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complexity, to very detailed networks of multi- compartment 
neurons connected via specific synaptic maps. Whereas the latter, 
detailed models allow the study of precise mechanisms to explain 
specific empirical observations, the former, more abstracted 
approach seeks to elucidate fundamental mechanisms that may 
underpin a variety of apparently diverse neurophysiological 
phenomena. The cortex has a very detailed cytoarchitectural 
and physiological make-up and, clearly, this detail is crucial to 
its many specific functions. However, “physiologically precise” 
models can quickly become highly parameterized, making sys-
tematic explorations of their dynamics an increasing challenge. 
Moreover, as we will show, even very simple dynamical systems 
are capable of both extraordinary spatiotemporal complexity and 
quite specific dynamics.

The present study is squarely positioned towards the more 
abstract, fundamental mechanisms end of the spectrum. In fact, 
in terms of oscillatory behavior – the focus of the present Special 
Issue – we study the most pared-back model achievable, the so-
called Kuramoto model of coupled phase oscillators (Kuramoto, 
1984). This model posits that the activity of a local system (neuron/
neural column/cortical area) can be sufficiently represented by its 
circular phase alone. Interactions amongst these entities, which 
collectively constitute a dynamical structure at the next coarsest 
spatial scale, are then introduced by a simple algebraic form that 
captures the essential characteristics of their exchanges, such as a 
post-synaptic transmembrane perturbation. In its simplest version, 
the Kuramoto model is a highly symmetrical and idealized system 

1 IntroductIon
Over the last few decades, extensive neurophysiological research has 
established the intimate association between adaptive perceptual 
and behavioral processes and fluctuating oscillatory activity in the 
cortex. This occurs across a range of spatial and temporal scales, 
from percept-related changes in gamma oscillations recorded inva-
sively within neuronal microcircuits (e.g., Bressler and Freeman, 
1980), to motor-related modulations in cortical beta oscillations 
observable in extracranial recordings (e.g., Boonstra et al., 2007; 
Houweling et al., 2010). Fluctuations in beta amplitude also appear 
in spontaneous cortical activity (Freyer et al., 2009) but are greatly 
muted in a number of pathological conditions such as Parkinson’s 
disease (Eusebio and Brown, 2009). Whilst neurophysiological 
data attest to the role of high frequency oscillations, there is also 
tremendous interest in slow frequency (below 0.1 Hz) activity in 
resting state networks, as evident in functional neuroimaging data 
(Biswal et al., 2005). Activity in this field has almost exclusively been 
devoted toward empirical research, although related advances in 
computational neuroscience can provide important insights into 
the fundamental mechanisms of oscillatory activity in neuronal 
systems. We believe that unraveling the laws governing fluctua-
tions in large-scale cortical oscillations is a necessary precursor 
to understanding their role in adaptive and pathological cortical 
functions.

Computational studies adopt a variety of abstractions in order to 
deal with complex dynamical systems like the brain. Models hence 
range from relatively simple algebraic forms, through increasing 
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that can nonetheless exhibit rather non-trivial collective dynam-
ics. Subsequently we introduce, and provide heuristic explanations 
for, a succession of increasingly less restrictive generalizations that 
boost the model’s biological salience. Our objective is to commu-
nicate the essence of these adaptations, together with specific types 
of spatiotemporal complexity that they engender, e.g., synchrony, 
traveling waves, and dynamic instabilities. We aim to provide a 
neurobiologically-minded tour of the field, with relevant heuristic 
discussions of modifications of the Kuramoto model and some 
numerical illustrations of its wonderful dynamics1.

The paper is structured as follows. In the next section, the basic 
tenants of the Kuramoto model are introduced following Strogatz’s 
(2000) erudite overview of the Kuramoto model (see also Acebrón 
et al., 2005). We then highlight the relationship of the Kuramoto 
model with neuronal systems at different spatial scales and review 
the collective behaviors of such systems. One of the main restrictions 
of Kuramoto’s seminal formulation from a neurobiological perspec-
tive is its lack of an explicit spatial embedding. In the subsequent 
section we hence consider two important modifications that incor-
porate the spatial aspects of neuronal connectivity and the axonal 
delays that accompany these. Thereafter, we consider less restrictive 
(second-order) forms of the so-called phase response curves that 
incorporate the effective coupling between subsystems and consider 
their candidate physiological counterparts. These lead to the notions 
of dynamical instabilities and spatial frustrations that arise from the 
interplay between order and disorder (measured by entropy) in these 
systems. We illustrate this numerically in two-dimensional cortical-
like sheets. In the final section, we recast the Kuramoto model at the 
population level as a particular kind of diffusion process described by 
the  nonlinear Fokker–Planck equation and sketch the insights gained by 
this formulation. In particular, we review the solutions afforded by this 
model to recent observations of bistability of the human alpha rhythm 
and non-Gaussian fluctuations of the beta rhythm in recordings of 
spontaneous, large scale neocortical activity (Freyer et al., 2009).

2 SynchronIzatIon In the Kuramoto model
2.1 IntroductIon to the Kuramoto model
Like Winfree (1967) before him, Kuramoto sought to understand 
the collective behavior of a large number of oscillating subsystems, 
whose states could each be captured by a single scalar phase θ. Such 
a system can, in general, be represented by the set of N coupled 
differential equations,

θ ω θ θn n mn m n
m

N

n N= + −( ) = …
=

∑Γ , , , ,1
1  

(1)

where the nth oscillator, with natural frequency ω
n
, adjusts its phase 

velocity according to input from other oscillators through the pair-
wise phase interaction functions Γ

mn
. The natural frequencies ω

n
 are 

distributed according to a specified probability density g(ω) usually 
taken to be a symmetric, unimodal distribution such as a Lorentzian 
or a Gaussian with mean ω

0
. Without loss of generality, the system can 

be transformed to a rotating frame by subtracting the mean frequency 
ω

0
, a helpful convention, which we adopt in the illustrations below.

The interaction functions Γ
mn

 can also be thought of as the 
phase response of oscillator n to input from m. In this formulation, 
neither the connection topology (e.g., random, lattice, 2D sheet), 
nor the form of the phase response curve are specified prohibiting 
specific insights to be obtained. The classic Kuramoto model speci-
fies global (all-to-all) coupling mediated by a sinusoidal interaction 
function,

θ ω θ θn n mn m n
m

N

N
K= + −( )

=
∑1

1

sin ,
 

(2)

where K
mn

 is a coupling constant. In the homogenous (isotropic) 
case when the coupling is equal between all pairs of oscillators, i.e., 
for K

nm
 = K the Kuramoto model reads

θ ω θ θn n m n
m

NK

N
= + −( )

=
∑sin .

