
HUMAN NEUROSCIENCE

Consider, for example, that you have the choice between a 50:50 
gamble of winning either $0 or $100 and a sure-bet of $50. Most 
people prefer the sure-bet, because it is devoid of risk, even though 
both choices have the same expected payoff. In fact, most people 
would even prefer the sure-bet if it had a slightly lower payoff, say 
$45 – the $5 difference in expected payoff is called a risk-premium 
that risk-averse decision-makers are prepared to pay in order to 
avoid risk, thereby providing a livelihood to insurance companies 
(Samuelson and Nordhaus, 2009). In contrast, risk-seeking indi-
viduals that are obsessed by the possibility of winning $100 might 
prefer the gamble over even a sure-bet of $55, ultimately providing 
a livelihood for casino owners. How can such risk-sensitive behavior 
be explained? The theory of risk in decision-making goes back to the 
eighteenth century (Bernoulli, 1954/1738) and has since developed 
into a host of different models of decision-making under uncer-
tainty (Von Neumann and Morgenstern, 1944; Markowitz, 1952; 
Savage, 1954; Pratt, 1964; Arrow, 1965; Kahneman and Tversky, 
1979). Here we will briefly review different models of risk and then 
discuss their relevance for the study of sensorimotor control.

Models of risk
Arrow–PrAtt MeAsure of risk
A first quantitative model of risk was developed by Daniel Bernoulli 
in the eighteenth century in response to the famous St. Petersburg 
paradox (Bernoulli, 1954/1738). In this paradox a fair coin is tossed 
repeatedly and every time a head comes up the value of the jackpot 
is doubled, but the game ends as soon as a tail appears. Therefore, if 
the jackpot is initialized with $1 and tail appears in the first toss you 
win $1, if it appears in the second toss you win $2, in the third toss it 
is $4, and so forth. The question was how much a gambler should be 
prepared to pay to enter such a game of chance. Since the expected 
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introduction
Sensorimotor control can be considered as a continuous decision-
making process and is thus amenable to the same mathematical 
framework that formalizes decision-making in economics and psy-
chology. This mathematical framework is decision theory which 
in its neo-classical form is founded on the maximum expected 
utility hypothesis (Fishburn, 1970; Kreps, 1988; Pratt et al., 1995). 
The principle of maximum expected utility states that a rational 
decision-maker that holds a belief P(x|a) about the probability that 
an action a leads to an outcome x with utility U(x) should choose 
action a* = arg max

a
 E[U|a] in order to maximize the expected 

utility E[U|a] = ∑x
 P(x|a) U(x).

In human sensorimotor control the maximum expected utility 
principle has been used to explain behavior in movement tasks in 
which uncertainty arises due to the inherent variability of the motor 
system (van Beers et al., 2002; Faisal et al., 2008). The hypothesis 
of maximum expected utility has been invoked, for example, as 
the maximization of expected gain in motor tasks with monetary 
payoffs (Trommershauser et al., 2003a,b, 2008) or as the mini-
mization of movement-related costs such as energy expenditure 
and task error (Harris and Wolpert, 1998; Todorov and Jordan, 
2002; Todorov, 2004; Diedrichsen et al., 2010). Unlike in economic 
decision-making tasks where a considerable number of violations 
of the expected utility hypothesis have been reported over the years 
(Kahneman et al., 1982; Bell et al., 1988; Kahneman and Tversky, 
2000), in motor tasks the vast majority of studies have provided 
evidence in favor of the maximum expected utility hypothesis. 
Recently, however, a number of studies (Wu et al., 2009; Nagengast 
et al., 2010a,b) have reported that the motor system is not only 
sensitive to the expected payoff (or cost) of movements, but also 
to the variability associated with the payoff (or cost). Decision-
makers that take such variability into account in decision-making 
are termed risk-sensitive.
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to pay any arbitrarily high amount of money to enter this game – a 
rather questionable result. Bernoulli therefore introduced the distinc-
tion between the objectively given nominal value of a gamble (e.g., 
$1000) and the subjective utility assigned to it by a decision-maker 
[e.g., U($1000)]. In particular, he noted that $1000 has a higher util-
ity for a pauper compared to a rich man that has already $1000, even 
though both would gain the same amount. The hypothesis that the 
second $1000 has less utility, is known as the diminishing marginal util-
ity of money. Bernoulli postulated that the perceived utility of money 
follows a logarithmic law U($x) ∝ log($x) such that increments in 
payoff have a diminishing utility. This hypothesis can also explain why 
a risk-averse person would prefer a sure-bet with a risk-premium in the 
example described above, because for a risk-averse decision-maker the 
perceived utility U($45) is higher than the utility of 1/2U($100).

