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During reach planning, we integrate multiple senses to estimate the location of the hand and
the target, which is used to generate a movement. Visual and proprioceptive information are
combined to determine the location of the hand. The goal of this study was to investigate whether
multi-sensory integration is affected by extraretinal signals, such as head roll. It is believed
that a coordinate matching transformation is required before vision and proprioception can be
combined because proprioceptive and visual sensory reference frames do not generally align.
This transformation utilizes extraretinal signals about current head roll position, i.e., to rotate
proprioceptive signals into visual coordinates. Since head roll is an estimated sensory signal with
noise, this head roll dependency of the reference frame transformation should introduce additional
noise to the transformed signal, reducing its reliability and thus its weight in the multi-sensory
integration. To investigate the role of noisy reference frame transformations on multi-sensory
weighting, we developed a novel probabilistic (Bayesian) multi-sensory integration model (based
on Sober and Sabes, 2003) that included explicit (noisy) reference frame transformations. \We
then performed a reaching experiment to test the model’s predictions. To test for head roll
dependent multi-sensory integration, we introduced conflicts between viewed and actual hand
position and measured reach errors. Reach analysis revealed that eccentric head roll orientations
led to an increase of movement variability, consistent with our model. We further found that
the weighting of vision and proprioception depended on head roll, which we interpret as being
a result of signal dependant noise. Thus, the brain has online knowledge of the statistics of
its internal sensory representations. In summary, we show that sensory reliability is used in a

context-dependent way to adjust multi-sensory integration weights for reaching.
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INTRODUCTION

We are constantly presented with a multitude of sensory informa-
tion about ourselves and our environment. Using multi-sensory
integration, our brains combine all available information from
each sensory modality (e.g., vision, audition, somato-sensation,
etc.) (Landy et al., 1995; Landy and Kojima, 2001; Ernst and
Bulthoff, 2004; Kersten et al., 2004; Stein and Stanford, 2008;
Burr et al., 2009; Green and Angelaki, 2010). Although this tac-
tic seems redundant, considering that the senses often provide
similar information, having more than one sensory modality
contributing to the representation of ourselves in the environ-
ment reduces the chance of processing error (Ghahramani et al.,
1997). It becomes especially important when the incoming sen-
sory representations we receive are conflicting. When this occurs,
the reliability assigned to each modality determines how much
we can trust the information provided. Here we explore how
context-dependent sensory-motor transformations affect the
modality-specific reliability.

Multi-sensory integration is a process that incorporates sensory
information to create the best possible representation of ourselves
in the environment. Our brain uses knowledge of how reliable
each sensory modality is, and weights the incoming information
accordingly (Stein and Meredith, 1993; Landy et al., 1995; Atkins

etal.,2001; Landy and Kojima, 2001; Kersten et al., 2004; Stein and
Stanford, 2008). Bayesian integration is an approach that assigns
these specific weights in a statistically optimal fashion based on how
reliable the cues are (Mon-Williams et al., 1997; Ernst and Banks,
2002; Knill and Pouget, 2004). For example, when trying to figure
out where our hand is, we can use both visual and proprioceptive
(i.e., sensed) information to determine its location (Van Beers et al.,
2002; Ren et al., 2006, 2007). When visual information is available
itis generally weighted more heavily than proprioceptive informa-
tion due to the higher spatial accuracy that is associated with it
(Hagura et al., 2007).

Previous studies have used reaching tasks to specifically examine
how proprioceptive and visual information is weighted and inte-
grated (Van Beers et al., 1999; Sober and Sabes, 2003, 2005). When
planning a reaching movement, knowledge about target position
relative to the starting hand location is required to create a move-
ment vector. This movement vector is then used to calculate how
joint angles have to change for the hand to move from the start-
ing location to the target position using inverse kinematics and
dynamics (Jordan and Rumelhart, 1992; Jordan et al., 1994). The
assessment of target position is generally obtained through vision,
whereas initial hand position (IHP) can be calculated using both
vision and proprioception (Rossetti et al., 1995). Although it is
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easy to recognize what different sources of information are used
to calculate IHP, knowing how this information is weighted and
integrated is not.

The problem we are addressing in this manuscript is that visual
and proprioceptive information are encoded separately in differ-
ent coordinate frames. If both of these cues are believed to have
the same cause then they can be integrated into a single estimate.
However if causality is not certain then the nervous system might
treat both signals separately; the degree of causal belief can thus
affect multi-sensory integration (Kording and Tenenbaum, 2007).
Animportantaspect that has never been considered explicitly is that
in order for vision and proprioception to be combined, they must
be represented in the same coordinate frame (Buneo etal.,2002). In
other words, one set of information will have to be transformed into
a representation that matches the other. Such a coordinate trans-
formation between proprioceptive and visual coordinates depends
on the orientation of the eyes and head and is potentially quite
complex (Blohm and Crawford, 2007). The question then becomes,
what set of information will be encoded into the other? In reach-
ing, it is thought that this transformation depends on the stage of
reach planning. Sober and Sabes (2003, 2005) proposed a dual-
comparison hypothesis describing how information from vision
and proprioception could be combined during a reaching task. They
suggest that visual and proprioceptive signals are combined at two
different stages. First, when the movement plan is being determined
in visual coordinates; and second, when the visual movement plan is
transformed into a motor command (proprioceptive coordinates).
The latter requires knowledge of IHP in joint coordinates. They
showed that estimating the position of the arm for movement plan-
ning relied mostly on visual information, whereas proprioceptive
information was more heavily weighted when determining current
joint angle configuration to compute the inverse kinematics. The
reason why there should be two separate estimates (one in visual
and one in proprioceptive coordinates) lies in the mathematical fact
that the maximum likelihood estimate is different in both coordi-
nates systems (Koerding and Tenenbaum, 2007; McGuire and Sabes,
2009). Therefore, having two distinct estimates reduces the overall
estimation uncertainty because no additional transformations that
might introduce noise are required.

The main hypothesis of this previous work was that the difference
in sensory weighting between reference frames arises from the cost
of transformation between reference frames. This idea is based on
the assumption that any transformation induces noise to the trans-
formed signal. In general, noise can arise from at least two distinct
sources, i.e., from variability in the sensory readings and from the
stochastic behavior of spike-mediated signal processing in the brain.
Adding noise in the reference frame transformation thus increases
uncertainty in coordinate alignment (Kording and Tenenbaum,
2007) resulting in lower reliability of the transformed signal and
therefore lower weighting (Sober and Sabes, 2003; McGuire and
Sabes, 2009). While it seems unlikely that neuronal noise from the
stochastic behavior of spike-mediated signal processing changes
across experimental conditions (this is believed to be a constant
in a given brain area), uncertainty of coordinate alignment should
increase with head roll. This is based on the hypothesis that the
internal estimates of the head orientation signals themselves would
be more variable (noisy) for head orientations away from primary

(up-right) positions (Wade and Curthoys, 1997; Van Beuzekom and
Van Gisbergen, 2000; Blohm and Crawford, 2007). This variability
could be caused by signal-dependent noise in muscle spindle firing
rates, or in vestibular neurons signaling head orientation (Lechner-
Steinleitner, 1978; Scott and Loeb, 1994; Cordo et al., 2002; Sadeghi
et al., 2007; Faisal et al., 2008).