1  (3)

The sinusoidal interaction function is a first-order approxima-
tion to the more general form (1) but still permits a variety of 
highly non-trivial solutions2. A notable feature of this choice is that 
the interaction function vanishes when the phases are identical or 
differ by π. In the neighborhood of phase identity the interaction 
function has the opposite sign of the phase difference between 
oscillator pairs and hence functions to pull the phases of individual 
oscillators together. In the case of near-antiphase, the phases are 
pushed apart, meaning that there exists a single attracting syn-
chronous and a single unstable antiphase constellation for pairs 
of oscillators. This model is the canonical form for synchronization 
in extended, oscillatory media.

2.2 SynchronIzatIon and order parameter for the  
Kuramoto model
Intuitively, the impact of increasing K in the isotropic case should 
be to increase the phase synchrony amongst the oscillators. This is 
shown in the first two rows of Figure 1 where we illustrate dynamics 
for weak, intermediate and strong K. In the top row (Figures 1A–C) 
the phases are visualized on the unit circle in the complex plane 
whereas the next row (Figures 1D–F) shows brief time series. In 
the weak case, the oscillators disperse whereas, for strong K they 
remain relatively synchronous. In the intermediate case, we see that 
a large cluster of synchronous oscillators are apparent. However, 
many other oscillators, whose natural frequencies are at the tails 
of the distribution, are not locked to this cluster. In other words, 
as K increases, the interaction functions overcome the dispersion 
of natural frequencies ω

n
 resulting in a transition from incoher-

ence, to partial and then full synchronization. The phase offset of 
the fully synchronized solution (approximately 135° in Figure 1) 
is determined by the initial phases of the oscillators.

To quantify the degree of synchrony, it is customary to calculate 
the centroid vector of this phase distribution,

re
N

ei i

m

N
mψ θ=

=
∑1

1

,
 

(4)

1The Matlab source code for our numerical simulations is available from the au-
thors on request.

2The sinusoidal form is “first-order” because it stems from a pair-wise linear cou-
pling between the underlying (self-sustaining) oscillators when approximated by 
(almost) harmonic balance; see also section 2.3.
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Multiplying both sides of (4) by e i n− θ  and substituting the imagi-
nary parts into (3) recasts the model in terms of the mean field 
(ψ,r), namely

θ ω ψ θn n nKr= + −( )sin .
 

(5)

This formulation reveals the individual oscillators to be inde-
pendently enslaved to the mean field alone. Here, circular causal-
ity becomes apparent whereby greater phase coherence (larger r) 
increases the  effective adjustment of each oscillator’s phase toward 
the mean field which thus leads to further increases in phase coher-
ence. Kuramoto exploited this representation to derive an analytic 
value for K

c
. For instance, if the oscillators’ natural frequencies ω

n
 

are distributed around a central frequency ω
0
 spread by some value 

γ according to a Lorentzian density g(ω) = π−1γ/(γ2 + (ω − ω
0
)2), 

then the critical value reads

K
gc = ( ) =2

2
0π ω

γ ,

 

(6)

where ψ is the mean phase of the set of θ
m
 and the scalar r represents 

the phase divergence or uniformity (Mardia, 1972). Importantly, r 
captures the degree of phase coherence in the system as it vanishes when 
the phases are uniformly distributed (have large circular variance) and 
approaches one when the phases of all oscillators become aligned. That 
is, phase coherence r covers the overall structure and is thus identified 
as the order parameter of the system3. Figure 1G shows the steady-state 
value of r obtained in numerical simulations when the global coupling 
strength K is manipulated. It can be seen that r remains close to 0 until 
K reaches a critical value K

c
 (in the figure K

c
 ≈ 5), above which r rapidly 

increases towards its asymptotic value of 1. The non-zero values below 
K

c
 merely reflect fluctuations in the simulation due to finite N.
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Figure 1 | Simulation results for the conventional globally-coupled 
Kuramoto model (N = 1024) under conditions of weak (K/N = 1), moderate 
(K/N = 6), and strong (K/N = 12) coupling. Top row (A–C) shows the final 
phases (in polar form on a unit circle) of the individual oscillators for each 
condition at t = 10 s. Middle row (D–F) shows the evolution of the oscillator 

phases during the final 5 s of each corresponding simulation. For clarity, only the 
first 64 of the 1024 oscillators are shown. (g) Shows the effect of coupling 
strength (K/N = 0–14) on the phase coherence (r∞) of 1024 oscillators at t = 10 s. 
(H) Shows the Gaussian distribution of natural oscillator frequencies used in 
these simulations.

3The term “order parameter” stems from statistical physics where it is used to quan-
tify different state (or phases) often in terms of thermodynamical potentials like the 
free energy. In complex dynamical systems, identifying an order parameter relies 
on a clear-cut separation of time scales: here, r evolves significantly slower than the 
individual oscillators θ

i
. Due to this difference in time scales, all θ

i
 can quickly adapt 

to changes of r, which thus prescribes the dynamics (or order), it “enslaves” the indi-
vidual parts of the system (see, e.g., Haken, 1983; Tass, 1999, for more details).
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natural frequencies. This permits the interactions to be averaged 
over a full phase cycle4. The functions z and p embody the per-
turbation of an oscillator away from its intrinsic state due to an 
input from another (such as via a post-synaptic potential), and 
the further adjustment in phase as the system returns back to its 
limit cycle attractor.

The phase reduction approach has afforded a direct link 
between computational models of neurons and models of weakly 
coupled phase oscillators, permitting a variety of insights into the 
relationship between the phase response curve and the nature 
of synchronous activity at the neuronal level (e.g., Ermentrout, 
1986; Ermentrout and Kopell, 1990, 1991; Vreeswijk et al., 1994; 
Hoppensteadt and Izhikevich, 1997; Kuramoto, 1997). Perhaps 
the best known example is the elegant reformulation of a sim-
ple (class I) spiking neuron as a one dimensional phase oscillator 
using insights from bifurcation theory (Ermentrout and Kopell, 
1986) and the derivation of an appropriate phase response curve 
(Ermentrout, 1996). Hansel and colleagues (Hansel and Mato, 
1993; Hansel et al., 1993a,b) showed that phase-reduced models 
of weakly excitatory Hodgkin–Huxley neurons elicited comparable 
phase-locking behaviors as long as the PIF retained at least the 
first two Fourier components of the original neural interaction; 
we will return to this in Section 4. They also noticed that the shape 
of the PIF dictated the overall synchronization properties of the 
network (Hansel et al., 1995). Neurons with non-negative PIFs 
failed to synchronize, a property that was later proved true for all 
class I membrane models (Ermentrout, 1996), whereas those with 
mixed negative and positive PIFs like Kuramoto’s original sine 
wave formulation, could synchronize. In other words, synchrony 
is crucially dependent upon oscillators having their phase rotation 
either advanced or retarded, according to whether it lags or leads 
the mean field phase, respectively.