Since subjective utilities are not directly observable, this raises 
the question of how such utilities could be measured. Von Neumann 
and Morgenstern (1944) devised a mathematical framework to 
address this question, based on the notion of preference between 
“lotteries.” A lottery can be imagined as a roulette wheel where dif-
ferently sized segments correspond to the probabilities p
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N
. If we now create differ-

ent lotteries by varying the size of the segments then we can ask a 
decision-maker to indicate preferences between the lotteries. Von 
Neumann and Morgenstern showed mathematically that if these 
preferences follow the four basic axioms of completeness, transitiv-
ity, continuity, and independence, then the decision-maker’s choice 
between lotteries can be predicted by the maximum expected utility 
principle with a utility function U(X
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outcomes. A typical shorthand for such lotteries is to write them as 
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]. As utilities are only cardinal, they can only 

be determined up to an affine transform – that is the utility U(X) 
and the utility U X aU X b( ) ( )= +  represent the same preference pat-
terns. Importantly, the probabilities p
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 are assumed to be 

known objectively in this framework – an assumption that was later 
dropped by Savage (1954) who introduced subjective probabilities 
into decision theory, that is probabilities that can be inferred from 
observed preference patterns just like subjective utilities.

The hypothesis of subjective utilities that are marginally dimin-
ishing seems to suggest that risk-sensitivity could be defined in terms 
of the curvature of the utility function. This definition is, however, 
problematic, since utility functions are only determined up to an 
affine transform, which makes the second derivative dependent on 
the arbitrarily chosen scaling parameter of the affine transform. 
Arrow and Pratt (Pratt, 1964; Arrow, 1965) therefore developed 
invariant measures of risk-sensitivity that are defined as the abso-
lute risk-aversion A(x) = U′(x)/U″(x) and the relative risk-aversion 
RA(x) = −xA(x). For Bernoulli’s log-utility, for example, the absolute 
risk-aversion would be decreasing according to RA(x) = 1/x, and the 
relative risk-aversion would be constant RA(x) = 1. A decreasing 
absolute risk-aversion means that a wealthier decision-maker is 
willing to pay a smaller risk-premium to avoid uncertainty, while 
a constant relative risk-aversion implies that the decision-maker is 
prepared to put the same percentage of wealth at risk at all levels 
of wealth. Importantly, this notion of risk requires a continuously 
differentiable utility function and essentially equates risk with the 
concept of diminishing marginal utility. Other models of risk do 
not require these two concepts to be the same.

risk–return Models
One of the most popular risk models in finance is the risk–return 
model proposed by Markowitz (1952). In this model an investor 
has to decide on a portfolio consisting of diverse financial products 
such as bank deposits, government bonds, shares, gold, etc. Some 
of these products may have very predictable payoffs (e.g., a savings 
account), whereas others might be more volatile (e.g., shares). An 
investor who considers both the return and the risk (variability of 
the return) of a portfolio is risk-sensitive. Such an investor bases 
his decisions on a trade-off f(x) between expected return r(x) and 
risk R(x) of a portfolio x such that f(x) = r(x) − θR(x), where θ 
expresses the investor’s individual risk-attitude. A risk-neutral 
investor (θ = 0) only cares about the return, whereas a risk-averse 
investor (θ > 0) considers risk as a discount in utility and a risk-
seeking investor (θ < 0) considers it as a bonus. A special case of 
the risk–return model is the mean–variance model, where return is 
formalized as the expected value r(x) = E[x] and risk is formalized 
as the variability in payoff, i.e., R(x) = VAR[x].

While the risk–return model provides an alternative approach 
to risk that is essentially different from the conception of risk in 
expected utility theory, under certain circumstances the two for-
malizations can be shown to be equivalent. For example, a decision-
maker with a quadratic utility function will make decisions based 
on expected utilities that only depend on mean and variance of 
the payoff. Similarly, if payoffs have a Gaussian distribution and 
the utility function is monotonic and concave, then a decision-
maker who follows expected utility theory maximizes a trade-off 
between mean and variance. In general, one can use Taylor series 
expansion to locally approximate smooth concave utility functions 
with a finite number of moments, such as mean and variance (Levy 
and Markowitz, 1979). Thus, the mean–variance formulation can 
always be considered as locally equivalent to the expected utility 
framework for such general utility functions. Some approaches 
have also suggested risk-sensitive models that consider higher order 
moments, for example, by using exponential risk functions that 
generate all moments (Whittle, 1981; Sarin, 1984).