To evaluate the notion that multi-sensory integration occurs,
subjects performed a reaching task where visual and proprioceptive
information about hand position differed. We expanded Sober and
Sabes (2003,2005) model into a fully Bayesian model to test how ref-
erence frame transformation noise affects multi-sensory integration.
To behaviorally test this, we introduced context changes by altering
the subject’s head roll angle. Again, the rationale was that head roll
would affect the reference frame transformations that have to occur
during reach planning (Blohm and Crawford, 2007) but would not
affect the reliability of primary sensory information (i.e., vision or
proprioception). Importantly, we hypothesized that larger head roll
noise would lead to noisier reference frame transformations, which in
turn would render any transformed signal less reliable. Our main goal
was to determine the effect of head roll on sensory transformations
and its consequences for multi-sensory integration weights.

MATERIALS AND METHODS

PARTICIPANTS

Experiments were performed on seven participants between 20 and
24 years of age, all of whom had normal or corrected to normal
vision. Participants performed the reaching task with their domi-
nant right hand. All of the participants gave their written informed
consent to the experimental conditions that were approved by the
Queen’s University General Board of Ethics.

APPARATUS
While seated, participants performed a reaching task in an aug-

mented reality setup (Figure 1A) using a Phantom Haptic Interface
3.0L (Sensable Technologies; Woburn, MA, USA). Their heads

A

Screen —|
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FIGURE 1 | Experimental set up and apparatus. (A) Experimental
apparatus. Targets were displayed on semi-silvered mirror. Subjects head
position was kept in place using a bite bar. Reaches were made below the
semi-silvered mirror using the Phantom robot. (B) A top view of the subject
with all possible target positions. Initial hand positions are shown (=25, 0, and
25 mm). Subjects began each trial by aligning the visual cue representing their
hand with the center cross, and then continued by reaching to one of six
targets that would appear (see text for details).
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were securely positioned using a mounted bite bar that could
be adjusted vertically (up/down), tilted forward and backward
(head pitch), and rotated left/right (head roll to either shoulder).
Subjects viewed stimuli that were projected onto an overhead
screen through a semi-mirrored surface (Figure 1A). Underneath
this mirrored surface was an opaque board that prevented the
subjects from viewing their hand. In order to track reaching move-
ments, subjects grasped a vertical handle (attached to the Phantom
Robot) mounted on an air sled that slid across a horizontal glass
surface at elbow height.

Eye movements were recorded using electrooculography
(EOQG), (16-channel Bagnoli EMG system; DELSYS; Boston, MA,
USA). Two pairs of electrodes were placed on the face (Blue Sensor
M; Ambu; Ballerup, Denmark). The first pair was located on the
outer edges of the left and right eyes to measure horizontal eye
movements. The second pair was placed above and below one of
the subject’s eyes to measure vertical eye movements. An addi-
tional ground electrode was placed on the first lumbar vertebrae,
to record external electrical noise (Dermatrode; American Imex;
Irvine, CA, USA).

TASK DESIGN

Subjects began each trial by aligning a blue dot (0.5 cm) on the
display that represented their unseen hand position with a start
position (cross) that was positioned in the center of the display field.
A perturbation was introduced such that the visual position of the
THP was constant but the actual IHP of the reach varied among
three positions (-25, 0, and 25 mm horizontally with respect to
visual start position — VSP). The blue dot representing the hand
was only visible when hand position was within 3 cm of the central
cross. Once the hand was in this position, one of six peripheral
targets (1.0 cm white dots) would randomly appear 250 ms later.
The appearance of a target was accompanied by an audio cue. At
the same time the center cross turned yellow. Once the subject’s
hand began to move the hand cursor disappeared. Subjects were
instructed to perform rapid reaching movements toward the visual
targets while keeping gaze fixated on the center position (cross).
Targets were positioned at 10-cm distance from the start position
cross at 60, 90, 120, 240, 270, and 300° (see Figure 1B).

Once the subject’s reach crossed the 10-cm target circle, an audio
cue would indicate that they successfully completed the reach, and
the center cross would disappear. If subjects were too slow at reach-
ing this distance threshold (more than 750 ms after target onset), a
different audio cue was played, indicating that the trial was aborted
and would have to be repeated. At the end of each reach subjects had
to wait 500 ms to return to the start position, an audio cue indicated
the end of the trial, and the center cross reappeared. This was to
ensure subjects received no visual feedback of their performance.
Subjects were instructed to fixate the central start position cross
(VSP cross) throughout the trial.

Subjects completed the task at three different head roll posi-
tions, =30 (left), 0, and 30° (right) head roll toward the shoul-
ders (mathematical angle convention from behind subject view).
Throughout each head roll condition the proprioceptive informa-
tion about hand position was altered at random trials, 2.5-cm left
or right of the visual hand marker. For example, subjects would
align the visual circle representing their hand with the start cross,

but their actual hand position may be shifted to the right or left,
2.5 cm. Subjects were not aware of the IHP shift when asked after
the experiment. We introduced this discrepancy between visual
and actual hand position to gain insight into the relative weighting
of both signals in the multi-sensory integration process. For each
hand offset subjects reached to each target twenty times, and they
did this for each head roll. Subjects completed 360 trials at each
head position, for a total of 1080 reaches. Head roll was constant
within a block of trials.

DATA ANALYSIS

Eye and hand movements were monitored online at a sampling
rate of 1000 Hz (16-channel Bagnoli EMG system, Delsys; Boston,
MA, USA; Phantom Haptic Interface 3.0L; Sensable Technologies;
Woburn, MA, USA). Offline analyses were performed using Matlab
(The Mathworks, Natick, MA, USA). Arm position data was
low-pass filtered (autoregressive forward—backward filter, cutoff
frequency = 50 Hz) and differentiated twice (central difference
algorithm) to obtain hand velocity and acceleration (Figure 2).
Each trial was visually inspected to ensure that eye movements
did not occur while the target was presented (Figure 2C). If they
did occur, the trial was removed from the analysis. Approximately
5% of trials (384 of 7560 trials) were removed due to eye move-
ments. Hand movement onset and offset were identified based on
a hand acceleration criterion (500 mm/s?), and could be adjusted
after visual inspection (Figure 2E). The movement angle was cal-
culated through regression of the data points from the initial hand
movement until the hand crossed the 10-cm circle around the IHP
cross. Directional movement error was calculated as the difference
between overall movement angle and visual target angle.

