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IntroductIon
The nature of the neural code remains a 
central issue of contention in neuroscience. 
Firing rate based schemes have dominated 
thinking for most of the past century, but 
there is a growing acceptance that tem-
poral patterns of neuronal activity have 
an important role to play, at least in some 
systems and circumstances. Neuronal oscil-
lations provide a central pillar in the evi-
dence supporting temporal coding, perhaps 
because temporal codes can ultimately be 
understood only in the context of popu-
lation activity and oscillations are at once 
experimentally accessible and analytically 
tractable.

In the many roles proposed for oscilla-
tory activity, a uniting theme is the con-
trol of spike timing, which can broadly be 
considered on two timescales. On the one 
hand, fast oscillations may be important 
in promoting precise synchronization of 
activity across cells, by providing millisec-
ond windows of enhanced spike probabil-
ity. Slow oscillations, on the other hand, 
can provide a broader temporal scaffold, 
against which other inputs, both tonic and 
phasic, can determine spike timing on the 
order of milliseconds to tens of millisec-
onds. Again, this could be important for 
synchronization of activity, but equally, 
could be used to control spike order, for 
coding, or plasticity purposes, or could 
be used to desynchronize discrete assem-
blies, enabling parallel processing. Here, 
we describe the cellular mechanisms 
underlying this broader timescale process 
in the hippocampus, specifically focusing 
on the effect of tonic and phasic inputs 
on the control of spike timing in single 
 hippocampal neurons during theta oscilla-
tions and the implications for information 
coding and storage.

tonIc Input: rate-to-phase 
transform
Probably the best studied example of oscil-
lation-based coding is the phenomenon of 
hippocampal place cell phase precession in 
rodents (O’Keefe and Recce, 1993). Place 
cells are so-called because their activity 
increases when an animal passes through 
a limited spatial location, the place field, 
analogous to the receptive field familiar 
from sensory systems (O’Keefe, 1976). The 
hippocampus is notable for having strong 
theta-frequency oscillatory activity, and 
when place cell activity is examined rela-
tive to the phase of this oscillation, a sys-
tematic relation between spatial location 
and phase of firing is apparent. On entry 
to the place field, spikes occur at a certain 
restricted phase of the oscillation. As the 
animal traverses the place field, the phase of 
firing advances monotonically, leading to a 
strong correlation between spatial location 
and phase of firing in a given cell (O’Keefe 
and Recce, 1993). How is this phase code 
established? Numerous models at both cel-
lular and network levels have been proposed 
to account for phase precession (Burgess 
and O’Keefe, 1996; Tsodyks et al., 1996; 
Kamondi et al., 1998; Harris et al., 2002; 
Mehta et al., 2002; Lengyel et al., 2003), 
and recordings of the intracellular dynam-
ics during phase precession of place cells in 
area CA1 of hippocampus are beginning to 
constrain these models (Harvey et al., 2009), 
but the underlying mechanisms remain 
unclear. It emerges that a very simple bio-
physical mechanism, described below, can 
capture core features of the phenomenon. 
While it is entirely likely that more elabo-
rate mechanisms are at play in establish-
ing the detailed behavior of place cells, this 
simple mechanism nonetheless provides 
an excellent starting point for developing 

insight into the fundamental computations 
 available in an oscillatory neural system.

A key insight is that phase of firing is cor-
related with firing rate (Harris et al., 2002), 
at least for the initial period of entry into the 
place field (Huxter et al., 2003). Increasing 
firing rate typically implies increased depo-
larizing drive to a cell and so an obvious 
question is, what is the predicted effect of 
increased drive on the phase of firing for a 
cell receiving oscillatory input?