Risk–return models, however, generally do not need to be con-
sistent with expected utility theory. In fact, generalized risk–return 
models can account for preference patterns that cannot be cap-
tured by expected utility theory. If we assume a value function 
V(x), for example, that measures riskless preference (strength of 
preference), then we can define the return r(x) = E[V(x)], the risk 
R(x) = VAR[V(x)] and the trade-off f(x) = E[V(x)] − θVAR[V(x)] 
to account for preference patterns that violate the independence 
axiom of expected utility theory (Allais, 1953; Allais and Hagen, 
1979; Sarin and Weber, 1993; Bar-Shira and Finkelshtain, 1999) – 
compare Figure A1 in Appendix for details. This approach also 
allows modeling perceived returns and perceived risks, where risk 
is treated as a fundamental quantity measured through direct judg-
ments very much like psychophysical quantities such as brightness 
or loudness (Sarin and Weber, 1993).

the fourfold PAttern of risk in ProsPect theory
Prospect theory was developed as a descriptive theory of decision-
making in response to a host of experimental studies on human 
choice behavior that had reported violations of the normative 
axioms underlying expected utility theory (Allais, 1953; Attneave, 
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Figure 1 | representative subjective value and probability weighting 
functions from Prospect Theory. (A) The subjective value of money as perceived 
by an individual against its nominal value. The value function illustrates concavity for 
gains and convexity for losses. Note that the value function is steeper for losses 
than for gains leading to loss aversion. (B) The subjective probability as perceived 
by an individual against the actual numerical probability. The dashed line indicates 

no distortion of probabilities. The probability weighting function in red illustrates 
overweighting of small probabilities and underweighting of large probabilities as 
found when using explicit probabilities, for example, in questionnaire studies. The 
probability weighting function in green illustrates underweighting of small 
probabilities and overweighting of large probabilities as found in two recent motor 
control studies (Wu et al., 2009; Nagengast et al., 2010a,b).

value is selected. The expected subjective value of a prospect with 
outcomes X

1
 and X

2
 occurring with probabilities p

1
 and p

2
 is defined 

as V = ∑i
 w(p

i
)v(X

i
). The subjective value function v(X

i
) measures 

the subjective gain or loss of the outcome X
i
, and the probability 

weighting function w(p
i
) measures the subjective distortion of the 

probability p
i
 as a decision weight.

The subjective value function (Figure 1A) for human subjects 
is concave for gains (implying marginally diminishing value and 
contributing to risk-aversion for pure gains) and convex for losses 
(contributing to risk-seeking for pure losses). The subjective value 
function is also steeper for losses than for gains, a property known 
as loss aversion, leading to risk-averse behavior for mixed gain–loss 
gambles. For example, subjects typically only accept a 50:50 gamble 
when the potential gain is higher than the potential loss. The proba-
bility weighting function (Figure 1B) for human subjects is inverse-S 
shaped, thus, overweighting low probabilities and underweighting 
high probabilities. This helps explaining the fourfold pattern of risk, 
since underweighting of high probabilities reinforces risk-aversion 
for gains, and risk-seeking for losses as already implied by the shape 
of the value function, whereas overweighting of low probabilities 
counteracts the effects of the value function and permits risk-seeking 
for gains and risk-aversion for losses in the case of low probabilities. 
Both the subjective value function and the probability weighting 
function can be measured either by assuming particular parametric 
forms for v(X

i
) and w(p

i
) (Kahneman and Tversky, 1979; Prelec, 

1998) or by non-parametric methods that allow determining v(X
i
) 

and w(p
i
) for particular X

i
 and p

i
 without assuming a specific para-

metric form (Wacker and Deneffe, 1996; Gonzalez and Wu, 1999; 
Abdellaoui, 2000; Bleichrodt and Pinto, 2000; Abdellaoui et al., 
2007). In cumulative prospect theory the probability weighting 
function transforms cumulative probabilities rather than single 
event probabilities, which allows for a consistent generalization to 
arbitrary numbers of outcomes (Tversky and Kahneman, 1992). 
However, in both variants of the theory the fourfold pattern of risk 
depends on both the shape of the subjective value function and the 
distortion through the probability weighting function.