MODELING THE INITIAL MOVEMENT DIRECTION

The data was fitted to two models, one previously published veloc-
ity command model (Sober and Sabes, 2003) and a second fully
Bayesian model that had processing steps similar to Sober and Sabes
(2003). In addition the second, new model includes explicit ref-
erence frame transformations and — more importantly — explicit
transformations of the sensory noise throughout the model.
Explicit noise has previously been use to determine multi-sensory
integration weights (McGuire and Sabes, 2009); however, they only
considered one-dimensional cases (we model the problem in 2D).
Furthermore they did not model reference frame transformations
explicitly nor model movement variability in the output (nor
analyze movement variability in the data). Below, we outline the
general working principle of the model; please refer to Appendix
1 for model details.

The purpose of these models was to determine the relative
weighting of both vision and proprioception during reach plan-
ning, separately for each head roll angle. Sober and Sabes (2003,
2005) proposed that IHP is computed twice, once in visual and once
in proprioceptive coordinates (Figure 3A). In order to determine
the IHP in visual coordinates (motor planning stage, left dotted box
in Figure 3A), proprioceptive information about the hand must be
transformed into visual coordinates (Figure 3A, red “T” box) using
head orientation information both the visual and the transformed
proprioceptive information are weighted based on reliability, and
IHP is calculated. This IHP can then be subtracted from the target
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FIGURE 2 | Typical subject trial. (A) Raw reach data from a typical trial
displayed. The viewed required reach (dotted line) begins at the cross (visual
start position, VSP), and ends at the target (open circle). The red line represents
the subjects actual hand position. The subject starts this reach with an initial
hand position (IHP) offset to the right by 256 mm. (B) Target onset and display.
Timing of the trial begins when the subject aligns the hand cursor with the visual
start position. The target then appears, and remains on until the end of the trial.

Targeton Mov. start  Mov. end

25
Time (s)

Movement onset, as well as offset times are shown by the vertical lines. (C) Eye
movement traces. Horizontal (purple) and vertical (green) eye movement traces,
from EOG recordings. Subjects were instructed to keep the eyes fixated on the
VSP for the entire length of the trial. Black vertical lines indicate arm movement
start and end. (D) Hand position traces. Horizontal (purple) and vertical (green)
hand positions (solid lines) as well as the horizontal and vertical target position
(dotted lines) are plotted over time. (E) Hand velocity traces relative to time.

position to create a desired movement vector (Ax). If the hand
position is misestimated (due to IHP offset), then there will be an
error associated with the desired movement vector.

As a final processing step, this movement vector will undergo
a transformation to be represented in a shoulder based reference
frame (Figure 3A, T, box). Initial joint angles are calculated by
transforming visual information about hand location into proprio-
ceptive coordinates (Figure 3A, rightward arrows through red “T”
box). This information is weighted along with the proprioceptive
information, to calculate IHP in proprioceptive coordinates (right
dotted box in Figure 3A) and is used to create an estimate of initial
elbow and shoulder joint angles (0 initial). Using inverse kinematics,
achange in joint angles (A0), from the initial starting position to the
target is calculated based on the desired movement vector. Since the
estimate of initial joint angles (0 initial) is needed to compute the
inverse kinematics, misestimation of initial joint angles will lead to
errors associated with the inverse kinematics, and therefore error
in the movement. We wanted to see how changing head roll would
affect the weighting of visual and proprioceptive information. As can
be seen from Figure 3A, our model reflects the idea that head ori-
entation affects this transformation. This is because we hypothesize
(and hope to demonstrate through our data) that transformations
add noise to the transformed signal and that the amount of this
noise depends on the amplitude of the head roll angle. Therefore,
we predict that head roll has a significant effect on the estimations
of IHP, thus changing the multi-sensory integration weights and in
turn affecting the accuracy of the movement plan.

RESULTS

To test the model’s predictions, we asked participants to perform
reaching movements while we varied head roll and dissociated
visual and proprioceptive [HPs.

GENERAL OBSERVATIONS

A total of 7560 trials were collected, with 384 trials being excluded
due to eye movements. Subjects were unaware of the shifts in
IHP. We used reaching errors to determine how subjects weighted
visual and proprioceptive information. Reach error (in angular
degrees) was computed as the angle between the movement and
the visual hand-target vector, where 0° error would mean no
deviation from the visual hand—target direction. As a result of the
shifts in the actual starting hand locations, a situation was created
where the subject received conflicting visual and proprioceptive
information (Figure 2). Based on how the subject responded
to this discrepancy, we could determine how information was
weighted and integrated.

Figure 4 displays nine sets of raw data reaches from a typical
subject, depicting 10 reaches to each target. Every tenth data point
is plotted for each reach, i.e., data points are distant in time by
10 ms, allowing the changes in speed to be visually identifiable.
The targets are symbolized by black circles, with the visual start
position marked by a cross. Each set of reaches is representative of
a particular head roll angle (rows) and IHP (columns). One can
already observe from these raw traces that this subject weighted
visual THP more than proprioceptive information resulting in
a movement path that is approximately parallel to a virtual line
between the visual cross and target locations.

To further analyze this behavior, we compared the reach error
(in degrees) for each hand offset condition (Figure 5A). This graph
also displays a breakdown of the data for each target angle and
shows a shift in reach errors between the different IHPs. The differ-
ence in reach errors between the each of the hand offsets indicates
that both visual and proprioceptive information were used during
reach planning. Figure 5B shows a fit from Sober and Sabes’ (2003,
2005) previously proposed model to the normalized data from
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FIGURE 3 | Multi-sensory integration model. (A) Model for multi-sensory
integration for reach planning. In order to successfully complete a reach, hand
position estimates have to be calculated in both proprioceptive (right dotted
box) and visual coordinates (left dotted box). Initial hand position estimates in
visual coordinates are computed by transforming proprioceptive information
into visual coordinates (transformation “T"). Visual and proprioceptive
information is then weighted and combined (visual weights o; proprioceptive
weights1 — o). The same processes take place for proprioceptive IHP
estimates; only this time visual information is transformed into proprioceptive
coordinates. Subtracting visual IHP from the visual target location, a movement
vector can be created. Using inverse kinematics, the movement vector is
combined with the calculation of initial joint angles, derived from the IHP in
proprioceptive coordinates to create a movement plan based on changes in
joint angles. (B) Spatial arm position (x) can be characterized in terms of two
joint angles, deviation from straight ahead (6,) and upper arm elevation (6,). The
arm and forearm lengths are represented by “L” (see text for details).

Figure 5A (see also Appendix 1 for model details). The data from
Figure 5A were normalized to 0 by subtracting the 0 hand offset
from the IHPs 25 and —25 mm. Sober and Sabes’ (2003) previously
proposed velocity command model fit our data well. In Figure 5B,
it is clear that the normalized data points for each hand position
follow the same pattern as the model predicted error, represented
by the dotted lines. Based on this close fit of our data to the model,
we can now use this model in a first step to investigate how head
roll affects the weighting of vision and proprioceptive information
about the hand.