Experimental neuroscience, particularly the study of rhythmic 
behavior in cortical and hippocampal circuits, is increasingly con-
cerned with the activity in large populations of neurons. Phase-
based measures of synchrony have become used frequently in the 
characterization of large-scale experimental neuroscience signals 
(e.g., Tass et al., 1998; Varela et al., 2001; Breakspear, 2002; Stam et al., 
2007; Penny et al., 2009). Computational research into the “mass 
action” of thousands of neurons has advanced the field of neural 
mass models (Freeman, 1975). For example, the Wilson–Cowan 
model describes interacting populations of excitatory and inhibi-
tory neurons and has been widely used in modeling neuronal popu-
lations (Wilson and Cowan, 1973). Hoppensteadt and Izhikevich 
(1997) showed that weakly-coupled Kuramoto oscillators and 
weakly-coupled Wilson–Cowan oscillators have similar interaction 
dynamics. They proposed that cortical columns interact through 
phase modulations – namely that information is carried through 
periodic modulations of interspike intervals (Hoppensteadt and 
Izhikevich, 1998). Schuster and Wagner (1990) formally applied 
the phase-reduction approach to the Wilson–Cowan model and 
reproduced observations of feature-dependent synchronization 
between cortical columns in the visual system.

and the dependence of the phase synchrony r on the coupling 
strength K near the onset of synchrony follows,

r
K

K K

K g

K

c

c

c

≈ −
− ′′







= −16 1

0 2
1

3π γ( )
.

 

(7)

Equation (6) implies that for a narrow distribution of frequen-
cies around ω

0
, – i.e., a small γ (and hence a high peak g(ω

0
)) – 

 synchrony can be achieved for small K
c
. Likewise, g″(ω

0
) will be 

strongly negative and, according to equation (7), r will increase 
rapidly for K > K

c
. The converse of both large K

c
 and a gradual 

subsequent increase in r will be true for broad distributions.
Above the critical coupling strength, the completely incoherent 

state is still a permissible solution to equation (3), but it is unstable 
(Strogatz and Mirollo, 1991). That is, any perturbation will cause some 
degree of coherence as reflected in Figure 1G. The incoherent state loses 
asymptotic stability, whereas the coherent state becomes attracting. 
Remarkably, despite the apparently simple form of this system, several 
crucial properties, such as the stability of the coherent state and the 
possible existence of other dynamic states, have resisted rigorous proof 
(see Strogatz, 2000, for a discussion). For example, it was previously 
known that although the order parameter r decays for K below the 
critical value K

c
, the incoherent state is only marginally stable in the 

limit of infinite N. Convergence to this state is hence very slow (Strogatz 
et al., 1992). It was only recently shown that finite size effects introduce 
strong stability and hence rapid convergence for the incoherent state 
(Buice and Chow, 2007) although correlations and fluctuations away 
from this state do persist (Hildebrand et al., 2007). Likewise it has also 
been recently shown that the partially coherent state is only weakly 
stable for K above the critical value K

c
 and hence also slow to converge 

(Mirollo and Strogatz, 2007). As the study of synchronous oscillations 
in neural systems attracts ever more interest, we believe that familiarity 
between the simplicity of the Kuramoto model and the challenging 
complexity of its dynamics is an important feature that should warn 
against simplistic interpretations of experimental signals.

2.3 relatIonShIp to neurobIologIcal SyStemS and  
Inherent lImItatIonS
Although dynamics restricted to a scalar phase measure for each 
subsystem may seem highly restrictive, Kuramoto (1984) showed 
that an ensemble of phase oscillators interacting through an appro-
priate functional form approximates the long-term behavior of any 
ensemble of interacting oscillatory systems as long as the coupling 
is weak and the subsystems nearly identical. This phase reduction 
approach has now become a standard technique in computational 
neurosciences (see, e.g., Ermentrout and Kopell, 1986, 1990; 
Guckenheimer and Holmes, 1990; Tass, 1999; Brown et al., 2004). 
The phase interaction function (PIF, Γ

nm
) is itself the convolution 

of two separate functions, the phase response curve (p
nm

) and the 
perturbation function (z

n
) around a full cycle, namely,

Γmn n mnz p d( ) ( ) , .ϕ
π

ψ ψ ψ ϕ ϕ
π

= +( )∫1

2
0

2

 

(8)

This formulation is crucially dependent on the oscillators being 
only weakly coupled, i.e., the mutual perturbations engendered 
through their interactions are small in comparison to their intrinsic 

4In the study of nonlinear oscillators this averaging is also referred to as “harmo-
nic balance” or as a combination of “rotating wave” and “slowly varying amplitude 
approximation.”
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monkey (Grinvald et al., 1994; Arieli et al., 1995, 1996; Rubino et al., 
2006) as well as a number of cortical slice preparations observed 
with rapid-acting voltage-sensitive optical dyes (Roland et al., 2006; 
Wu et al., 2008). Although the functional importance and role of 
spatial patterns of oscillatory brain activity have yet to be fully elu-
cidated, spatial patterns of oscillatory activity do have the potential 
to encode information in their relative spike timing (phase-coding) 
and hence are worthy of investigation.

The dynamics of globally coupled Kuramoto networks with 
distance-dependent transmission delays (9) can be approximated 
by those of zero-delay networks with connection strengths that 
vary periodically with distance,

θ ω α θ θn n mn m n
m

NK

N
= + ( ) −( )

=
∑cos sin ,

1  
(10)

as described in 7. An example traveling wave solution for this 
equation is illustrated in Figure 2 (top row). For strong coupling, 
and uniform natural frequencies, such solutions arise naturally 
and converge very quickly. Their dominant spatial frequencies 
coincide with the spatial frequency of cos(α

nm
). The approxima-

tion of (9) by (10) only holds exactly when the dynamics are sym-
metric, as in this case. Traveling wave solutions of (10) are hence 
stable, attracting solutions of (9), although the transient dynamics 
towards this global solution will differ. This occurs because the 
term expressing the difference between these two equations con-
tracts toward zero under the action of sufficiently strong oscillator 
coupling. The emergence of traveling waves in (10), however, per-
mits a relatively straightforward heuristic. For K > K

c
 this system 

resembles the original Kuramoto system with the exception that 
the coupling strength is modulated in magnitude between 0 and 
1, and reversed in sign on intervals of length π. The coupling 
strength is maximum in amplitude at cos(α

mn
) = ±1, correspond-

ing precisely with the wavelength of the traveling waves, and, 
thus, instances of full pair-wise (anti-) synchrony for all possible 
oscillator pairs. Between these extremes, there is a phase offset 
between oscillators that varies directly with the modulation of 
K. That is, the pairs of oscillators relax apart in proportion to the 
reduction in the effective coupling strength. Hence, in contrast to 
full synchrony in the original Kuramoto model, the interaction 
functions do not vanish pair-wise everywhere, but rather their 
relative contribution to the phase velocity is uniform across the 
system and globally minimized. Heuristically, the spatial order-
ing permits a traveling wave dynamic solution that minimizes 
the frustration, both locally and globally, introduced through the 
phase offset term α

nm
.