An intuitive account serves well in this case. 
For a fixed amplitude of membrane poten-
tial oscillation in the cell (whether internally 
generated or imposed by external inputs), as 
depolarizing drive increases, eventually a level 
of input is reached at which the peak of the 
oscillation just reaches threshold, and so firing 
occurs at that phase (Figure 1A). As depolar-
izing drive increases further, the membrane 
potential reaches threshold slightly earlier 
on the oscillation, yielding a phase advance. 
This intuition can be confirmed fairly easily 
using an analytical description of this system 
for a leaky integrate-and-fire (IF) model, at 
least to a first approximation, treating only a 
single spike on each cycle of the oscillation 
(Gerstner and Kistler, 2002; McLelland and 
Paulsen, 2009; for a more complete analytical 
account of oscillatory cycle locking behav-
iors, see Coombes and Bressloff, 1999). That 
real neurons demonstrate this behavior has 
been confirmed experimentally, both in vitro 
(Figure 1B; McLelland and Paulsen, 2009) 
and in vivo (Kamondi et al., 1998; Margrie 
and Schaefer, 2003). The analytical descrip-
tion is useful in providing a starting point to 
understand the effects of parameter changes 
(oscillatory input or intrinsic cell proper-
ties) on system behavior (Figure 1C). Several 
points are worth emphasizing (for a more 
detailed explanation, see McLelland and 
Paulsen, 2009):
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in the preceding cycle, so that (a) for 
coding purposes it may be difficult to 
distinguish first and last spikes and (b) 
the post-spike conductances from a late 
phase spike may interfere with phase-
locking of the subsequent early phase 
spike, such that the cell drops out of the 
phase-locked regime and chaotic firing 
patterns ensue.

(3) The system works best when the period 
of the oscillation is substantially lon-
ger than the membrane time constant 
of the cell (and, ideally, the dynamics 
of post-spike conductances). In this 

sufficiently synchronous that a spike 
is driven directly, irrespective of the 
phase of the ongoing oscillation).

(2) This mechanism can only yield up to 
180° of phase advance. As intuition 
suggests, and models and experiments 
support, increased drive not only 
advances the phase of the first spike 
on every cycle, it also allows spikes to 
occur at later phases. As such, for levels 
of input sufficient to advance the first 
spike by nearly 180°, there may be 
minimal separation between the first 
spike in a given cycle and the last spike 

(1) This transform from rate (of inputs) 
to phase is not reliant on any special 
properties of the cells, but is automati-
cally implemented in even very simple 
neuron models (single-compartment 
leaky IF). Any such neuron with an 
externally imposed membrane poten-
tial oscillation must behave like this 
(stronger inputs yield earlier phases 
of firing, or vice versa: early phases 
imply strong inputs) unless specific 
mechanisms are in place to override 
this (e.g., synaptic inputs are of suf-
ficient amplitude or multiple inputs 

A

B

C

Figure 1 | The rate-to-phase transform: increasing tonic excitation 
produces progressive spike phase advancement. (A) The transform can be 
understood at an intuitive level. For a constant amplitude of membrane potential 
oscillation, as the level of tonic excitatory drive to the cell increases, a level is 
reached at which the peak of the oscillation is just suprathreshold (green trace). 
Further increases in excitatory drive lead to earlier crossing of threshold, that is, 
spike phase advance (blue trace). (B) Real cells implement this transform. Spike 
phase histogram from hippocampal pyramidal cells in vitro, receiving current 
injection to simulate a theta-frequency (5 Hz) oscillation of physiologically 
relevant amplitude (5 mV), and a range of levels of tonic drive. The first spike per 
cycle (black) advances systematically with increasing drive, and this process is 
not interrupted as secondary (dark gray) and even tertiary (light gray) spikes are 