Initial hand position (mm)

0
\%{Q

cw

30

Head roll (deg)

position
o

230

C
vertical
<)

o

0
-200 -100 0 100 200
horizontal position (mm)

FIGURE 4 | Raw reaches from a typical subject. Each grouping of reaches
corresponds to a particular head orientation (30°, 0°, =30°) and initial hand
position (=25, 0, 25 mm). In each block, ten trials are plotted for each target
(black dots). Target angles are 60°, 90°, 120°, 240°, 270°, and 300°. The data
points for each reach trajectory represent every tenth data point.

HEAD ROLL INFLUENCES ON REACH ERRORS

As mentioned before, subjects performed the experiment described
above for each head roll condition, i.e.—30, 0, and 30° head roll (to
the left shoulder, upright and to the right shoulder respectively).
We assumed that if head roll was not taken into account, there
would be no difference in the reach errors between the head roll
conditions. Alternatively, if head roll was accounted for, then we
would expect at least two distinct influences of head roll. First,
head roll estimation might not be accurate, which would lead to an
erroneous rotation of the visual information into proprioceptive
coordinates. This would be reflected in an overall shift of the reach
error curve up/downward for eccentric head roll angles compared
to the head straight-ahead. Second, head roll estimation might not
be very precise, i.e., not very reliable. In that case, variability in the
estimation should affect motor planning and thus increase move-
ment variability overall and multi-sensory integration weights in
particular. We will test these predictions below. Figure 6 shows
differences in reach errors between the different head roll con-
ditions, indicating that head roll was a factor influencing reach
performance. This is a novel finding that has never been considered
in any previous model.

From our model (Figure 3A), we predicted that as head roll
moves away from 0, more noise would be associated with the signal
(Scott and Loeb, 1994; Blohm and Crawford, 2007; Tarnutzer et al.,
2009). This increase in noise should affect the overall movement
variability (i.e., standard deviation, SD) because more noise in
the head roll signal should result in more noise added during the
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FIGURE 5 | Hand offset effects. (A) This graph demonstrates a shift in reach
errors between each initial hand position (=25, 0, 25 mm), suggesting that visual
and proprioceptive information are both used when reaching. (B) Model fit. The
data from A was normalized to 0, and plotted against the model fit (dotted lines;

2F

Normalized direction error (deg)
o

-4k )
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1
180
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initial hand position 25 (green) and —25 (red)). The squared points represent the
normalized direction error for each initial hand position at each target angle. This
graph demonstrates that the model previously proposed by Sober and Sabes
(2003) fits our data. Error bars represent standard error of the mean.
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FIGURE 6 | Head roll effects. Reach errors are plotted for each head roll (-30°,
0°, 30°) at each target angle (60°, 90°, 120°, 240°, 270°, 300°). The difference
in reach error indicates that information about head roll in taken into account.
Error bars represent standard error of the mean.

reference frame transformation process. Figure 7 plots movement
variability for trials where the head was upright compared to rolled
to the left or right combined.

We performed a paired #-test between head roll and no head roll
conditions across all seven subjects and all hand positions (21 standard
deviation values per head roll conditions). Across all three IHPs, move-
ment variability was significantly greater when the head was rolled
compared to when the head was straight #(20) =—3.512, p<0.01. This
was a first indicator that head roll introduced signal-dependent noise
to motor planning, likely through noisier reference frame transforma-
tions (Sober and Sabes, 2003, 2005; Blohm and Crawford, 2007).

[ Head straight
B Head roll #0

*

45

S
1

w
(&)}
T

Movement variability (deg)

-25 0 25
Initial hand position (mm)

FIGURE 7 | Movement variability as a function of head roll. For each initial
hand position (=25, 0, 25 mm) movement variability (standard deviation) is
compared between head straight and head roll conditions 0, #0. Reaches
when the head is rolled had significantly more variability compared to reaches
when the head is straight.

If changing the head roll angle ultimately affects reach variability,
then we would expect that the information associated with the
increased noise would be weighted less at the multi-sensory inte-
gration step. To test this, we fitted Sober and Sabes’ (2003) model
on our data independently for each head orientation. The visual
weights, of IHPs represented in visual (dark blue, ¢ ) and prop-
rioceptive (lightblue, o ) coordinates are displayed in Figure 8A.
The visual weights of IHP in visual and proprioceptive coordinates
were significantly different when the head was rolled compared
to the head straight condition (#20) = —4.217, p< 0.01). Visual
information was weighted more heavily when IHP was calculated
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FIGURE 8 | Model fit and rotational biases. (A) The model was fit to the
data for each head roll condition. The visual weights for initial hand position
estimates are plotted for both visual (dark blue) and proprioceptive (light blue)
coordinate frames. Significant differences are denoted by the *(p < 0.05). (B)
Rotational biases are plotted and compared for each head roll position
(=30°, 0°, 30°).

in visual coordinates compared to proprioceptive coordinates.
Furthermore, visual information was weighted significantly more
for IHP in visual coordinates for head rolled conditions, compared
to head straight. In contrast, visual information was weighted sig-
nificantly less when the IHP was calculated in proprioceptive coor-
dinates for head rolled conditions compared to head straight. This
finding is representative of the fact that information that undergoes
a noisy transformation is weighted less due to the noise added by
this transformation, e.g., vision is weighted less in proprioceptive
as opposed to visual coordinates (Sober and Sabes, 2003,2005). An
even further reduction of weighting of the transformed signal will
occur if head roll is introduced, presumably due to signal dependant
noise (see Discussion section).

In addition to accounting for head roll noise, the reference frame
transformation also has to estimate the amplitude of the head roll
angle. Any misestimation in head roll angle will lead to a rotational
movement error. Figure 8B plots the rotation biases (i.e., the overall
rotation in movement direction relative to the visual hand—target
vector) for each head roll position. The graph shows that there is a
rotational bias for reaching movements even for 0° head roll angle.
This bias changes depending on head roll. There were significant
differences between the rotational biases for head roll conditions
compared to head straight (#20) > 6.891, p < 0.01).

MODELING NOISY REFERENCE FRAME TRANSFORMATIONS

We developed a full Bayesian model of multi-sensory integration for
reach planning. This model uses proprioceptive and visual IHP esti-
mates and combines them in a statistically optimal way, separately
in two different representations (Sober and Sabes, 2003, 2005):
proprioceptive coordinates and visual coordinates (Figure 3B). The
IHP estimate in visual coordinates is compared to target position

to compute the desired movement vector while the IHP estimate in
proprioceptive coordinates in needed to translate (through inverse
kinematics) this desired movement vector into a change of joint
angles using a velocity command model. For optimal movement
planning, not only are [the point estimates in these two reference]
frames are required, but the expected noise in those estimates is
also needed (see Appendix).