1953; Ellsberg, 1961; Lichtenstein et al., 1978). One of the most 
famous violations is the Allais paradox (Allais, 1953), where a 
decision-maker is faced with two different decisions that essen-
tially present the same choice, but reveal an inconsistent preference 
reversal. In an adapted version reported by Kahneman and Tversky 
(1979), the first decision is between lottery A [0.33, U($2500); 
0.66, U($2400); 0.01, U($0)] and lottery B [1.0, U($2400)], and 
the second decision is between lottery C [0.33, U($2500); 0.67, 
U($0)] and lottery D [0.34, U($2400); 0.66, U($0)]. If we assume 
that U($0) = 0 then both decisions only differ in their “common 
consequence” in that lotteries A and B simply add 0.66U($2400) to 
lotteries C and D. However, most subjects faced with these decisions 
choose B over A and C over D. This is apparently inconsistent and 
violates the independence axiom of expected utility theory, as the 
first choice would imply 0.33U($2500) < 0.34U($2400) and the 
second choice would imply 0.33U($2500) > 0.34U($2400), thus, 
reversing the first preference. This reversal can be considered as a 
special case of the fourfold pattern of risk suggested by Kahneman 
and Tversky (Tversky and Kahneman, 1992; Glimcher, 2008) and 
confirmed by several other studies (Fishburn and Kochenberger, 
1979; Hershey and Schoemaker, 1980; Payne et al., 1981). These 
studies found that for high-probability gains subjects are typically 
risk-averse (as in the first decision of the Allais paradox), whereas 
for low-probability gains they are risk-seeking (for example, when 
playing in a casino). However, if lotteries are “framed” in terms of 
losses rather than gains then the risk pattern is reversed. Subjects 
are risk-seeking for high-probability losses (as when desperately 
trying to avert a sure loss) and risk-averse for low-probability losses 
(for example, when purchasing insurance).

Prospect theory accounts for this fourfold pattern of risk 
through a two-stage decision process. In the first stage, outcomes 
are “framed” as losses or gains relative to a reference point that 
depends on how prospects are presented and how they are mentally 
“edited” by the decision-maker. This is in contrast to expected utility 
theory where utilities are defined for absolute states of wealth. In 
the second stage, the prospect with the highest expected subjective 
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schemes. Open-loop models predict an optimal desired trajectory 
from biomechanical constraints and a performance criterion like 
energy consumption or trajectory smoothness (Hatze and Buys, 
1977; Flash and Hogan, 1985; Uno et al., 1989; Alexander, 1997; 
Nakano et al., 1999; Smeets and Brenner, 1999; Fagg et al., 2002). 
Most of these models deal with deterministic dynamics and are 
therefore devoid of risk, although some open-loop models take 
motor variability into account for planning optimal movements 
(Harris and Wolpert, 1998). In contrast, optimal feedback control 
(Todorov and Jordan, 2002) is a closed-loop modeling scheme in 
which sensory and motor noise are considered for finding the opti-
mal feedback control law (sometimes also called “optimal policy”), 
which is a contingent observation-action plan for all possible states, 
rather than a pre-determined sequence of actions. Such optimal 
control laws have been found to successfully explain diverse phe-
nomena, such as variability patterns and flexibility of arm move-
ment trajectories (Todorov and Jordan, 2002; Liu and Todorov, 
2007; Guigon et al., 2008), coordination in bimanual movements 
(Diedrichsen, 2007; Braun et al., 2009a; Diedrichsen and Dowling, 
2009), adaptation to force-fields and visuomotor transforms (Izawa 
et al., 2008; Braun et al., 2009b), preservation of movement stability 
under uncertainty (Crevecoeur et al., 2010), adaptive control of sac-
cades (Chen-Harris et al., 2008), object manipulation (Nagengast 
et al., 2009) and snowboard-like full-body movements (Stevenson 
et al., 2009).

Optimal feedback control models typically assume a biome-
chanical system (e.g., the arm) with state x

t
 and dynamics x

t+1
 = f(x

t
, 

u
t
, ε

t
), where u

t
 is the control command and ε

t
 is the motor noise. 

The controller receives feedback y
t
 = g(x

t
, η

t
) that is contaminated 

by sensory noise η
t
 (e.g., visual or haptic feedback). At each time-

step this system incurs a cost c
t
(x

t
, u

t
) that can depend on effort, task 

error, speed, and possibly other states of the biomechanical system. 
The optimal control problem is to find the control law that mini-
mizes the total expected cost E∑

t
 c

t
(x

t
, u

t
), where the expectation 

is taken with respect to the probability distribution over trajectories 
induced by the control law. Thus, the optimal feedback control 
problem can be considered as a temporally extended motor “lot-
tery” where the probabilities are given implicitly by the uncertainty 
over trajectories and the choices correspond to different policies 
that map past observations y

1
, y

2
, …, y

t
 to a motor command u

t
. 