recruited in each cycle. (C) The rate-to-phase transform can be described 
analytically, to a first approximation, facilitating an understanding of the way in 
which oscillation and cell parameters will affect the phase–current (φ–I) curve. 
(i) Changes in oscillation amplitude yield a horizontal scaling of the curve. 
(ii) Changes to cell input resistance yield only a sideways shift. (iii) Oscillation 
frequency and (iv) cell membrane time constant have equal but opposite effects 
(doubling oscillation frequency has the same effect as halving membrane time 
constant). Note also that, for some parameter ranges, relatively large changes in 
time constant (e.g., 5–20 ms here) can have fairly small effect on the slope of 
the φ–I curve. As a result, a constant change in the level of input across a group 
of cells could yield a similar phase-shift in each cell, independent of their 
individual conductance states. Modified from McLelland and Paulsen (2009).
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amplitude of synaptic input and, in CA1 
pyramidal neurons, the synaptic pathway 
from which the input emanates. In addi-
tion to excitatory synaptic inputs, inhibitory 
synaptic inputs such as the GABA

A 
receptor-

mediated inhibitory input impinging on the 
soma of CA1 pyramidal neurons, are also 
able to bi-directionally control the spike 
phases, with its effect reversed compared 
to that with excitatory input (Kwag and 
Paulsen, 2009b).

As with tonic input, the ability of excita-
tory phasic input to advance spike phases 
with excitatory input is intuitive – excitatory 
input on the ascending phase of the oscilla-
tion causes the membrane potential to reach 
threshold earlier, yielding phase advance. 
However, how can an excitatory input on 
the descending phase of oscillation delay the 
spike phase? So far, experimental and ana-
lytical models have demonstrated that there 
are two different mechanisms – intrinsic and 
synaptic. Intrinsic membrane conductances 
such as the hyperpolarization-activated 
non-specific cation channel underlying I

h
 

expressed in dendrites of pyramidal neu-
rons can mediate excitation-induced spike 
phase delay as shown experimentally and 
theoretically in layer V pyramidal neurons 
(Goldberg et al., 2007). As we show here 
using a single-compartment exponential IF 
neuron, addition of h-conductance alone 
was sufficient to cause spike phase delay 
with excitatory input (Figure 2). Recently, 
Prescott and Sejnowski (2008) argued that 
subthreshold conductances such as the 
 voltage-activated M-type K+ current (I

M
) 

could also improve spike-time coding. Thus, 
voltage-dependent intrinsic neuronal con-
ductances can contribute to the fine-tuning 
of the phase of spike firing.

However, spike phase delay can also depend 
on synaptic conductances. For example, 
(Kwag and Paulsen, 2009b) compared PRCs 
for different input-pathways to hippocam-
pal CA1 pyramidal cells: intra-hippocampal 
CA3 inputs and extra-hippocampal entorhi-
nal input (Kwag and Paulsen, 2009b). While 
phase advancement effects were similar, they 
found synaptic input-dependence of spike 
phase delay. Intra-hippocampal CA3 input 
(the Schaffer collateral input) synapsing onto 
the proximal dendrites of CA1 pyramidal cells 
induced only a small degree of spike phase 
delay whereas temporoammonic pathway 
(TA) input from layer III of the entorhinal 

of their phase relative to the cycle of the 
oscillation, that is, as phasic inputs. The the-
oretical treatment of phasic inputs is intrin-
sically more complex in nature, and can 
take into account differing synaptic origin, 
type, location, and amplitude, all of which 
could influence synaptic integration and 
the overall spike output, and consequently 
the spike phase. Here we will discuss how 
phasic inputs could influence temporal cod-
ing during theta-frequency oscillations and 
how such a code could directly influence the 
plasticity and computational learning rules 
of the hippocampal network.