Compared to previous models (Sober and Sabes, 2003, 2005),
our model includes two crucial additional features. First, we explic-
itly include the required reference transformations (Figure 3A,“T”)
from proprioceptive to visual coordinates (and vice versa), includ-
ing the forward/inverse kinematics for transformation between
Euclidean space and joint angles as well as for movement generation.
The reference frame transformation T depends on an estimate of
body geometry, i.e., head roll angle (Figure 3A,“H”) in our experi-
ment. Second, in addition to modeling the mean behavior, we also
include a full description of variability. Visual and proprioceptive
sensory information have associated noise, i.e., proprioceptive and
visual IHP as well as head roll angle. As a consequence, covariance
matrices of all variables also have to undergo the above-mentioned
transformations. In addition, these transformations themselves are
noisy, i.e., they depend on noisy sensory estimates.

To illustrate how changes in transformation noise, visual noise,
and joint angle variability affect predicted reach error, we used the
model to simulate these conditions. We did this first to demonstrate
that our model can reproduce the general movement error pattern
produced by previous models (Sober and Sabes, 2003) and second
to show how different noise amplitudes in the sensory variables
change this error pattern. Figure 9A displays the differences in
predicted error between high, medium and low noise in the refer-
ence frame transformation. As the amount of transformation noise
increases, the reach error decreases. The transformed signal in both
visual and proprioceptive coordinates is weighted less in the pres-
ence of higher transformation noise. However, the misestimation
of THP in visual coordinates has a bigger impact on movement
error than the IHP estimation in proprioceptive coordinates (Sober
and Sabes, 2003,2005). As a consequence, the gross effect of higher
transformation noise is a decrease in movement error because the
proprioceptive information will be weighted relatively less after it
is converted into visual coordinates.

Figure 9B illustrates the effect of visual sensory noise (e.g.
in situations such as seen versus remembered stimuli) on pre-
dicted error in a high transformation noise condition. When the
amount of visual noise increases (visual reliability decreases),
proprioceptive information will be weighted more, and predicted
error will increase. Conversely, as visual noise decreases (reliabil-
ity increases), predicted error will decrease as well. Differences
seen between different movement directions (forward and back-
ward) are due to an interaction effect of transformations for
vector planning (visual coordinates) and movement execution
(proprioceptive coordinates).

Not only does visual noise impact the predicted error, but pro-
prioceptive information does as well. Noise associated with dif-
ferent joint angles will result in proprioceptive information being
weighted less than visual information, and as a result there will be
adecrease in predictive error (Figure 9C). Figure 9C displays how
changing the amount of noise associated with one joint angle over
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another can change the predicted error. For example with 6, >0,
the signals indicating the arm deviations from the straight-ahead
position are noisier than the signals indicating upper arm eleva-
tion. With this situation, visual error will be smaller when the
targets are straight ahead or behind because the proprioceptive
signals for the straight-ahead position are noisier and thus will
be weighted less.

Figure 10 displays the model fits to the data for both error (top
panels) and variability (lower panels) graphs for each IHP (=25,
0, 25 mm), comparing the different head roll effects. The solid
lines represent the model fit for each THP, with the squared nodes
representing the behavioral data for each target. The model fits
are different for each head roll position, with 0 head roll falling in
between the tilted head positions. The model predicts that —30°
head roll and 30° head roll would have reach errors in opposite
directions; this is consistent with the data. Furthermore, the model

presents 0 head roll as having the least variability when reach-
ing towards the visual targets, with the behavioral data following
the same trend.

In addition to modeling the effect of head roll on error and
variability, we plotted the differences for IHP as well. Figure 11
displays both error and variability graphs for each head roll con-
dition (same plots as in Figure 10, but re-arranged according to
head roll conditions). The reach errors for different IHPs changed
in a systematic way; however differences in variability between the
IHPs are small and show a similar pattern of variability across
movement directions.

Determining how head roll affects multi-sensory weights was
the main goal of this experiment. Previously in this section we
fitted Sober and Sabes’ (2003) original model to the data, and dis-
played the visual weights for IHP estimates for both visual and
proprioceptive coordinate frames (Figure 8A). In our model, we
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FIGURE 9 | Model simulations. Each graph illustrates how different stimulus parameters affect the predicted reach error for each of the initial hand positions (-25,
0, 25). (A) Low, medium, and high transformation noise is compared. (B) Different magnitudes of visual noise affect predicted error in the high transformation noise
condition. (C) Different amounts of noise associated with separate joint angles affects predicted error in the medium transformation noise condition.
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did not explicitly fit those weights to the data; however, from the
covariance matrices of the sensory signals, we could easily recover
the multi-sensory weights (see Appendix 1). Since our model uses
two-dimensional covariance matrices (a 2D environment allows
a visual coordinate frame to be represented in x and y, and pro-
prioceptive coordinates to be displayed by two joint angles), the
recovered multi-sensory weights were also 2D matrices. We used
the diagonal elements of those weight matrices as visual weights
in visual (x and y) and proprioceptive (joint angles) coordinates.
Figure 12 displays significant differences (1(299) <—10, p <0.001)
for all visual weights between head straight and head rolled condi-
tions, except for 6,. Visual weights were higher for visual coordi-
nates when the head is rolled. In contrast, visual weights decrease
in proprioceptive coordinates when the head is rolled compared
to the head straight condition. These results were very similar to
the original model fits performed in Figure 8A. Thus, our model
was able to simulate head roll dependent noise in reference frame
transformations underlying reach planning and multi-sensory inte-
gration. More importantly, our data show that head roll depend-
ent noise can influence multi-sensory integration in a way that is
explained through context-dependent changes in added reference
frame transformation noise.

DISCUSSION

In this study, we analyzed the effect of context-dependent head
roll on multi-sensory integration during a reaching task. We found
that head roll influenced reach error and variability in a way that
could be explained by signal-dependent noise in the coordinate
matching transformation between visual and proprioceptive coor-
dinates. To demonstrate this quantitatively, we developed the first
integrated model of multi-sensory integration and reference frame
transformations in a probabilistic framework. This shows that the
brain has online knowledge of the reliability associated with each
sensory variable and uses this information to plan motor actions
in a statistically optimal fashion (in the Bayesian sense).

IHP=0 | Vis. Coord: X
1.1- |- Vis. Coord: Y
=== Prop. Coord:e1
=== Prop. Coord:(—)2
a I {
\\\' . I . /'”
0.9 - I
(%)
2
<
2 0.8 -
o
2
©
5 0.7
L
- I— .l- —I
064 1 = 1
0.51 e Sy
P/’ \\I
0.4-
-30 0 30
Head roll (deg)
FIGURE 12 | 2D model fit for each head roll. The model was fit to the data
for each head roll condition. The visual weights for initial hand position
estimates are plotted for visual (dark blue) and proprioceptive (light blue)
coordinate frames with standard deviations. A 2D environment allows visual x
and y and proprioceptive 6, and 6, to be weighted separately. There were
significant differences in visual weighting between head straight and head roll
conditions for all coordinate representations except proprioceptive 6,.