3.2 fInIte Support wavelet-lIKe SpatIal KernelS
Addressing the other neurobiological implausibility of the Kuramoto 
model, global connectivity can be achieved by combining time delay 
effects with a finite width spatial kernel: a function that is maximum 
centrally and reduces gracefully toward zero at some finite width. 
The convolution of a periodic function with such a kernel yields a 
wavelet-like modulation of the interaction functions,

θ ω θ θn n m n
m

NK

N
W m n= + −( )

=
∑ ( , ) ,sin

1  
(11)

By specifying the system to be globally connected via purely 
sinusoidal interaction functions, Kuramoto was able to achieve 
some crucial analytic insights into oscillatory synchronization, a 
feat that has been subsequently extended to other important results 
(e.g., Crawford, 1994). However, to make the system more neuro-
biologically plausible, some less restrictive assumptions are required 
with regards to the connection topology and interaction functions. 
These are covered in the next two sections.

3 SpatIal embeddIng of the Kuramoto model
The Kuramoto model specifies global (all-to-all) coupling amongst 
system oscillators. Whilst this may be a reasonable approximation 
in a small network of densely connected neurons, it is certainly 
not true for large populations of neurons distributed across the 
cortical sheet. In this case, the coupling amongst the oscillators 
should be spatially embedded. Put differently, it should allow for 
the presence of time delays between distant subsystems and accom-
modate reduced coupling strength with distance. We consider each 
of these in turn.

3.1 tIme delayS, travelIng waveS, and phaSe fruStratIon
Time delays in neuronal systems arise principally from finite axonal 
transmission, which is dependent on inter-areal distance and on 
the presence or absence of myelination as well as on synaptic and 
dendritic processes. A crucial step toward neurobiological plausibil-
ity of coupled oscillators is the incorporation of time delay effects 
into the PIFs. For a fully-connected Kuramoto model with time 
delays the dynamics are given by

θ ω θ θ αn n m n mn
m

NK

N
= + − −( )

=
∑sin

1  
(9)

where α
mn

 translates the time delay τ
mn

 into a corresponding phase 
offset. Prior studies that incorporate transmission delays into such 
networks (Yeung and Strogatz, 1999; Zanette, 2000; Jeong et al., 
2002) have revealed elaborate synchronization behaviors. For exam-
ple, Yeung and Strogatz (1999) incorporated a fixed time delay 
α

mn
 = α into a fully connected network of Kuramoto oscillators 

with identical driving frequencies and observed multistable syn-
chrony states as well as a co-existing stable incoherent state. The 
more complex dynamics due to α suggests the notion of frustra-
tion, whereby the interaction functions require some phase offset 
θ

m
 − θ

n
 ≠ 0 in order to vanish (Acebrón et al., 2005). Put differently, 

the presence of α causes the interaction functions to pull the phases 
away from absolute synchrony, even when the natural frequencies 
are identical. This becomes crucial to the complex dynamics to 
be explored below. For neurobiological plausibility, it is crucial to 
order the time delays according to a spatial metric α

mn
∝|x

m
 − x

n
| 

either in one dimension or over a two dimensional sheet. Zanette 
(2000) incorporated distance-dependent transmission delays in a 
1D ring of oscillators and observed a phase transition from global 
synchrony to propagating spatial wave patterns as the time delay 
was increased. Similarly, Jeong et al. (2002) observed patterns of 
global synchrony, traveling rolls, concentric rings, and other spa-
tiotemporal structures in a 2D array of oscillators coupled with 
distance-dependent delays. Comparable spatiotemporal patterns of 
firing have been observed in vivo in rabbit (Freeman, 1975), turtle 
(Prechtl et al., 1997; Lam et al., 2000), cat (Du et al., 2005), and 
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can be seen in Figure 2. In two dimensions, as shown in Figure 3, 
such points appear near complex intersections between coherent 
fronts of traveling waves. Their locations change but the existence of 
these points persists, corresponding to collisions between the local 
phase-coherent structures. The presence of local traveling struc-
tures at most locations reduces the expression of the PIFs across 
these domains. In keeping with our heuristic above, the sporadically 
occurring strong phase reversals reflects small regions where they 
are expressed strongly because of the influence of phase incongru-
ent waves on either side of these points. This leads to isolated phase 
rotations that diverge strongly from the local natural frequency. 

where W(m,n) is such a function. The lower row of Figure 2 illus-
trates an example employing the fourth derivative of a Gaussian 
function as an example kernel. As with (10), traveling wave-like 
structures emerge in this system. More specifically, traveling solu-
tions emerge locally with spatial frequencies that conform to those 
of the spatial kernel. However, because the periodically modulated 
phase interactions are only imposed locally, not globally, the sys-
tem converges only slowly toward these solutions and fluctuates 
strongly en route. Moreover, even if the natural frequencies of the 
oscillators are uniform, regions of sudden phase stress appear at 
sporadic spatial locations. Examples, such as near oscillator #60, 
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Figure 2 | Spatial patterns of phase locking in the 1D Kuramoto 
model (n = 128) at convergence (t = 10 s) under conditions of global 
versus local synaptic kernels. Top row shows the spatial pattern of phase 
locking adopted by the oscillators (left panel) when coupled using a 
cosine-with-distance kernel which extends to infinity (as shown in the 

top-right panel). The bottom-left panel shows the spatial pattern of phase 
locking evoked by a local kernel corresponding to the fourth derivative of a 
Gaussian (as shown in the bottom-right panel). Initial conditions were identical 
in both cases and natural frequencies were normally distributed  
as per Figure 1.
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volution of two distinct physiological processes, a more complex 
form would arguably provide greater capacity for it to represent 
these underlying processes and their modulation.