Phase response curves (PRCs) have been 
adopted in experimental and theoretical 
studies as a systematic approach to formalize 
the impact of transient perturbations on the 
spiking behavior of an oscillatory neuron 
(Reyes and Fetz, 1993a,b; Ermentrout, 1996; 
Tateno et al., 2004; Netoff et al., 2005; Tsubo 
et al., 2007; Kwag and Paulsen, 2009a,b). 
In PRCs, the spike phase-shift caused by 
a small depolarizing or hyperpolarizing 
perturbation is calculated as a function of 
the phase of perturbation during the spike 
cycle (often maintained by a tonic depolar-
izing current). Although PRCs are mostly 
studied to predict the ability of neurons to 
synchronize their spiking activity in a net-
work, in fact, what the PRCs are measur-
ing is how phasic inputs influence the spike 
output-phase during oscillation. Such re-
interpretation and application of PRCs has 
been made in hippocampal CA1 and CA3 
pyramidal neurons (Lengyel et al., 2005; 
Kwag and Paulsen, 2009a,b). Depending on 
the timing of phasic excitatory inputs, PRCs 
in hippocampus showed not only spike 
phase advancement but also delay during 
oscillations (Lengyel et al., 2005; Kwag and 
Paulsen, 2009b). When the excitatory input 
was simulated on the ascending phase of 
theta, late in the cycle, the effect was similar 
to that of an increase in tonic drive, advanc-
ing spike phase. Strikingly, however, when 
the same excitatory input was simulated 
on the descending phase of the oscillation, 
early in the cycle, then the spike phase was 
delayed. Indeed, phasic inputs could delay 
spike phase beyond the peak of the mem-
brane potential oscillation, thus beyond the 
range that can be achieved with purely tonic 
input. The amount of spike phase advance-
ment and delay with phasic inputs in CA3 
pyramidal neurons is dependent on the 

regime, the trough of the oscillation 
is of sufficient duration for all mem-
brane potential perturbations from the 
preceding cycle to decay, so that only 
the tonic level of drive and the oscil-
lation itself determine the timing of 
the first spike in the subsequent cycle. 
Thus the system can support a range of 
firing rates without this perturbing the 
monotonic phase advance of the first 
spike per cycle. Further, in this regime, 
the system is remarkable in not needing 
to iterate toward a cycle-locked phase: 
the “correct” phase will be achieved 
in the first cycle following a change in 
tonic input, or at the latest, the second 
cycle.

(4) This transform can operate for faster 
oscillations (Tiesinga et al., 2002), but 
in that case the regime is slightly dif-
ferent. The threshold input current is 
likely to yield a firing rate below the 
frequency of the oscillation, and spikes 
in that state will not be phase-locked. 
Only when drive is sufficient to yield 
a cycle-locked firing rate will phase-
locking and phase precession with 
increased drive be implemented, and 
in that regime, the phase of firing on a 
given cycle is strongly dependent on the 
phase of firing in the preceding cycle 
(thus the system has to iterate toward 
the “correct” phase, and is also more 
susceptible to noisy perturbations of 
timing).

phasIc Input: phase-to-phase 
transform
We have outlined how tonic input can con-
trol spike phase relative to slow (e.g., theta-
frequency) oscillatory input. However, real 
synaptic input can never truly be considered 
tonic, even in the unlikely event that the 
rate of synaptic events is constant. Thus, the 
system described above can present only an 
approximate starting point for the under-
standing of spike phase control against 
slow oscillations, albeit, we hope, a useful 
one. A neuron in an intact network at any 
given time point is likely to receive myriad 
additional synaptic inputs simultaneously 
with those arising as part of the ongoing 
network oscillation (Buzsaki, 2002). Since 
these inputs arrive during the oscillation, 
naturally, they can be considered in terms 



Kwag et al. Firing phase in neuronal computations

Frontiers in Human Neuroscience www.frontiersin.org February 2011 | Volume 5 | Article 3 | 4

cal and computational function in vivo is as 
yet unclear but recent experimental evidence 
suggests that delayed spike phases may code 
environmental novelty in CA1 pyramidal 
neurons (Lever et al., 2010).