EXPERIMENTAL FINDINGS

When we changed the hand offset, we found reach errors that
were similar to previously published data in multi-sensory inte-
gration tasks (Sober and Sabes, 2003, 2005; McGuire and Sabes,
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2009) and were well described by Sober and Sabes’ (2003) model.
In addition we also found changes in the pattern of reach errors
across different head orientations. This was a new finding that
previous models did not explore. There were multiple effects
of head roll on reach errors. First, there was a slight rotational
offset for the head straight condition, which could be a result
of biomechanical biases, e.g., related to the posture of the arm.
In addition, our model-based analysis showed that reach errors
shifted with head roll. Our model accounted for this shift by
assuming that head roll was over-estimated in the reference frame
transformation during the motor planning process. The over-
estimation of head roll could be explained by ocular counter-roll.
Indeed, when the head is held in a stationary head roll posi-
tion, ocular counter-roll compensates for a portion of the total
head rotation (Collewijn et al., 1985; Haslwanter et al., 1992;
Bockisch and Haslwanter, 2001). This means that the reference
frame transformation has to rotate the retinal image less than
the head roll angle. Not taking ocular counter-roll into account
(or only partially accounting for it) would thus result in an over-
rotation of retinal image, similar to what we observed in our data.
However, since we did not measure ocular torsion, we cannot
evaluate this hypothesis.

Alternatively, an over-estimation of head roll could in theory be
related to the effect of priors in head roll estimation. If for some
reason the prior belief of the head angle is that head roll is large,
then Bayesian estimation would predict a posterior in head roll
estimation that is biased toward larger than actual angles. However,
a rationale for such a bias is unclear and would be contrary to pri-
ors expecting no head tilt such as reported in the subjective visual
verticality perception literature (Dyde et al., 2006).

The second effect of head roll was a change in movement vari-
ability. Non-zero head roll angles produced reaches with higher
variability compared to reaches during upright head position. This
occurred despite the fact that the quality of the sensory input from
the eyes and arm did not change. We took this as evidence for head
roll influencing the sensory-motor reference frame transforma-
tion. Since we assume head roll to have signal-dependent noise (see
below), different head roll angles will result in different amounts
of noise in the transformation.

Third and most importantly, head roll changed the multi-
sensory weights both at the visual and proprioceptive processing
stages. This finding was validated independently by fitting Sober
and Sabes’ (2003) original model and our new full Bayesian refer-
ence frame transformation model to the data. This is evidence that
head roll variability changes for different head roll angles and that
this signal-dependent noise enters the reference frame transforma-
tion and adds to the transformed signal, thus making it less reliable.
Therefore, the context of body geometry influences multi-sensory
integration through stochastic processes in the involved reference
frame transformations.

Signal-dependent head roll noise could arise from multiple
sources. Indeed, head orientation can be derived from vestibu-
lar signals as well as muscle spindles in the neck. The vestibular
system is an essential component for determining head posi-
tion sense; specifically the otolith organs (utricle and saccule)
respond to static head positions in relation to gravitational axes
(Fernandez et al., 1972; Sadeghi et al., 2007). We suggest that the

noise from the otoliths varies for different head roll orientations;
such signal-dependent noise has previously been found in the eye
movement system for extraretinal eye position signals (Gellman
and Fletcher, 1992; Li and Matin, 1992). In addition, muscle spin-
dles are found to be the most important component in determin-
ing joint position sense (Goodwin et al., 1972; Scott and Loeb,
1994), with additional input from cutaneous and joint recep-
tors (Clark and Burgess, 1975; Gandevia and McCloskey, 1976;
Armstrong et al., 2008). Muscles found in the cervical section of
the spine contain high densities of muscle spindles, enabling a
relatively accurate representation of head position (Armstrong
et al., 2008). In essence, as the head moves away from an upright
position, more noise should be associated with the signal due to
an increase in muscle spindle firing (Burke et al., 1976; Edin and
Vallbo, 1990; Scott and Loeb, 1994; Cordo et al., 2002). However,
due to the complex neck muscle arrangement, a detailed biome-
chanical model of the neck (Lee and Terzoloulos, 2006) would
be needed to corroborate this claim.

MODEL DISCUSSION

We have shown that noise affects the way reference frame transfor-
mations are performed in that transformed signals have increased
variability. A similar observation has previously been made for
eye movements (Li and Matin, 1992; Gellman and Fletcher, 1992)
and visually guided reaching (Blohm and Crawford, 2007). This
validates a previous suggestion that any transformation of signals
in the brain has a cost of added noise (Sober and Sabes, 2003,
2005). Therefore, the optimal way for the brain to process informa-
tion would be to minimize the number of serial computational (or
transformational) stages. The latter point might be the reason why
multi-sensory comparisons could occur fewer times but in paral-
lel at different stages in the processing hierarchy and in different
coordinate systems (Kording and Tenenbaum, 2007).

It has been suggested that in cases of virtual reality experiments,
the visual cursor used to represent the hand could be considered as
a tool attached to the hand (K6rding and Tenenbaum, 2007). As a
consequence, there is additional uncertainty as to the tool length.
This uncertainty adds to the overall uncertainty of the visual signals.
We have not modeled this separately, as tool-specific uncertainty
would simply add to the actual visual uncertainty (the variances
add up). However, the estimated location of the cursor tool itself
could be biased toward the hand; an effect that would influence the
multi-sensory integration weights but that we cannot discriminate
from our data.

In our model, multi-sensory integration occurred in specific
reference frames, i.e. in visual and proprioceptive coordinates.
Underlying this multiple comparison hypothesis is the belief that
signals can only be combined if they are represented in the same ref-
erence frame (Lacquaniti and Caminiti, 1998; Cohen and Andersen,
2002; Engel et al., 2002; Buneo and Andersen, 2006; McGuire and
Sabes, 2009). However, this claim has never been explicitly verified
and this may not be the way neurons in the brain actually carry
out multi-sensory integration. The brain could directly combine
different signals across reference frames in largely parallel neural
ensembles (Deneve et al., 2001; Blohm et al., 2009), for example
using gain modulation mechanisms (Andersen and Mountcastle,
1983; Changetal.,2009). Regardless of the way the brain integrates
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information, the behavioral output would likely look very similar.
A combination of computational and electro-physiological studies
would be required to distinguish these alternatives.