4.1 dynamIcal InStabIlItIeS due to Second order phaSe 
InteractIon curveS
Hansel and colleagues (Hansel and Mato, 1993; Hansel et al., 
1993a,b) showed that phase-reduced models of weakly excitatory, 
synaptically coupled Hodgkin–Huxley neurons elicited comparable 
phase-locking behaviors as long as the PIF retained at least the first 
two Fourier components of the original neural interaction. They 
employed the form,

Γ( ) sin( ) sin( ),x x R x= − + +β 2  (13)

where R is a scalar that modifies the contribution of the second 
order term and β de-phases the relative position of the two modes. 
This adjustment allows the PIF to incorporate extra biophysical 
detail such as specific forms of post-synaptic currents (Hansel et al., 
1995). The first thing to note is that the two modes have opposite 
sign: whereas the first term, as in the Kuramoto model, pulls the 
phases toward β, the second term tends to destabilize this phase 
configuration. When β > 0 there exists R > R

c
(α) for which these 

two modes intersect twice and therefore the PIF vanishes at four 
points along a full cycle: two stable (attracting) nodes separate 
two unstable saddles. These extra fixed points therefore facilitate 
the existence of distinct clusters of phase locked oscillators even if 
the coupling is otherwise global, a phenomenon that is not pos-
sible with the first Fourier mode alone. As illustrated in Figure 4, 
if R decreases the two extra fixed points of the PIF approach each 
other and then annihilate in a saddle-node bifurcation as R crosses 
below R

c
.

This dynamic instability in the PIF enables a rich variety of 
more complex dynamics, most notably the emergence of het-
eroclinic cycles (Hansel et al., 1995). In essence, the presence 
of a saddle point between the cluster states engendered by the 
second order PIF allows for spontaneous cycling between dif-
ferent phase synchronous configurations. That is, in a network 
of N oscillators there may exist k distinct clusters each of size 

Put differently, confining the periodic modulation of the PIFs to 
local domains, means that the frustration introduced through the 
phase offset term is reduced by traveling wave structures globally, 
but not locally everywhere.

It is straightforward to calculate the divergence between the 
natural frequencies and the oscillator frequencies,

F
K

N
W m nn n m n

m

N

= − −( )
=

∑ω θ θ( , ) ,sin
1  

(12)

either locally, or integrated across the entire domain n = 1,…,N. 
Numerical simulations show that this global quantity invariably 
decreases strongly as the system traverses from random initial con-
ditions toward such solutions although it increases markedly at the 
points of spatial incoherence. We believe that local traveling wave 
structures, which confine the expression of phase frustration to 
small, isolated locations, represent a globally optimal minimum to 
this function although we do not provide a proof for this assertion. 
Were this to be the case, the dynamics (12) could be recast as a gradi-
ent descent on the free energy of the system, namely the divergence 
between the expected pair-wise phase alignment expressed a priori 
by the coupling function on the r.h.s. of (11) and the dynamical 
solutions observed a posteriori.

We explored a wide range of spatial kernels that combined a 
finite effective spatial support with an oscillatory component. 
Traveling structures emerge on a wide variety of these. Domains 
of well formed waves typically appear when the outermost extent 
of these kernels is negative (phase retarding) whereas large coher-
ent slow moving fronts, often organized in spiral formations, arise 
when the outermost front is positive.

4 phaSe reSponSe curveS, complex dynamIcS,  
and entropy
Kuramoto’s original formulation of the interaction function (8) 
as a single sinusoidal function with zero phase offset results from 
a truncation of a Fourier expansion of this 2π-periodic function 
to the first mode. As we noted, the presence of a phase advancing 
and phase retarding region around the zero crossing is crucial to 
synchronization. However, because this function is itself the con-
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Figure 4 | (A–C) Show the second order phase interaction employed by Hansel and colleagues with β = 0.25 and three values of R. A saddle-node 
bifurcation in the fixed points associated with this function occurs as the second peak in this curve crosses 0 (left to right).
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m
1
,m

2
,…,m

k
 (e.g., Tass, 1999). Through the presence of the sad-

dle point, however, one or more of these cluster states is only 
marginally stable meaning that their oscillators spontaneously 
de-phase. These free oscillators then synchronize with other 
clusters, destabilizing at least one of these so that this winner-
less competition continues ad infinitum. Whilst this occurs in 
the absence of noise, the injection of a stochastic influence 
into the states stabilizes the frequency of the slow heteroclinic 
cycling which then scales with log of the variance noise (Hansel 
et al., 1993a).

We note that in these systems, two distinct time scales arise 
naturally: the fast dynamics of the oscillators and the relatively 
slow rotation through the heteroclinic cycle. Systems with distinct 
time scales have been well studied as they often arise through 
mere construction, e.g., multiplication of one or more dynamical 
variables by an explicit time scale factor which functions to slow 
down the dynamics in the associated subspace (e.g., Fujimoto and 
Kaneko, 2003; Breakspear and Stam, 2005; Kiebel et al., 2008). 
By contrast, a heteroclinic cycle does not require a separation of 
time scales to be defined in functional form because they are an 
emergent property of the dynamics. The intricate sequence of 
cycle states and the controlled expression of instability allows a 
variety of putative computational functions to be enacted by such 
networks, even with relatively small number of oscillators. For 
example, Ashwin et al. (2007) showed that procession through 
a precisely defined cycle could function to encode a complex, 
sensory input as a spatiotemporal sequence in a manner that 

was robust to strong noise (Wordsworth and Ashwin, 2008) and 
could be learnt by other systems of coupled oscillators (Orosz 
et al., 2009).

