 2 ms, and they 
were otherwise silent.

To model light-activated stimulation of fast-spiking cells, we 
added a strong excitatory synapse to X1 FS cells. The kinetics of 
these channels were similar to those of channelrhodopsin-2 (Nagel 
et al., 2003; Boyden et al., 2005; Ishizuka et al., 2006), and their 
activation was triggered with a 1 ms “light” pulse instead of neu-
rotransmitter as for chemical synapses. For the results presented 
here, half of all FS cells were “light-activated”. While there is no 
direct evidence for the fraction of cells activated in Cardin et al., 
this number is consistent with observations in these and other 
channelrhodopsin-2-expressing animals. In a version of these simu-
lations in which all FS cells are light-activated, qualitatively similar 
results were observed, indicating that the observed effects are not 
critically dependent on the choice of this parameter.

The delay between light and “sensory” input was defined as the 
time between the onset of the “light pulse” and the time of peak 
of the I cell Gaussian firing rate profile, i.e., the median spike time 
of the input population spike packet.
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pulses (Figure 2A). Consistent with the experimental data, we 
observed modulation of X1 P activity in response to the stimu-
lus that depended on the precise timing between stimulus and 
induced inhibition (Figure 2B). Responses to stimuli close to the 
time of induced inhibition were almost completely suppressed, 

The impact of repetitive induced inhibition on sensory evoked 
responses
To replicate the in vivo results, we activated X1 FS cells at a fre-
quency of 40 Hz and gave a brief feed-forward stimulus from the 
input layer at varying phases (in 2-ms steps) between two light 

Input

X1

X2

P FS

Figure 1 | Model architecture and connectivity. Connectivity is shown for one pyramidal (P) cell (left) and one fast-spiking inhibitory (FS) cell (right) in X2 (marked 
in yellow). Blue triangles represent P cells, red circles represent F cells. Both cells types connect to both cells types locally within each stage and receive input from a 
pool of excitatory cells from the previous stage.
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Figure 2 | Timing-dependent impact of inhibition on sensory responses. 
(A) Stimulation paradigm for repetitive inhibition. A single sensory stimulus was 
given at different phases in between two light pulses embedded in a light train 
at 40 Hz. (B) Population X1 response at baseline (top) and different phases 
during repetitive inhibition. (C) Spike count for each phase of stimulation. 
Dashed line indicates baseline condition. (D) Spike synchrony, defined as 
inter-quartile range of spike times across the population (smaller numbers 

denote more synchrony). (e) Stimulation paradigm for single inhibition. A single 
sensory stimulus was given at different delays relative to a single light pulse. (F) 
Population X1 response at baseline (top) and different delays for a post-stimulus 
(left) and pre-stimulus (right) light pulse. (g) Spike count for each phase of 
stimulation. Filled circles correspond to pre-stimulus inhibition, open circles 
mark post-stimulus inhibition. (H) Spike synchrony. *p < 0.05, **p < 0.01; error 
bars, mean ± S.E.M.
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Applying these combined kernels from each phase of the 
 repetitive inhibition to the baseline response predicted the size 
and shape of the actual responses (Figure 3A). Thus, the effect 
of repetitive inhibition on a sensory response in X1 was captured 
by the combined effect of the inhibition immediately preceding 
and following the stimulus. During the middle phases, the pre-
stimulation inhibition caused an overall boost across the response 
packet and the post-stimulus inhibition suppressed the late spikes, 
effectively creating a more synchronous packet of approximately 
equal size compared to the baseline response. Given that our initial 
simulations showed the same local effects on rate and synchrony 
in X1 as the experimental data (Cardin et al., 2009), these results 
suggest that further mechanisms, beyond the impact of repeated 
events of inhibition, need not be invoked to explain the “gamma” 
dependent gain observed.

Biophysical mechanism of response elevation
While suppression by post-stimulus inhibition has a straightfor-
ward explanation, the cause of increased spiking in response to a 
stimulus approximately 10 ms after light stimulation is not intui-
tive. To understand the mechanism underlying this phenomenon, 
we investigated the sub- and supra-threshold responses of P and 
FS cells in the network. Under baseline conditions, due to their 
strong inputs and fast membrane kinetics, FS cells fired a popula-
tion spike at short latency after the onset of the incoming sensory 
input while the incoming excitatory post-synaptic potential (PSP) 
in P cells was still rising (Figure 3B). This population spike caused 
an inhibitory PSP in the P cells that reduced the slope and ampli-
tude of the resulting compound PSP (Figure 3C). Comparing the 
early and late phase of the rising compound PSP in X1 P, the IPSP 
reduced the slope by more than 60% (Figure 3D, left). As soon as 
P cells did fire, strong recurrent connections from P onto FS cells 
caused a secondary FS response, restoring the balance between 
excitation and inhibition.