Since the expectation E∑
t
 c

t
(x

t
, u

t
) is linear in the cost, optimal 

feedback control models that minimize this expectation value are 
risk-neutral with respect to the cost.

risk-sensitive Accounts of Motor control
risk-seeking in Motor tAsks with MonetAry PAyoffs
Given the apparent discrepancy between economic studies on 
decision-making and the studies in motor control described above, 
the question arises whether the same subjects that exhibit risk-
sensitivity in an economic decision task would act differently if the 
same decision-problem was presented as a motor task. Recently, this 
question was addressed experimentally (Wu et al., 2009). Wu et al. 
trained subjects on a motor task that required accurate pointing 
movements under time constraints, so that after training they could 
establish subjects’ probability p

i
 of hitting target region i with payoff 

$V
i
. By manipulating the payoffs and probabilities, by adjusting 

the size of the target regions and the associated monetary rewards, 

risk-neutrAl Accounts of Motor control
In economic decision-making tasks, subjects are typically faced with 
one-shot choices between lotteries that are communicated to the 
subject by explicit numbers both for the payoffs and the involved 
probabilities (e.g., a “50:50” chance of winning “$100” or “$0”). 
In contrast, motor tasks are generally not specified in terms of 
numerically displayed probabilities. Instead, probabilities in motor 
task “lotteries” arise through the inherent variability of the motor 
system. For example, when subjects are asked to point to a target 
under time constraints, they are generally unable to point again 
to the exact same spot, and over repeated trials a distribution of 
endpoints is obtained that can be represented by a probability dis-
tribution (Maloney et al., 2007). Similarly, during reaching move-
ments signal-dependent noise is thought to induce variability into 
the movement leading to a distribution over trajectories (Harris 
and Wolpert, 1998; Todorov and Jordan, 2002; Todorov, 2005). 
Similar to task probabilities, payoffs can also be either explicit or 
implicit. In the following we review both kinds of motor tasks, 
i.e., tasks with explicit payoff, for example given by point rewards 
or monetary rewards, and tasks with implicit payoff, for example 
given by energy costs, task error, or effort.

MAxiMuM exPected gAin Models for exPlicit rewArd tAsks
Throwing a dart at a dart board is a paradigmatic example of a 
motor task that involves explicitly given point rewards. The points 
define a payoff landscape that determines where on the board it 
is best to aim given the sensorimotor variability of the thrower. 
Trommershauser et al. (2003a,b, 2008) have exposed human sub-
jects to pointing tasks similar to dart throwing and investigated 
whether subjects’ aiming behavior could be explained by statisti-
cal decision theory. In their experiments subjects could point to 
different target regions R

i
 each of which was labeled with a mon-

etary reward G
i
. The pointing movements had to be performed 

under time constraints. As subjects’ movements were inherently 
noisy, movement endpoints could be represented with a Gaussian 
probability distribution P(x′, y′/x, y) around the aim point 
(x, y). Thus, the probability of hitting target region R

i
 is given by 

P R x y P x y x y dx dyi Ri
( | , ) ( , | , )= ∫ ′ ′ ′ ′. The hypothesis of maximum 

expected gain then states that subjects should choose their aim 
point (x, y) so as to maximize Γ(x, y) = ∑

i
 G

i
P(R

i
|x, y). Importantly, 

given a measure of the variability in pointing, specifying the payoffs 
G

i
 and the locations of the target regions R

i
 allows one to predict 

the optimal aiming point (x, y), which was tested experimentally. 
Trommershauser et al. (2003a,b, 2008) found that in contrast to 
many economic decision-making tasks, subjects’ motor behavior 
(i.e., their aim points) could be well described by the expected 
gain hypothesis. Since this model implies a linear utility function 
U(G

i
) = G

i
, this also implies risk-neutrality – compare for example 

both the absolute and the relative Arrow–Pratt measures of risk 
which are zero for linear utility functions.