4.2 dynamIcal InStabIlItIeS and SpatIal fruStratIon on 
cortIcal-lIKe SheetS
By combining the spatial coupling discussed in Section 3 with the 
second-order phase interaction function, it is possible to employ 
the framework of weakly coupled oscillators to understand spon-
taneous dynamics on cortical-like sheets, an area of strong current 
interest (Fox and Raichle, 2007; Honey et al., 2007; Deco et al., 
2009). In particular, it is possible to explore the relationship between 
the dynamic instability engendered by the interaction of the two 
modes of the PIF and the spatial expression of frustration intro-
duced by the phase offset. In Figure 5, we present three simulations 
employing the PIF defined by equation (13) and increasing the 
de-phasing of the PIF modes by increasing β. Following Hansel 
and Mato (1993), we fix the relative modulation of the PIF by the 
second mode to R = 0.25. Phenomena such as clustering and cycling 
are robust to changes in this value. In the top row (Figures 5A–C), 
we plot a snapshot of the relative phases and in the bottom row 
(Figures 5D–F), the local expression of the coupling influence given 
by equation (12). In the absence of significant de-phasing (β ≈ 0) 
the system evolves rapidly toward spatiotemporal patterns domi-
nated by coherent fronts of traveling waves with small pinwheel-
like patterns where these intersect (Figure 5A). Local expression 
of high phase frustration is apparent at these points (Figure 5D). 
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Figure 5 | Spatiotemporal dynamics in systems of oscillators coupled through a local spatial kernel and a second order PiF, equation (13). Columns left to 
right depict results for increasing phase offset β between the two modes. Top row (A–C) shows representative oscillator states using the same color scheme as 
Figure 3. Bottom row (D–F) shows the coupling tension F as defined by equation (12) where blue denotes F = 0.
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This is particularly true when seeking to establish a link between 
cortical dynamics and cognitive processes because there is a natural 
mapping between the moments of neuronal states and components 
of cognition, including expectation, certainty, and surprise (Friston 
and Dolan, 2009). The distribution of states is also a crucial notion 
when the oscillators are influenced by stochastic forces. Finally, the 
probability distribution is crucial to a proper understanding of data 
obtained from oscillating neuronal systems because it determines 
the moment-to-moment statistics of these time series as the under-
lying system randomly samples its phase space.

In this section, we briefly overview the population formulation 
of the Kuramoto model, namely the nonlinear Fokker–Planck equa-
tion, and contrast it to the linear Fokker–Planck equation that can 
be derived from populations of spiking neurons. This is a crucial 
aspect of the Kuramoto model because it nicely recasts the circular 
causality that is present in the original formulation, whilst also 
underlining many of the important analytic results discussed in 
Section 2 (e.g., Strogatz and Mirollo, 1991; Acebrón et al., 2001). 
By knowing the distribution of states, it is also possible to esti-
mate information-theoretic quantities such as entropy and hence 
provide a more direct link to notions of free energy described in 
Sections 3 and 4.

Before proceeding, it is crucial to underline an important 
 distinction between the probability distribution of the states of 
the oscillators p on the one hand, and the population density of 
the whole ensemble ρ on the other. The population density is a 
quantitative measure of the relative states of all the oscillators and 
can be estimated in large purely deterministic systems as well as 

Hence, without de-phasing between the first and second modes, 
the scenario is almost identical to that encountered with the spa-
tial kernel and simple sinusoidal PIF (Figure 4). However, as β 
slowly increases, an instability appears at these points and grows 
to encompass a small patch of oscillators (Figures 5B,E). With a 
further increase of β these instabilities grow in spatial extent and, 
whilst not evident in a snapshot, begin to invade the surrounding 
patches of coherent wave fronts (Figures 5C,F). In consequence, 
the instability in the PIF, introduced by a de-phasing of the first 
and second Fourier modes, is inconsequential in areas of low spatial 
frustration. However, at points of spatial incoherence, this dynamic 
instability leads to a spatial instability expressed as areas of high 
phase disorder. This effect appears to be invariant to particular 
choices of the spatial kernel. In Figure 6, we illustrate an example 
using a spatial kernel whose outer extent is phase advancing, and 
which is associated with large traveling fronts organized around 
pinwheels. With a de-phasing of the two modes of the PIF, the cent-
ers of the pinwheels are destabilized by the same tension between 
phase frustration and the dynamic instability within the PIF.

5 populatIon-level deScrIptorS of cortIcal rhythmS
In Section 2, we introduced the notion of the order parameter r 
for the Kuramoto model and showed how the governing equation 
could be rewritten using this quantity. In many instances, however, 
one is not only interested in the mean field, i.e., the mean phase ψ 
and its divergence r, but also in the nature of the whole probability 
distribution of states (for review, see Deco et al., 2008), or at the 
least its first few moments (mean, variance, skewness, kurtosis). 
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Figure 6 | As with Figure 5 with the exception of a larger spatial kernel whose outer extent is upgoing (phase advancing) hence engendering large 
coherent fronts and spiral waves.
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where the ξ
n
(t) are spatially independent and temporally uncor-

related random fluctuations with vanishing means and variance 
σ2. These fluctuations may arise from influences that are external 
to the system, or they may represent a correction to the incomplete 
specification of a complex system as a system of weakly coupled 
oscillators. Naturally, in real systems, modeling such fluctuations 
is crucial as they inevitably occur even if only because of thermal 
effects. Indeed, functional forms which introduce and explicitly 
parameterize stochastic processes in real neuronal systems are argu-
ably of great importance because of the mounting evidence for the 
functional role of noise in neurophysiological recordings (Faisal 
et al., 2008), perceptual performance (Moss et al., 2004) and com-
putational models of the brain (Deco et al., 2009).

The dynamics of the joint probability of the distinct oscillators’ 
states, p(θ

1
,θ

2
,…,θ

N
,t), embody a diffusion process as the stochastic 

fluctuations ξ
n
 lead to divergence and hence a finite, non-zero vari-

ance in the ensemble. The diffusion supplements the deterministic, 
intrinsic forces caused by the interaction between the oscillators, 
as discussed above. The resulting mathematical form for the time-
evolution of the p is referred to as the Fokker–Planck equation of 
the system (Stratonovich, 1963; Risken, 1989). In fact, there is a 
variety of possibilities to derive the Fokker–Planck equation for 
the stochastic Kuramoto model (e.g., Sakaguchi, 1988; Sakaguchi 
et al., 1988). Without going into detail, for (16) one finds

∂
∂

= − ∂
∂

[ ]+ ∂
∂





=

∑p

t
p D

p

n

n

nn

N

θ
ν

θ

2

2
1

,

 

(17)

where the scalar D = 1 2 2/ σ  parameterizes the amplitude of the 
stochastic forces5.

As discussed earlier, the Kuramoto model can be recast using its 
mean field (5). In the presence of stochastic forces, this approxima-
tion becomes

θ ω ψ θ ξn n n nKr t= + − +sin( ) ( ).  (18)

When averaging over the frequency distribution g(ω) of the 
natural frequencies, the dynamics reduces to

θ ω ψ θ ξ= + − +0 Kr tnsin( ) ( ),  (19)

which finally yields a simpler form of the Fokker–Planck equa-
tion, namely

∂
∂

= − ∂
∂

+ −( ) { } + ∂
∂

p

t
Kr p D

p

θ
ω ψ θ

θ0

2

2
sin

 
(20)

where r is given by (14). If the variance of the noise goes to 0, then 
the probability density p is replaced by the population density ρ 
and this second-order partial differential equation reduces to the 
first-order continuity equation (15).

those that have explicit stochastic forces operating on the oscilla-
tors. The probability distribution p is the likelihood function for 
oscillators and only makes sense when stochastic influences have 
been explicitly defined. In some, quite general cases, the two are 
interchangeable. In the following, we first consider the popula-
tion density of states in a large ensemble of Kuramoto oscillators 
because it follows naturally from the preceding focus on determin-
istic dynamics. We then introduce the stochastic Kuramoto model 
and consider the evolution of the probability distribution that can 
defined in this setting. Finally, we consider the interchangeability 
of p and ρ in large stochastic Kuramoto oscillators.