In the pre-stimulus inhibition condition, light-activating FS 
cells in the model also caused a strong IPSP in FS cells. The result-
ing hyper-polarization and increased conductance in these cells 
suppressed their initial sensory driven response, causing the EPSP 
in the P cells to proceed without interference from an early IPSP 
(Figures 3B–D, right). Without the contribution of perisomatic 
inhibitory synapses, a more depolarized membrane potential and 
higher PSP slope were observed, both of which predict a higher 
spike probability (Azouz and Gray, 2000). Because of the earlier 
IPSP caused by the light-induced FS activation, the starting mem-
brane potential for P cells was slightly more hyperpolarized com-
pared to baseline, causing an increase in latency of spike onset 
and stronger synchronization, also consistent with experimental 
data (see Figure 4, Cardin et al., 2009). As soon as P cell spiking 
started, FS cell spiking increased, similar to the baseline case. These 
results provide a biophysical mechanism for the modulation of size 
and shape of the X1 population response due to induced FS-to-FS 
inhibition.

To test whether this mutual inhibition mechanism is necessary 
for the response enhancement, we created a model variant lacking 
the underlying inhibitory FS–FS synapses. As expected from the 
lack of mutual FS inhibition, early feed-forward driven FS spikes 
were not affected by light stimulation (Figure 3E). The P cell  spiking 

while  stimuli approximately half a period after the last light 
pulse (12–16 ms) elicited a comparable number of spikes in X1 P 
(Figure 2C). Spike synchrony was enhanced overall during induced 
inhibition, however, stimuli during the first half-period led to the 
strongest increases in synchrony (Figure 2D).

Isolated effects of pre- and post-stimulus inhibition in X1
Each stimulus was preceded and followed by a pulse of inhibi-
tion, suggesting that the mechanism(s) for the observed changes 
in response packet size and shape resulted from a linear or non-
linear combination of the earlier and later inhibitory inputs. To 
isolate the contributions of pre- and post-stimulus inhibition, 
we employed a second paradigm in which a single inhibition-
inducing light pulse was paired with a stimulus at varying delays 
from 25 to 1 ms pre-stimulus and 0–24-ms post-stimulus in 
2-ms steps (Figure 2E). These values were chosen such that for 
each delay in the pre-stimulus inhibition condition there was a 
corresponding value in the post-stimulus inhibition condition, 
effectively mapping onto the same phase in the repetitive inhibi-
tion experiment.

Pre- and post-stimulus inhibition conditions showed two dis-
tinct and opposite effects on the size and shape of the response 
packet in X1 (Figure 2F). Post-stimulus inhibition 25 ms after 
the stimulus did not have an appreciable effect on the response. 
Decreasing the stimulus latency preceding inhibition led to a grad-
ual decrease in the number of elicited spikes. Delays of 10–14 ms 
only suppressed the latter part of the response packet in X1, leaving 
the first part virtually unchanged. This sculpting of evoked spikes 
led to significant changes in synchrony (p < 0.01), but no signifi-
cant decrease in spike count (Figures 2G,H). For shorter delays, 
inhibition reached the P cells early enough to cause significant 
suppression (p < 0.01). Inhibition immediately before the stimulus 
(16–24 ms) led to almost complete suppression of the X1 response 
(p < 0.01), similar to inhibition immediately afterward (0–4 ms). 
As the post-stimulus delay was increased to 12–20 ms, the response 
became elevated throughout the response period (p < 0.01). This 
response potentiation peaked at a delay of 14 ms and then decreased 
again, returning to the baseline response as the delay was further 
increased beyond 20 ms (Figures 2F–H).