oPtiMAl feedbAck control Models for iMPlicit rewArd tAsks
In many motor tasks there is no explicit numerical reward, for exam-
ple, when walking, cycling, or lifting a cup of coffee. Nevertheless, 
such motor tasks are amenable to theoretical investigation by opti-
mality principles (Todorov, 2004). Optimality models for motor 
tasks can be classified into open-loop and closed-loop control 
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action that was probabilistically associated with an effort that was 
either lower or higher than the certain effort. Similar to the studies by 
Trommershauser et al. (2003a,b, 2008), in the case of the risky action 
the probabilistic outcome was determined by subjects’ probability of 
hitting a designated target region within a short time limit. Crucially, 
the two possible outcomes of the risky action not only entailed a mean 
effort that could be compared to the certain effort, but also a variance. 
By manipulating the two outcomes of the risky choice appropriately, 
Nagengast et al. could fix the level of effort variance, while exposing 
subjects to different mean levels of effort. In this way they measured 
the indifference points where subjects chose equiprobably between 
the certain effort and the mean effort for a given variance level. Thus, 
subjects could be classified as risk-seeking, risk-averse, or risk-neutral 
depending on whether they accepted risky actions that had a higher, 
lower, or equal mean effort compared to the certain effort. In fact, the 
null-hypothesis of risk-neutrality could be rejected for most subjects 
in this task, with the majority being risk-seeking (Figure 2).

The risk-seeking behavior observed in this motor task with implicit 
effort payoffs is similar to the risk-seeking behavior reported by Wu 
et al. (2009) in their motor task with monetary payoffs. Accordingly, 
a fit of the trial-by-trial choice data with a prospect theory model 
reconfirmed the finding of Wu et al. about the probability weighting 
function underweighting small probabilities in motor tasks (compare 
Figure 1B). To this end, we assumed the commonplace parametric 
forms v(x) = −xα and w(p) = exp[−(−lnp)γ] for the subjective value 
function and the probability weighting function respectively (Wu 
et al., 2009), and we conducted a maximum likelihood fit for the 
parameters α and γ. However, this prospect theory model fit did 
not provide a better explanation of subjects’ choices than the mean–
variance model. Unlike the study by Wu et al., the experimental setup 
allowed the mean and variance of the payoff to be manipulated 
separately, which in turn allowed the mean–variance trade-off to 
be directly measured. However, whether the brain represents risk in 
agreement with the mean–variance approach or with the prospect 
theory account is still subject to an ongoing debate (Boorman and 

they could present subjects with binary choices between varying 
motor lotteries of the form [p

1
, V

1
; p

2
, V

2
;
 
p

3
, V

3
]. In particular, 

they were able to induce lotteries that only differed in “common 
consequences,” as in the Allais paradox, to study whether violations 
of expected utility theory also occur in motor tasks.

In their experiments Wu et al. used this paradigm of “common 
consequences” both in the motor task and in the equivalent economic 
decision task. In both cases they observed preference reversals that 
were inconsistent with expected utility theory. Importantly, “common 
consequence” lotteries also differ in their riskiness, that is in the vari-
ance of their payoffs. Wu et al. found that in the motor task subjects 
chose riskier lotteries with significantly higher frequencies than in 
the economic decision task. To explain this phenomenon they fit a 
prospect theory model to their subjects’ choice data. While there was 
no significant difference in the inferred value functions of the eco-
nomic and the motor task, Wu et al. found a characteristic difference 
in the probability weighting function. In the motor task the inverse-S 
shaped weighting function of the economic decision task appeared 
mirrored on the diagonal, such that in the motor task low probabilities 
were underweighted and high probabilities overweighted. Since the 
same subjects overweighted low probabilities and underweighted high 
probabilities in the economic decision-making task, subjects exhib-
ited opposite patterns of probability distortion in the motor and the 
economic decision-making task (compare Figure 1B). This difference 
in the probability weighting function also accounts for the increased 
risk-seeking observed during the motor task, since low probabilities 
of not winning are systematically underweighted.

Motor risk As MeAn–vAriAnce trAde-off in effort
In its simplest form the risk–return model formalizes risk-sensitivity 
as a trade-off between mean payoff and the variance of the payoff. 
Recently, this mean–variance model of risk-sensitivity has been tested 
by Nagengast et al. (2010b) in a motor task that required effort as an 
implicit payoff. In their task, subjects had a choice between a sure 
motor action associated with a fixed and certain effort and a risky 
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Figure 2 | Mean–variance trade-off. Six representative subjects of the 
mean–variance trade-off experiment (Nagengast et al., 2010b) ordered from 
the most risk-seeking to the most risk-averse. The five indifference 
points ± SD obtained using psychometric curve fits are shown in black. 
The best lines of fit were obtained using weighted linear regression 