5.1 the contInuIty equatIon
We first consider the population density formulation of the pure 
Kuramoto model. In the so-called thermodynamic limit of an infi-
nite number of oscillators the mean field centroid vector, equation 
(4), can be written as an average over the phases and frequencies 
of the ensemble,

re e t di iφ θρ θ θ=
−∞

+∞

∫ ( , )

 

(14)

A continuity equation can be established by noting that any 
change in the shape of the population density, due to the drift 
ν

n
 of any one or more oscillators, is governed by the Kuramoto 

model. Averaging over the pre-specified frequency distribution 
g(ω)  simplifies the Kuramoto model to deviations from the mean 
frequency ω

0
. Then the continuity equation reads

∂
∂

+ ∂
∂

+ −[ ]{ } =ρ
θ

ω ψ θ ρ
t

Kr0 0sin( ) ;
 

(15)

for the sake of generality we here use a non-vanishing mean fre-
quency ω

0
.

This equation simply restates the Kuramoto model at the level of 
the entire population, and demands that perturbations of this func-
tion must obey the underlying deterministic equations whilst also 
preserving the area under the density curve. In the thermodynamic 
limit, significant fluctuations around the mean field vanish. However, 
in the finite size setting, there exists a precise, hierarchical organiza-
tion of all higher order moments which scale with 1/N, inversely with 
system size (Hildebrand et al., 2007). The nature and role of fluctua-
tions in neuronal oscillations – discussed further below – underlines 
the importance of a full understanding of these moments.

5.2 StochaStIc forceS and the foKKer–plancK equatIon
All the dynamics discussed thus far incorporate stochasticity solely 
through the randomness of the oscillators’ frequencies ω

n
. Now 

we include stochastic forces by explicitly introducing white noise 
into the dynamics (3). In order to do so, we return to the finite 
N ensemble of phase oscillators and write the so-called Langevin 
equation of the stochastic Kuramoto model,



  

θ ω θ θ ξ

ν

n n m n
m

N

n

K

N
t

n

= + −( ) +
=

∑sin
1

( ).

 
(16)

5A typical strategy to solve this equation is first to look a the corresponding mar-

ginal distributions, e.g., p t p t dj j N N jθ θ θ θ θ θ θ θπ
π

1 1 1 1 2, , , , , , , , , ,… …( ) = ∫ …( )− + −
+ , by 

which the N-dimensional state space can be iteratively reduced step-wise. Exploi-
ting the equivalence between the different phases, then integrating (17) over all but 
one state space variables yields (by approximation) the dynamics of p(θ,t) as (23) 
below. This procedure is closely related to a mean-field approach (see Sakaguchi, 
1988; Sakaguchi et al., 1988, for more details).
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5.4 contraStIng lInear and non-lInear  
foKKer–plancK equatIonS
It is likewise possible to derive a Fokker–Planck representation of 
ensembles of spiking neurons (e.g., Deco et al., 2008), although 
doing so typically requires the diffusion assumption, namely 
that the currents arising at individual neurons are uncorrelated. 
This step allows higher order moments and their coupling to be 
discarded and leads to the drift term of the r.h.s. in (17) being 
linear in both the states and the density. This contrasts with the 
derivation of the Fokker–Planck equation for the Kuramoto 
model for which correlations amongst the inputs are an indis-
pensable property of the model, and for which, through the 
nonlinearity in the density, the moments of the ensemble are 
interdependent. The linear Fokker–Planck equation for spiking 
neurons describes a process that is akin to classic diffusion in 
the presence of an external force and hence predicts that the 
distribution of the states should be approximately Normal and 
the spikes Poisson. The sufficient statistics in this setting include 
just the mean and the variance. The diffusion assumption is 
certainly consistent with a powerful body of research that posits 
a crucial role for these Gaussian statistics in the performance 
of optimal Bayesian inference through population coding (Ma 
et al., 2006; for review, see Friston and Dolan, 2009). Several 
recent papers have reported that the statistics of non-rhythmic 
activity at high frequencies (above 30 Hz) are consistent with a 
classic Poisson process (Bedard et al., 2006; Miller et al., 2009). 
Crucially, this corresponds to activity across a broad frequency 
range of non-rhythmic activity that has a featureless power 
spectral density.

The nonlinear Fokker–Planck equation allows for a departure 
from these classic processes. Specifically, through an interaction 
between the density of the states and the effect of stochastic 
influences, the nonlinear Fokker–Planck equation allows for 
a partially synchronized system to exhibit long dwell times 
near complete synchrony and associated extremal amplitude 
events in the mean field term, properties that have recently been 
documented in the beta (≈20 Hz) rhythm of human resting 
state EEG (Freyer et al., 2009). These non-classic statistics in 
the amplitude fluctuations supplement prior findings of long-
tailed distributions in the temporal statistics of low frequency 
(below 30 Hz) rhythmic cortical activity (Linkenkaer-Hansen 
et al., 2001; Stam and de Bruin, 2004). Activity at lower fre-
quencies showing non-classic statistics is associated with clear 
peaks in the power spectrum that are hence consistent with an 
underlying rhythmic process, in contrast to feature-less high 
frequency activity.

Another interesting departure of the nonlinear Fokker–
Planck equation from classic statistics is its ability to support 
the coexistence of multiple co-occurring attractor states – or 
multistability (Frank et al., 2000). In the presence of either 
sufficiently large stochastic influences, or marginal attractor 
stability, this allows a system of coupled oscillators to errati-
cally and spontaneously switch between different itinerantly 
expressed solutions. This is also of particular relevance for cor-
tical rhythms, given the recent evidence for such bimodality 
in the human alpha rhythm (Freyer et al., 2009). In particu-
lar, the alpha rhythm appears to spontaneously and erratically 

5.3 the nonlInear foKKer–plancK equatIon
The quantity θ does not only describe all possible states but is 
also a representative of all individual phases – that is, phases are 
indistinguishable because the population has been represented 
as homogeneous. Put alternatively, the temporal average over 
states converges to the spatial average over the ensemble because 
the dynamics are mixing (ergodic). When this assumption holds, 
then we can readily identify the density ρ(θ,t) of “real” oscilla-
tors θ

1
,θ

2
,…, discussed in Section 5.1, with the probability density 

p(θ,t). That is, we use

re e p t di iψ θ

π

π

θ θ=
−

+

∫ ( , ) .