Prediction of the impact of repetitive inhibition from isolated 
inhibition
We hypothesized that the impact of repetitive inhibition could 
be explained by linear combination of the effects of pre- and 
post-stimulus inhibition. To test this prediction, we computed 
a modulation kernel for each delay from the single inhibition 
responses by normalizing the corresponding PSTH by the base-
line PSTH. For a given kernel, the value in each bin was the 
ratio between the response during the delay condition and the 
response during the baseline condition, representing the impact 
of this condition on that particular time bin. If the number of 
spikes was unchanged, the kernel value was 1, if all spikes were 
suppressed, the value was 0. Because the delays were chosen to 
map onto the same phase in the repetitive inhibition case, the 
equivalent kernel representing the combined effect of pre- and 
post-stimulus inhibition can be derived by simply multiplying 
the two corresponding kernels.
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In contrast to X1 spike count, which did not consistently exceed 
baseline levels, X1 spike synchrony values were significantly changed 
during the intermediate phases (2–14 ms, p < 0.01), suggesting this 
shift was causal in the increased gain. The sub- and supra-threshold 
responses of both cell types in X2 support such a mechanism. FS 
and P cells in X2 exhibited similar response packet shapes during 
baseline and delay conditions, but elevated counts during the delay 
condition (Figure 4D, left). The average P cell membrane potential 
revealed a 50% higher PSP slope (Figures 4E,F). This steeper slope 
was driven by the larger number of coincident X1 spikes during 
the early phase of the X1 spike packet. Due to this increased slope, 
more cells were able to fire spikes before the IPSP from the FS 
cells started to suppress the P cells, leading to a stronger and more 
synchronous response.

IMpact of response packet shape on downstreaM effIcIency
During the single pulse post-stimulus inhibition condition, X2 
gain was only weakly modulated for all delays, despite the fact 
that at least as many spikes were driven as in the baseline response 
(Figures 4G–I). Comparing the 12-ms delay response for the single 
pulse inhibition to the corresponding latency from the repetitive 
inhibition condition reveals that FS and P cells in X2 exhibited 
sub- and supra-threshold responses (Figures 4J–L) that are nearly 
equivalent to the repetitive inhibition condition, despite different 
X1 responses.

was strongly reduced, consistent with the  hyperpolarizing effect 
of the earlier light-induced IPSP in combination with unchanged 
feed-forward inhibition. Subsequently, late FS spiking driven by 
P activity was reduced, as well. The spike count for post-stimulus 
inhibition conditions in this model variant was similar to the origi-
nal model (Figure 3F, compare to Figure 2G). However, almost 
all pre-stimulus inhibition conditions showed significant sup-
pression, and the enhanced spike count for several pre-stimulus 
inhibition conditions found in the original model was completely 
abolished, supporting the crucial role of mutual FS inhibition for 
this  enhancement mechanism.

IMpact of the response packet shape on downstreaM effIcacy
We investigated the impact of these changes in the X1 response 
size and shape on the efficacy in driving responses in a down-
stream target area (X2). As expected, the number of spikes 
elicited in X2 in the repetitive inhibition paradigm closely fol-
lowed the spike count in X1 (Figures 4A,B). Phases close to an 
inhibitory pulse (0–4 and 20–24 ms) exhibited decreased gains 
compared to baseline (p < 0.01), explained by the much lower 
X1 firing rates under these conditions (Figure 4C, p < 0.01). 
Intermediate delays (12–16 ms), however, while matching the 
X1 spike count of the baseline condition, had significantly higher 
X2 spike counts (p < 0.01), resulting in a significantly higher X2 
gain (p < 0.01).
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deleted, and we determined the size of the X2 response for each of 
these deletions. This analysis revealed that deletion of spikes during 
the first 10 ms of the X1 response had the strongest impact on X2 
spike count. In contrast, spikes later than 10 ms after the response 
onset had almost no impact (Figure 5B). To confirm this result, 
we performed another deletion experiment in which we erased all 
spikes 10 ms or later after response onset. Indeed, now X1 responses 
were comparable in shape in both conditions, and X2 responses 
were identical (Figure 5C).

These results revealed that the precise temporal structure of a 
spike packet not only influenced its efficacy in driving X2 responses, 
but also its efficiency in eliciting downstream responses, both deter-
minants of gain. Beyond a specific window determined by the tim-
ing of inhibition in the target region, X1 spikes had no net gain and 
were essentially extraneous to signal relay.