GABA
B
 receptor-mediated inhibition when 

stimulating TA input, since it was reduced by 
blockade of GABA

B
 receptor-mediated inhi-

bition (Kwag and Paulsen, 2009b). Whether 
spike phase delay has any specific physiologi-

cortex (EC) synapsing onto the distal den-
drites of CA1 cells produced much larger 
spike phase delay. The increased spike phase 
delay with extra-hippocampal input from 
the EC is due to the preferential activation of 

Figure 2 | The phase-to-phase transform: Phasic input bi-directionally 
controls the postsynaptic spike timing during theta-frequency 
oscillation. (A) Plot of spike-time advancement and delay as a function of the 
time of phasic input in a simple model (a single-compartment exponential 
integrate-and-fire model, as described by Fourcaud-Trocme et al. (2003), gL 
10 nS, EL −70 mV, C 200 pF, VT −55 mV, ∆T 3 mV, Vreset −60 mV). An oscillation 
was driven by sinusoidal inhibitory conductance of 0–10 nS at 5 Hz, and a 
tonic depolarizing current of 120 pA was applied, bringing the neuron past 
threshold. Excitatory phasic current input with a duration of 10 ms and 
amplitude of 80 pA was given once per theta cycle and the corresponding 
spike phase-shift was plotted against the timing of the phasic input. (B) As 
(A), but with 4 nS of h-channel conductance included (parameters as 
described by Golding et al., 2005). Excitatory phasic current now yields a 
delay in spike phase if applied 200–120 ms before the peak of the oscillation. 

(C) Diagram of experimental set-up: CA1 hippocampal pyramidal neuron with 
recording electrode at the soma and extracellular electrode stimulating SC 
input (SC) and TA input (TA). (D) Example voltage traces recorded from CA1 
pyramidal neuron during theta oscillation induced by conductance clamp 
(black trace; minimum inhibitory conductance upward). Without any synaptic 
perturbation, the neuron spikes near the peak of the oscillation (gray, dashed 
line). When TA input is stimulated on the ascending phase of the oscillation 
(black bar), the postsynaptic spike is advanced (black trace). When TA input is 
stimulated on the descending phase of the oscillation (black bar), the 
postsynaptic spike is delayed (black trace). (e) Plot of spike-time 
advancement and delay as a function of the time of TA stimulation (black) or 
SC stimulation (light gray). Time zero is the average spike-time without TA 
stimulation. Data are means ± SD of 10 postsynaptic spike-times for each TA 
stimulation time. Adapted from Kwag and Paulsen (2009b).
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rons can be precisely controlled, whether 
the goal be synchronization for increased 
downstream synaptic effect, or control of 
spike timing for coding or plasticity pur-
poses. This kind of precision in relative 
spike timing is precisely what is measured 
by the mutual information estimate, and 
so that framework can provide a useful 
means of building a general understand-
ing of the system. Without entering into 
the detail of the calculation (Borst and 
Theunissen, 1999; McLelland and Paulsen, 
2009), really just two factors determine the 
mutual information:

(1) Variance of output-phases for a given 
input level. Temporal coding schemes in 
general have the theoretical advantage 
over rate codes that the encoding varia-
ble is continuous. Thus, if the system 
were noise free and if spike timing 

Here, we consider the simple example 
of the rate-to-phase transform for tonic 
inputs.

One approach to this question is to 
estimate the mutual information between 
the input signal (level of tonic excitation) 
and the output (phase of firing). Such an 
estimation serves two purposes. Firstly, 
when considering phase control as a coding 
mechanism directly (e.g., a certain phase 
implies a certain sensory stimulus or situ-
ation; Jensen and Lisman, 2000), it allows 
comparison with other candidate coding 
schemes, such as the rate code. Secondly, 
without explicitly considering phase as 
a direct coding mechanism, oscillatory 
control of spike timing could support 
various computational mechanisms (e.g., 
Hopfield, 1995), the implementation of 
which depends on the extent to which rela-
tive timing across a pair or group of neu-