Our model is far from being complete. In transforming the
statistical properties of the sensory signals through the different
processing steps of movement planning, we only computed first-
order approximations and hypothesized that all distributions
remained Gaussian. This is of course a gross over-simplification;
however, no statistical framework for arbitrary transforma-
tions of probability density functions exists. In addition, we
only included relevant 2D motor planning computations. In
the real world, this model would need to be expanded into 3D
with all the added complexity (Blohm and Crawford, 2007),
i.e., non-commutative rotations, offset between rotation axes,
non-linear sensory mappings and 3D behavioral constraints
(such as Listing’s law).

IMPLICATIONS
Our findings have implications for behavioral, perceptual, electro-
physiological and brain imaging experiments. First, we have shown
behaviorally, that body geometry signals can change the multi-
sensory weightings in reach planning. Therefore, we also expect
other contextual variables to have potential influences, such as gaze
orientation, task/object value, or attention (Sober and Sabes, 2005).
Second, we have shown contextual influences on multi-sensory
integration for action planning, but the question remains whether
this is a generalized principle in the brain that would also influ-
ence perception.

Finally, our findings have implications for electrophysiological
and brain imaging studies. Indeed, when identifying the func-
tion of brain areas, gain-like modulations in brain activity are

often taken as an indicator for reference frame transformations.
However, as previously noted (Deneve et al., 2001), such modula-
tions could also theoretically perform all kinds of other different
functions involving the processing of different signals, such as
attention, target selection or multi-sensory integration. Since all
sensory and extra-sensory signals involved in these processes can
be characterized by statistical distributions, computations involv-
ing these variables will evidently look like probabilistic population
codes (Ma et al., 2006) — the suggested computational neuronal
substrate of multi-sensory integration. Therefore, the only way to
determine if a brain area is involved in multi-sensory integration is
to generate sensory conflict and analyze the brain activity resulting
from this situation in conjunction with behavioral performance
(Nadler et al., 2008).

CONCLUSIONS

In examining the effects of head roll on multi-sensory integra-
tion, we found that the brain incorporates contextual informa-
tion about head position during a reaching task. We developed
a new statistical model of reach planning combining reference
frame transformations and multi-sensory integration to show that
noisy reference frame transformations can alter the sensory reli-
ability. This is evidence that the brain has online knowledge about
the reliability of sensory and extra-sensory signals and includes
this information into signal weighting, to ensure statistically
optimal behavior.
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APPENDIX

BAYESIAN MULTI-SENSORY INTEGRATION MODEL

In the following sections, we describe the mathematical details of
our model. We will assume that all sensory variables to have a
certain estimate p with Gaussian associated noise 6°. Joint angles
will be denoted by 0 whereas Euclidean variables are x. Vectors x
are bold, matrices A are capitalized.

FORWARD/INVERSE KINEMATICS

Figure 3B shows the arrangement of the body in the experimental
setup with the hand at the IHP location. Since in our case the fore-
arm was approximately parallel to the work surface (right panel of
Figure 3B), we can fully characterize the spatial arm position x as
a function of two joint angles 0, i.e., deviation from straight-ahead
(6,) and upper arm elevation (8,):

x, =—sin®, (L sin®, + L,) (1)

x, =cosO, (L sin®, +L,) (2)

whereL,  are the upper arm and forearm lengths respectively. In order
to compute the inverse kinematic transformation of the noise covari-
ance matrix, we used a first-order Taylor expansion of x(0) around
currentjointangles0°,i.e.,x,(0) = x,(0°)+ Z,(dx, /99,) lpo (0, — 0))x
can then be written as a linear combination of 0, i.e. x = A@ + b,
with

A:A(QU):(_COSG?' (L,sin®S+L,) —Llsine?coseg] 3

—sin®) - (L,;sin@)+L,) L, cosBcos6)

This allows us to write the covariance matrix X of x as a function
of the covariance matrix of 0, as:

2, =A%), A0") (4)

The same approach can be used to compute the forward kin-
ematics with

0, = tan-l(-ﬁ) (5)
x2

[ 2 L
92 =sin~ [&J (6)

Ll
and
X X
- 2 2 2 2
. X+ X+
A= A(x")= . : (7)
X ~c X,
L1~\/x°2+xOZ L-\/x02+x°Z
1 2 1 1 2
with
02+ 02 L :
X x, —
c= 11 1 2 2 (8)
L

Then,
X, = AR AR )

REFERENCE FRAME TRANSFORMATION

In our case of head roll movements, the required shoulder-
centered-to-retinal coordinate transformation (T) simply consists
of a rotation of the angle 8, = BH, where B is a gain factor and H
is the estimate of the head roll angle. Euclidean position in visual
coordinates (x,) can thus be obtained from Euclidean position in
proprioceptive coordinates (x,) using x,= Tx, with

T ( co.seH sinGH)
—sin@, cosO,
Since head roll (H) and thus 0,, are noisy variables, the trans-
formation T introduces new noise on top of rotating the prop-
rioceptive (P) covariance matrix into visual coordinates (V). We
designed this new noise to be composed of a constant component
o> simulating the fact that all transformations have a cost (Sober

and Sabes, 2003) and a head orientation signal-dependent com-
ponent X .

(10)

Y, =T, T +oil+X, (11)

From random matrix theory we know that any matrix can be
decomposed into a constant and variable component, such that
A=A +E, where A has 0 variance and E 0 mean. Then, pertur-
bation theory tells us that any linear transformation of a noisy
variable x = x + e can be written y = Ax = (A + E)(x, + e) = A x,
+ A e+ Ex + Ee. The covariance of y can then be approximated by
the covariance of A e+ Ex , since the covariance of Ee is negligible
and A x has 0 covariance. Thus 2 = A2 A, +Z,. Inour case, the
matrix X, represents the variability resulting from the fact that the
angle of the reference frame transformation is variable. This results
in variability added to the direction orthogonal of y. Representing

cos,
sin@,,

y in polar coordinates y = r-( ) results in:

ay. ay.
=rlHIo%| = || =
Zuy =7 GH(aeyJ[aey]

)
sin Gy

cosH sin6
Yy )’] (12)

2
=rlHIG, ,
cos Gy

cosGy smey

Note that, as expected, this term introduces errors perpendicular
to the rotated vector. The reason for this is that variability in the
rotation leads to noise only in the rotational direction around the
transformed vector y.

The inverse transformation and associated covariance matrix can
simply be computed by replacing the head roll angle H by —H.

MULTI-SENSORY INTEGRATION

Atthe heart of the model is the multi-sensory integration step that
combines proprioceptive and visual sensory information. In our
model (Figure 3A), this integration occurs twice, once in visual
coordinates as part of computing the visual desired movement
vector and once in proprioceptive coordinates, which is required
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to transform the desired movement vector into a change in joint
angles when determining the motor command. From basic mul-
tivariate Gaussian statistics, the means p and covariances X of
the combined IHP estimates from vision (V) and proprioception
(P) writes as:

>=(Z+2)) (13)

MZZ'Z;IHP"'Z'Z:/IMV (14)

As mentioned above, this calculation is carried out twice, once
in proprioceptive and once in visual coordinates. In visual coor-
dinates, the sensory Euclidean visual information is combined
with the transformed (forward kinematics and reference frame
transformation) proprioceptive information (Euclidean). In pro-
prioceptive coordinates, the sensory proprioceptive joint angles
are combined with the visual information transformed into joint
coordinates (inverse reference frame transformation and inverse
kinematics).