To understand the difference in X2 gain despite the virtually 
equivalent spike count in X2 (78 vs. 72 spikes, Figure 5A), we 
analyzed the temporal structure of the two X1 response packets. 
Compared to the repetitive inhibition condition, the X1 response 
in the single post-stimulus inhibition condition was similar dur-
ing the first 10 ms, but contained more late spikes (158 vs. 109 
spikes). The single inhibition X1 response contained a large number 
of spikes during and after the conclusion of most X2 firing. The 
impact of these late X1 spikes on X2 was reduced by an IPSP from 
X2 FS cells.

To quantify the impact of spikes during different parts of the X1 
response packet, we performed simulations that exactly replicated 
the conditions used to produce the responses in Figure 4A, with 
the only difference being that a 10th of X1 spikes were deleted. In 
each run, all the spikes from a different one of the 10 deciles were 
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reporting similar effects under conditions of natural,  intrinsically 
generated gamma oscillations in vitro, in vivo, and in silico (Burchell 
et al., 1998; Fries et al., 2001, 2008; Pouille and Scanziani, 2001; 
Börgers et al., 2005; Womelsdorf et al., 2006).

The computational benefit of gamma has been described as 
synchronizing spikes within a local population without changing 
the overall number of spikes, effectively creating a sequence of 
impactful spike packets interspersed with brief periods of relative 
silence, in contrast to a continuous stream of spikes without tempo-
ral structure. This view implies that each gamma cycle can be viewed 
as a separate “window of opportunity” (Pinto et al., 2000; Wehr 
and Zador, 2003; Hasenstaub et al., 2005; Wilent and Contreras, 
2005), similar to the mechanisms controlling the transient imbal-
ance of excitation and inhibition in response to a brief sensory 
stimulus. Mechanistic explanations of gamma-related redistribu-
tion of spikes have focused on the effect of the rhythmic inhibi-
tory PSPs in pyramidal cells suppressing spikes or delaying spiking 
in response to a sustained stimulus, leading to a compression of 
spike times into a shorter window and thus increased synchrony 
(Whittington et al., 2000; Börgers and Kopell, 2003; Tiesinga and 
Sejnowski, 2009). Our results indicate that the mutual suppression 
of FS cells could also play an important role in modulating the gain 
in the local network, regardless of whether gamma is created by a 
PING or ING mechanism (Whittington et al., 2000; Tiesinga and 
Sejnowski, 2009). This finding is consistent with the result that a 
transient increase in excitation is accompanied by a synchronized 
decrease in inhibition in cat V1 neurons (Azouz and Gray, 2008).

spIke synchrony and downstreaM effIcacy
We found that the synchrony of spikes in a population packet, par-
ticularly during the onset of a response, had a profound impact on 
the size of the downstream response, in agreement with previous 
computational and experimental studies (König et al., 1996; Azouz 
and Gray, 2000, 2003; Pinto et al., 2000; Börgers and Kopell, 2005; 
Bruno and Sakmann, 2006; Womelsdorf et al., 2007; Wang et al., 
2010). Taking into account the correlation between attention and 
gamma band activity (Fries et al., 2001, 2008; Börgers et al., 2005, 
2008; Womelsdorf et al., 2006; Roy et al., 2007), these findings 
support the view that attention might act by increasing synchrony 
among local ensembles of neurons and thus selectively enhancing 
their impact on a target area, effectively increasing signal-to-noise 
without large increases in average spike rate (Steinmetz et al., 2000; 
Fries et al., 2001, 2008; Buia and Tiesinga, 2006).

packet shape and downstreaM effIcIency
In contrast to the efficacy of a spike packet, which was mostly deter-
mined by the early phase, its efficiency was determined by firing 
in the late phase, i.e. its length. If a packet was too long, late spikes 
arrived at the downstream circuit after inhibition had set in and 
thus had diminished impact, decreasing overall packet gain. Thus, 
a key benefit of repetitive inhibition, as in the case of gamma, is 
optimal packet length controlled by post-stimulus inhibition, deter-
mined by the time between two inhibitory events.