and are shown in blue. The risk-attitude parameter θ is the line’s slope and 
is shown in the right-hand corners of the subplots. In the experiment the 
null-hypothesis of risk-neutrality could be rejected with p < 0.05 for 11 
out of 14 subjects (significance is marked with an asterisk in  
the plot).
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standard expected cost function E∑
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). Interestingly, this 

criterion is compatible with a mean–variance notion of risk, since 
the first two terms of a Taylor series approximation of γ(θ) cor-
respond to mean and variance, i.e., γ(θ) ≈ E[∑
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, u

t
)] − θ/4 
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)]. In the case of a system with linear dynamics, 

quadratic cost function, and additive noise, such a risk-sensitive 
control scheme predicts that the control gain should be depend-
ent on the magnitude of the process noise, whereas a risk-neutral 
control scheme predicts that the control gain should be unaffected 
by this noise level.

Recently, Nagengast et al. (2010a) tested this prediction of 
the risk-sensitive control framework in a human movement task 
– compare Figure 3. Subjects had to control a virtual ball that 
underwent Brownian motion resulting from an additive noise 
process with a given magnitude. The ball moved forward with 
constant velocity toward a target line, but the ball’s trajectory 
fluctuated randomly to the left and to the right according to the 
process of Brownian motion. Subjects were required to minimize 
an explicit cost displayed in points that was a combination of 
the final positional error measured as the distance of the ball 
from the center of the target line and the integrated control cost. 
Accordingly, the Brownian motion introduced a task-relevant 
variability directly affecting the task cost (Franklin and Wolpert, 
2008). Since the control costs were given explicitly in this task 
and did not have to be fitted to subjects’ behavior, the only free 

Sallet, 2009). Recent evidence from electrophysiological and func-
tional imaging studies has provided support for both theories. In 
support of the mean–variance approach, separate encoding of reward 
magnitude and risk has been reported in humans (Preuschoff et al., 
2006; Tobler et al., 2007, 2009) as well as in non-human primates 
(Tobler et al., 2005). However, recent studies have also found neural 
evidence in favor of prospect theory, such as neural correlates of 
framing processes (Martino et al., 2006) and neural responses that 
depended on probabilities in a non-linear fashion during a risky 
task (Hsu et al., 2009). Both effects are cornerstones of prospect 
theory. However, further studies are needed to elucidate how the 
brain represents value and how the brain’s different valuation and 
action selection systems interact and vie for control to arrive at an 
overt behavioral decision (Rangel et al., 2008).

risk-sensitive oPtiMAl feedbAck control
In contrast to risk-neutral optimal feedback controllers that have 
been widely used to model motor behavior (Todorov and Jordan, 
2002), a risk-sensitive optimal feedback controller depends not 
only on the mean expectation value of the cost but also on higher 
order moments, such as the variance of the cost (Whittle, 1981). 
An optimal controller with risk-sensitivity θ optimizes the crite-
rion γ( ) ( / )log [ ],( / ) ,θ θ θ= − − ∑ ( )2 1 2E e t t t tc x u with θ < 0 for a risk-averse 
controller, θ > 0 for a risk-seeking controller, and θ = 0 for the risk-
neutral controller where the criterion function coincides with the 
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Figure 3 | Predictions of risk-sensitive optimal feedback control. A 
risk-neutral optimal control model (θ = 0) attempts to minimize the mean of 
the cost function. As a result, its policy (that is the motor command applied 
for a given state of the world) is independent of the noise variance N. In 
contrast, a risk-sensitive optimal control model minimizes a weighted 
combination of the mean and variance of the cost. Additional variance is an 
added cost for a risk-averse controller (θ < 0), whereas it makes a movement 
strategy more desirable for a risk-seeking controller (θ > 0). As a 
consequence, the policy of the controller changes with the noise level N 

depending on its risk-attitude θ. (A–C) Changes in motor command with the 
state for a low noise level (green) and for a high noise level (red) for the 
risk-neutral (A), risk-averse (B) and risk-seeking (C) controllers. In our 
experiments the state is given by the positional deviation of a cursor from the 
center of a target line (the cursor can deviate to the left or to the right leading 
to positive or negative State) and the control task is to reduce this deviation to 
zero. Consequently, all lines have a negative slope, as the control command 
needs to point into the opposite direction of the deviation. The slope of the 
lines is equivalent to the control gain of the controller.
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conclusion
Risk-sensitivity has been studied extensively in economics and psy-
chology (Trimpop, 1994; Kahneman and Tversky, 2000; Gigerenzer, 
2002; Samuelson and Nordhaus, 2009). In biology, the concept of 
risk-sensitivity has previously been mainly applied to foraging, feed-
ing, and reproduction (Houston, 1991; Hurly and Oseen, 1999; Shafir 
et al., 1999; Kirshenbaum et al., 2000; Shapiro, 2000; Bateson, 2002; 
Goldshmidt and Fantino, 2004; Heilbronner et al., 2008; Matsushima 
et al., 2008; Wong et al., 2009; Bardsen et al., 2010; Kawamori and 
Matsushima, 2010). There have also been investigations on the neu-
ral substrate of risk-sensitivity in economic decision tasks in which 
macaque monkeys “gambled” for fluid rewards (McCoy and Platt, 
2005; Hayden et al., 2008; Long et al., 2009). In contrast to this body 
of research, the majority of studies in motor control have empha-
sized risk-neutrality, in that motor behavior in these studies could be 