One intriguing aspect of phasic input is 
that it can cause bidirectional spike phase-
shifts without changing the firing rate. This 
supports the idea that rate and temporal codes 
may co-exist, at least partially independently. 
The variables that could enrich the diversity 
of such temporal codes include amplitude, 
synaptic input-pathway, and types of inputs, 
to name a few. All in all, while we can consider 
the mean level of synaptic input to behave 
approximately according to the principles 
described for tonic input above, that is, 
increased input will advance spike phase, the 
potential remains for phasic inputs to both 
advance and delay postsynaptic spike phase 
dependent on the timing of the input.

phase code effIcIency
Thus far we have described mechanisms by 
which the phase of firing can be controlled. 
Just how efficient are these mechanisms? 

A

B

C

D

Figure 3 | The precision of the rate-to-phase transform can be quantified 
by the mutual information between the tonic input level and the phase of 
firing. (A) For the rate-to-phase transform, mutual information increases with 
two main factors: (i) decreasing the variance in response phase for a given level 
of tonic input, and (ii) increasing the shift in phase for a given change in the level 
of tonic input, that is, the slope of the φ–I curve. These factors are both strongly 
influenced by oscillation amplitude, as follows. (B) The gradient of the 
membrane potential on approach to threshold influences the susceptibility to 
noise. For a fixed amplitude of membrane potential noise (dotted lines around 

the membrane potential trace), increasing oscillation amplitude will decrease 
response phase variance, increasing mutual information. (C) For precisely the 
same underlying reasons, increasing the oscillation amplitude will decrease the 
phase-shift for a given change in tonic input, decreasing the mutual information. 
(D) The efficiency of the rate-to-phase transform was estimated in hippocampal 
pyramidal cells in vitro, for a physiologically relevant amplitude (5 mV) of 
theta-frequency (5 Hz) oscillation. Mutual information was significantly higher for 
the phase of firing than for the rate of firing, and similar to that for the interspike 
interval where no oscillation was present (McLelland and Paulsen, 2009).
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to the theta oscillation, and consequently 
control the sign of plasticity locally in the 
hippocampus. The switch in plasticity was 
purely due to the change in spike timing 
thus the change in the pairing order of pre- 
and postsynaptic spike times (Figure 4). 
Simple computational modeling suggests 
that TA input, with its ability to bi-direc-
tionally control spike phases, is special 
in potentially being able to enforce both 
tLTP and tLTD in the hippocampal net-
work (Figure 4), whereas SC input, with 
less ability to phase delay the spike, would 
promote tLTD in the network (Kwag and 
Paulsen, 2009b). As entorhinal TA input is 
suggested to channel most external sensory 
information into the local hippocampal 
circuit, the control of STDP by TA input 
might have implications for how external 
sensory information could be encoded as 
spike phases relative to local hippocampal 
theta and eventually be stored in the local 
hippocampal network as synaptic weight 
changes. Thus, under the phasic input-con-
trolled phase coding regime, the change in 
spike timing may contribute to the control 
of neuronal computation during oscilla-
tion without changing the rate code (Kwag 
and Paulsen, 2009b). Interestingly, there is 
a temporal offset between preferred firing 
phases of entorhinal input and hippocam-
pal CA1 neurons in vivo and such innate 
temporal delay could render subdivisions 
of the entorhinal–hippocampal system 
computationally relatively independent 
(Mizuseki et al., 2009).

conclusIon
Mounting experimental evidence suggests 
that phase codes are important in hippoc-
ampal processing but the establishment of 
such phase codes and their roles in infor-
mation and memory processing are still 
unclear. Here we have discussed two modes 
by which phase can be controlled in CA1 
hippocampal neurons during oscillations – 
a rate-to-phase transform for tonic inputs 
and, building on the same framework, 
a phase-to-phase transform for phasic 
inputs. Phase codes are notable for their 
efficiency in information encoding, and 
also intrinsically provide a means by which 
phase-coded information can be stored as 
changes in synaptic weights. Although the 
exact nature of the neural code is yet to be 
uncovered, it is likely that both rate and 
phase codes co-exist and the mechanisms 

constrained by the demands of the compu-
tational task itself.