Given the dependence of downstream inhibition on the strength 
of activity in a pre-synaptic source, our results imply a close con-
nection between early efficacy and the most efficient packet size. To 
maintain maximal efficiency, packet length needs to be dynamically 
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dIscussIon
We will first discuss our results on the local effects of repetitive 
inhibition, followed by the resulting changes in efficacy and effi-
ciency. We conclude with a discussion of how our results relate to 
intrinsically generated gamma.

local effects of repetItIve InhIbItIon
We have identified opposing contributions of pre- and post- stimulus 
inhibition to the enhancement of spike count and synchrony for 
the optimal phase delay between stimulus and inhibition. While 
post-stimulus inhibition cuts off late spikes, and thus increases syn-
chrony of the population response, pre-stimulus inhibition causes 
an overall increase in spiking, particularly during the early phase of 
the response, by FS-to-FS inhibition. In combination, these effects 
lead to the observed strong increase in synchrony while maintaining 
or only moderately increasing spike count. This finding is in align-
ment with several previous experimental and computational studies 
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adjusted to the spike count at the beginning of the packet. If activity 
is low in the pre-synaptic input, inhibition will also be more weakly 
recruited, and a longer packet length will show greater efficiency. 
In contrast, in the conditions of the current experiment, narrower 
temporal windows are optimal. This prediction is consistent with 
several theoretical and experimental studies showing excitatory 
integration during weak stimulus presentation, and stronger rela-
tive inhibition during strong drive (Somers et al., 1998; Moore 
et al., 1999).

While there is considerable debate over the contribution of 
different processes to the total energy consumption of the brain 
(Attwell and Iadecola, 2002), spiking and evoked pre- and post-
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and Sejnowski, 2003) that energy consumption constrains neural 
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the optimal balance between transmitted information and ener-
getic cost. Thus it is possible that one of the functions of gamma, 
and the redundancy in mechanisms leading to its emergence, 
is to sustain this efficiency across large networks by optimizing 
spike timing.

IMplIcatIons for IntrInsIcally generated gaMMa
Although our ultimate goal is to understand the mechanism and 
function of gamma in natural circuits, the premises of our study 
deviate from intrinsic in vivo gamma in two crucial ways.

First, and maybe most importantly, repetitive inhibition was 
induced artificially in our optogenetic study and in this model, 
in contrast to intrinsically generated inhibition during states 
of gamma activity. This manipulation allowed us to dissociate 
excitation and inhibition temporally, to understand the mecha-
nisms underlying the link between them during natural gamma 
activity. A consequence of the independent control of inhibi-
tory activity is the disruption of self-regulatory and adaptive 
mechanisms controlling the interplay between excitation and 
inhibition. During natural gamma, the spatial and temporal 
distribution of inhibitory activity is much less rigid and more 
adaptive to the contextual network activity. Considering the link 
between stimulus strength or discrimination performance and 
gamma frequency (Edden et al., 2009), it is possible that one 

of the functions of intrinsically  generated gamma activity is to 
ensure the match between output packet shape and timing of 
inhibition in the target area that we have found to be necessary 
for optimally efficient transmission.

Second, we used punctate stimuli instead of more natural/natu-
ralistic stimuli that are sustained for several hundreds of millisec-
onds. Further, the impact of this stimulus was modeled as a discrete 
input with relatively brief temporal consequences, in contrast to 
the sustained activity patterns that can be observed following some 
punctate stimuli (Metherate and Cruikshank, 1999). Following 
the view that gamma essentially creates a sequence of windows of 
opportunity, our results can be interpreted as describing one of 
these windows embedded in an ongoing sequence. The extent to 
which this prediction holds, and where the effects and mechanisms 
applicable during ongoing ensemble activity deviate from our find-
ings, will need to be tested in future studies, both in silico and in vivo. 
Due to the availability of a wealth of optogenetic tools (Chow et al., 
2010; Gradinaru et al., 2010), the majority of predictions we have 
made can be feasibly tested in the near future.

Using a detailed large-scale biophysical model, we have dem-
onstrated a mechanism for sensory response gain modulation. 
Precisely timed inhibition in a given neocortical area altered the 
size and shape of its population spike packet, and these differences 
impacted the efficacy and efficiency of transmission of this signal 
to a downstream neocortical area. In a subset of conditions, local 
synchronized inhibition increased the gain of transmission, allow-
ing fewer spikes to have a larger impact. This modulation in gain 
was limited to spiking added in an initial temporal window, the 
addition of later spikes did not impact downstream firing. Thus, 
gamma-range inhibition changes the shape of the local response 
packet to optimize both its efficacy and its efficiency.
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