parameters of the risk-sensitive model were the magnitude of 
the noise and the risk-parameter. By testing subjects on different 
levels of Brownian motion noise, it was possible to test whether 
subjects changed their control gains in accordance with a risk-
sensitive account of control, or were indifferent to such changes 
in accordance with a risk-neutral account of control. Nagengast 
et al. found that for the same error experienced in a particular 
trial, most subjects intervened more in a task with large error 
statistics than in a task with small error statistics (Figure 4). 
Thus, the statistics of preceding trials affects the reaction to the 
same error.

This behavior is consistent with risk-aversion, but inconsistent 
with a risk-neutral account of motor control. Therefore, subjects 
acted pessimistically in the presence of noise, as they were prepared 
to accept higher control costs in order to avoid losses.
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Figure 4 | Subjects’ control gains in experiment for different cost and 
noise conditions. (A) Experimental Session with low control costs. Results of a 
multi-linear regression analysis of the control gains for a representative subject. 
The lines show the average motor command that the subject produces for a 
given position (blue – low noise level, yellow – high noise level). The slope of the 
line is a measure for the positional control gain of the subject. (B) same as in 
(A) but for a condition with high control costs (green – low noise level, red – high 

noise level). (C) Positional control gain for the high noise condition plotted 
against the control gains of the low noise condition for all six subjects under low 
control costs (ellipses show the standard deviation). The dashed line represents 
equality between the gains. (D) as (C) but for high control costs. In both cost 
conditions, the gains have changed significantly as most ellipses do not intersect 
with the dashed diagonal. This change in gains is consistent with a risk-sensitive 
optimal feedback control model, but not with a risk-neutral model.
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explained as the maximization (minimization) of expected reward 
(cost) without taking into account higher moments like the variance 
of the reward (cost). This apparent discrepancy between motor control 
and economic decision-making seems all the more striking as both 
fields rely on the same normative framework of decision theory.

Here we have reviewed recent evidence for risk-sensitivity in 
motor control tasks. In these studies risk was either conceptualized 
as a distortion of monetary value and probability or as a trade-off 
between mean and variance of movement costs. While these two 
accounts may differ in the way they formalize risk, both frameworks 
suggest that movement neuroscience needs to consider risk-sen-
sitivity in computational models to explain individual differences 
in motor control. Previous studies in economics have shown that 
individual risk-sensitivity tends to be context-dependent, such 
that the same individual can be risk-averse in one domain but 
risk-seeking in another (MacCrimmon and Wehrung, 1986; Yates, 
1992; Weber et al., 2002; Hanoch et al., 2006). In motor control 
risk-sensitivity may also depend on the task domain, the skill level 
and other contextual factors. How risk-sensitivity generalizes across 
different motor tasks is therefore an important future question.

Since ultimately optimal choice models both in motor control 
and in economics rely on the same mathematical framework of 
decision theory, the study of risk-sensitivity within this framework 
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Figure A1 | Violation of independence axiom. If we assume two lotteries 
A and B with the preference B  A and we create two new composite 
lotteries A′ and B′ by adding a “common consequence” lottery C to both A 
and B such that lottery A′ gives again lottery A with probability p and lottery C 
with probability 1 − p, and lottery B′ gives lottery B with probability p and 
lottery C with probability 1 − p, then the independence axiom of expected 
utility theory requires that we have the preference B′  A′ . We can see this 
immediately by comparing the expectation values of the composite lotteries 
and by subtracting the expected utility of the common consequence C. 
However, if we represent our preferences using the mean–variance approach, 
the preference between A′ and B′ also depends on the variance terms arising 
from the distance to C. The preferences are therefore not independent from 
the third consequence. For details see (Bar-Shira and Finkelshtain, 1999).
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