To recover the weight matrix of the visual IHP estimate, we
used -2 =0 and £-X,' =1 -0 to follow (from subtraction of
one from the other) that o= 1/2(22{,1 —22;1 +1I), where I is
the identity matrix.

FINAL MOTOR COMMAND

Once the IHP estimate from the previous step has been subtracted
from the target location (Ax = tar-p, 6, * = (5“2 +0,,%), the result-
ing desired movement vector Ax needs to be transformed into a
motor command x. Here, we used a previously described velocity
command model (Sober and Sabes, 2003; 2005) to perform this
step as follows:

x=J(6)]"(0)Ax (15)

where Jis the Jacobian of the system, 8 is the actual joint configura-
tion and 0 is the estimated joint configuration from the multi-sen-
sory integration step in proprioceptive coordinates. The Jacobian
matrix is defined as J,(0)=(dx,/00,) . In our case, the Jacobian
and its inverse write as:

—cos0,-(Lsin®,+L,) —L sinB, cosO
1(0)= c?s ) (Qs.m ,+L,) ,$inB, cosO, (16)
—sin®, - (L;sin®,+ L,) L cosB,cosH,
—cos0, —sin6,
in@, + L in@, + L
I—l(e)z LISln. 2 ., Lsin®, 2 (17)
—sin®, cos6,
L cosB, L cosB,

To compute the covariance of the motor command, we need to
propagate the variances through Eq. 15. To do so, we first re-write
Eq.15as x = J(0)A® with AO = J7'(0)Ax . Since J(0) is a constant
transformation matrix, the covariance matrix of the final motor
command can be written as:

2, =/0)X,,)0)". (18)

It remains to calculate the covariance matrix ¥, of the motor
command expressed in joint angles. Since J'(0) depends on a
noisy estimate of the joint angles in proprioceptive coordinates,
we again have to apply random matrix theory to approximate the
noise induced by J7'(0), as follows:
=102, JO) +X (19)

The covariance matrix X associated with the noisy inverse
Jacobian is computed similar to Eq. 12 as follows (using multi-
variate Taylor expansion):

0A0. | 0AB;
Y=l = || =2 |0k, (20)
Y k’l( 96, J( 96, J o
with
—aAAe*l = —ll(—sinéf - Ax, +cos6; -sz)
09, a
aAe1 _ b A+ c AF
aé; = —;(cose1 -Ax, +sin6; ~Ax2)
aAAe*z = —l(cos 6 - Ax, +sin6’ ~Ax2)
29,
aAgz = —LlLilez(—sinél* -Ax, +coséf -sz)
09, b

and using a = L, sin 0;+L, and b= L, cos 6; with 6 being the
predicted arm configuration after execution of the motor plan Ax
(Egs. 5 and 6). Note that Gg1 5 are the elements of the covariance
matrix of 0 (from Eq. 14).

MOVEMENT DIRECTION

We were only interested in the initial movement direction, as the
model does not capture movement execution dynamics. Therefore,
we transformed the final motor command x from Cartesian into
Polar coordinates. To transform both the means and covariance
matrix into polar coordinates, we used the following formula:

r=4x +x; (21)
tan(pzﬁ (22)
xl

To obtain the variance or movement direction towards different
targets, we rotated the covariance matrix by the angle of move-
ment direction. For the maximum likelihood estimation (MLE)
procedure described below, we then only used Zw),zz, i.e., the vari-
ance orthogonal to the movement angle, and transformed it into

angular units.

MODEL FITTING: MAXIMUM LIKELIHOOD ESTIMATION

To estimate the model parameters from the data, we used a standard
maximum likelihood estimation procedure. To do so, we calculated
the negative log-likelihood (L) for our data to fit the above model
given the set of fitting parameters p:
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Lo ly)= —gln(Z‘n)—gln(cz) —%zi(yi —uy (23)
where (1, 6%) are the mean and variance resulting from the model
given the parameter set p, n is the number of data points and y
contains the data measured from the experiment. We can then
search for the maximum likelihood estimate by minimizing L over
the parameter space, as:
argmin, L (u,oz Iy). (24)

These computations were carried out in Matlab R2007a
(The Mathworks, Natick, MA, USA) using the fmincon.m (for
Eq. 24) function.

To fit Sober and Sabes’ (2003) original model to our data, we
used a standard non-linear least-squares regression method. The
model equations were the same as for the full model, but without
considering variances or reference frame transformations. Visual
and proprioceptive information were simply combined using scalar
weights, as in Sober and Sabes (2003, 2005).

MODEL PARAMETERS

Upper arm and lower arm (including fist) lengths were set con-
stant to L, = 30 and L, = 45 cm respectively. Shoulder location was
assumed 30 cm backward from the target and 25 cm rightward
of the target. Forward kinematics (Eqs. 5 and 6) for the center
target location directly leads to IHP joint angles of 0, = 42.5° and
0, = —8.3° for the deviation of straight-ahead and the upper arm
elevation respectively. IHPs and target positions were taken from
the experimental data.

There were five parameters in the model that were identified
from the data, i.e. the variances of both proprioceptive (6}) joint
angles (same for both) and horizontal visual (63,) IHP, the variance
associated to the head roll angle (67,), a fixed reference frame trans-
formation cost (X,,) and the head rotation gain for the reference
frame transformation (B). The variance of target position (G},,)
was fixed. To account for the fact that visual distance estimation
is less reliable than visual angular position estimation, we set the
distance variability to 2.5% ¢, *(evaluated from McIntyre et al.,
1997; Ren et al., 2006, 2007).

The best-fit model parameters are represented in Table 1.
They were obtained through bootstrapping analysis (N = 100).
We used a minimum number of model parameters to describe
our data. In particular, we did not have two independent joint
angles, as our data were not compelling enough to distinguish
the effect of both.

Table 1 | Model parameter fits obtained through bootstrapping analysis
(N =100): means + SD (see Appendix 1 for details).

Parameter Meaning Values

s Proprioceptive variance 6.44-105+0.75 - 10°¢
(rad?)

¢, Visual variance 0.347 £0.019 (mm?)

o’ Head-roll-dependent variance 2.46-10°+104-10°
(rad?/deg)

>, Constant transformation noise 0.297 £0.031 (mm?)

B Head roll compensation gain 1.041 £0.009 ()

Frontiers in Human Neuroscience

www.frontiersin.org

December 2010 | Volume 4 | Article 221 | 15