 

(21)

Substituting this into (19) yields
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π
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+
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(22)

here we again averaged over the frequency distribution. Following 
Frank et al. (2000) we write the Fokker–Planck equation as
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(23)

Whilst this form is indeed similar to (20), by explicitly incor-
porated the mean field into the dynamics, it is straightforward to 
see that the Fokker–Planck equation is non-linear in its probability 
density6.

The second term on the r.h.s. of (23) incorporates the tendency 
of the stochastic influences to scatter the density toward a uniform 
distribution around the unit circle. If K equals 0 then the first term 
vanishes and this is all that occurs. The first term embodies the 
deterministic tendency of the coupling amongst the oscillators to 
increase the density around the mean of the natural frequencies 
ω

0
. The observation that this term is nonlinear in the density of 

states p is nothing other than a recasting of the circular causality we 
encountered in Section 2: As the system synchronizes, the density of 
states contracts, at the same time increasing the effective pull toward 
the mean. In the presence of stochastic influences, the aggregation 
of the members of the ensemble toward the minimum of this energy 
landscape, through the deterministic force is amplified by means of 
statistical feedback. That is, the more probable a stable state, the less 
it is affected by noise and, conversely, the less a stable state may be 
affected by noise, the more probable it is (Frank et al., 2002). This 
contrasts strongly with traditional accounts of diffusion under a 
constant force, such as regular diffusion in a harmonic potential, 
where the force is imposed externally and constant. Even in the 
presence of strong noise, it means the system can depart from classic 
exponential statistics, showing a tendency toward power-law scaling 
in the character of its temporal fluctuations (Sokolov et al., 2002; 
Zaslavsky, 2002). Its characterization requires novel tools from non-
extensive thermodynamics like generalized entropies (Tsallis and 
Brigatti, 2004; Tsallis, 2006).

6This should not be confused with conventional Fokker–Planck equations whose 
drift and diffusion coefficients depend non-linearly on the state space. These equa-
tions are linear in p, whilst (23) is not.
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When written in this manner, we see the essential component of 
the Kuramoto model is preserved, namely the tendency of synchro-
nization to become self-fulfilling, buffering the mean field against 
the internal noise.

We have argued that computational neuroscience can benefit 
from detailed physiological models at all spatial and temporal 
scales as well as more abstract approaches that seek deeper unify-
ing mechanisms. This is an approach that has led to many exciting 
discoveries in the physical sciences that are able to unify apparently 
diverse phenomena. It is equally true that understanding the role 
of detailed mechanisms provides deeper insight into their pre-
cise mechanistic and functional roles. One challenge facing both 
these fields is to unify the apparently uncorrelated character of 
noisy spike trains, with the correlated and non-Gaussian nature 
of rhythmic dynamics.

We hope that the rich dynamics arising from this simple system 
inspires computational neuroscientists interested in the fundamen-
tal mechanisms of cortical rhythms to further investigate its histori-
cal and conceptual foundations.
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switch between a low and high amplitude state, consistent with 
 noise-driven switching between co-existing coherent and inco-
herent phase configurations amongst the underlying oscillators. 
It also suggests a unifying mechanism for multistability that has 
been observed in a number of basic cortical functions includ-
ing human perception (Ditzinger and Haken, 1989), decision 
making (Deco and Rolls, 2006), and behavior (Schoner and 
Kelso, 1988).

In summary, whilst rhythmic behavior appears to conform with 
the anomalous statistics of the nonlinear Fokker–Planck equation, 
non-rhythmic behavior appears to be consistent with uncorrelated 
spiking activity that conforms to the diffusion approximation. At 
this stage, apart from a somewhat unaesthetic partition of cortical 
activity into distinct correlated rhythms and uncorrelated broad 
frequency spiking activity, it is difficult to see how this apparent 
paradox can be reconciled.

6 concluSIon
The objective of the present manuscript was to provide a neuro-
biologically minded overview of the essential concepts, dynamics, 
and analysis of the Kuramoto model, which can be considered a 
canonical model of synchronous oscillations in complex systems. 
In the purely deterministic setting, we traced the impact of intro-
ducing interaction functions and spatial embeddings that may be 
more representative of neuronal processes. Even in the absence of 
random forces, we saw that these introductions engendered a broad 
repertoire of rich, non-trivial dynamics. Although the framework 
becomes mathematically more challenging, introducing stochastic 
influences and studying population-wide responses is still possible. 
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appendIx a
7 embeddIng tranSmISSIon-delayS In a  
SpatIal Kernel
Consider a fully-connected Kuramoto model on a one-dimensional 
ring,

θ ω θ θ αn n m n mn
m

NK

N
= + − −

=
∑sin( ),

1  
(24)

that incorporates explicit phase-shifts α
mn

 that are proportional 
to the spatial distance |x

m
 − x

n
| between the oscillators7. A trivial 

steady-state wave solution exists when θ
m
 − θ

n
 = α

mn
 for all oscillator 

pairings, which corresponds to the phases of consecutive oscillators 
being distributed evenly on the unit circle. Such solutions have been 
observed by Zanette (2000). Here, we derive an equivalent model 
in which the explicit phase-shifts α

mn
 are embedded in a spatial 

kernel as coupling terms with no explicit delay terms.
Application of the trigonometric identity sin(x − y) = sin x cos 

y − cos x sin y to equation (24) yields the equivalent form,
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We argue that, when this system is close to a wave solution, 
the phases of the oscillators are aligned symmetrically on the unit 
circle so that (θ

m
 − θ

m−k
) ≈ (θ

m
 − θ

m+k
) for k = 1,…,N/2. We also 

assume that all oscillators in the ring are equally spaced so that 
α

m(m+k)
 = −α

m(m−k)
. Consequently, the final term in (25) may be 

re-expressed as
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thus allowing Eq. 25 to be approximated by

θ ω θ θn n m n
m

NK

N
W m n= + −

=
∑ ( , ) ( ),sin

1  
(26)

where the coupling coefficients W
(m,n)

 = cos(α
mn

) constitute a 
spatial kernel that varies periodically with distance and explicit 
phase-shift terms have been eliminated from the sinusoidal inter-
action term.

7Such phase-shifts are akin to distance-dependent transmission delays.