It is notable that, for a physiologically 
relevant amplitude of theta-frequency oscil-
lation, spike phase was found to encode sig-
nificantly more information about the level 
of tonic input than was encoded by spike 
rate (Figure 3D; McLelland and Paulsen, 
2009). This echoes the finding of increased 
accuracy in position reconstruction from 
hippocampal place cell activity when spike 
phase is taken into account, as compared 
to the spike rate alone (Jensen and Lisman, 
2000). Similarly, in the auditory system, it 
has recently been reported that the phase 
of spike patterns relative to low-frequency 
rhythms encoded additional information 
and was notably robust to noise (Kayser 
et al., 2009).

phase code for storIng 
InformatIon
In addition to being a more efficient way of 
encoding information, precisely controlled 
spike times may contribute to information 
storage in a network as changes in synap-
tic weights via spike timing-dependent 
plasticity (STDP; Song et al., 2000). In 
STDP, timing-dependent long-term poten-
tiation (tLTP) of synaptic weight occurs 
when a presynaptic neuron spikes before 
the postsynaptic neuron, whereas timing-
dependent long-term depression (tLTD) 
occurs if this order is reversed, both within 
a time scale of a few tens of milliseconds 
(Markram et al., 1997; Bi and Poo, 1998). 
Thus, phasic control of spike phases dur-
ing oscillation might serve an important 
function in naturally organizing spikes 
into time windows conducive to STDP 
(Paulsen and Sejnowski, 2000; Song et al., 
2000). Under such a scenario, a mechanism 
that could control the spike phase could 
also control hippocampal information 
processing as well as plasticity. This has 
been demonstrated in the hippocampus 
where the spike phase control mechanism 
has been directly utilized to control the 
sign of STDP during oscillation (Kwag and 
Paulsen, 2009b). Pre-before-post pairing 
of CA3 and CA1 neurons would normally 
induce tLTP whereas post-before-pre pair-
ing of these neurons could induce tLTD 
(Bi and Poo, 1998; Debanne et al., 1998; 
Kwag and Paulsen, 2009b). However, the 
timing of direct activation of TA input 
could control the CA1 firing phase relative 

could be detected with arbitrary accu-
racy, then the code could be infinitely 
accurate. Obviously, for real neurons, 
this is not the case – even in vitro, in 
the absence of synaptic noise, intrinsic 
conductance noise results in a range of 
output-phases for a given level of exci-
tatory drive to a cell. As the variance of 
this distribution increases, the mutual 
information decreases (intuitively, 
comparing the responses to two levels 
of input, as the overlap in the distri-
butions of these responses increases, 
the inputs become less discriminable, 
Figure 3A). For real neurons, the nature 
of the spike generating  mechanism is 
such that spike timing precision incre-
ases with the steepness of approach 
to threshold.

(2) Slope of the φ/I curve. As well as the 
variance of phase distributions, the 
second factor determining mutual 
information in this system is the phase-
shift for a given change in input level. 
If this shift were large, then even with 
large response variance, different levels 
of input would remain discriminable 
(Figure 3A).

Consider the effect of oscillation param-
eters on this system. Larger amplitude 
oscillations will yield lower variance for a 
given level of input (Figure 3B) but less 
phase advance for any change in input 
level (Figures 3C and 1C). In terms of the 
mutual information, these are competing 
effects, and ultimately the net effect will 
depend on the specific system, and the 
level and temporal structure of any noise 
therein. Increasing the frequency of oscil-
lations would tend to have the same effect 
as increasing oscillation amplitude, in that 
membrane potential gradient tends to 
increase. However, because the membrane 
is a low pass filter, oscillation amplitude 
tends to decrease as frequency increases, 
offsetting this effect.

The full calculation also has to take into 
account the distribution of inputs encoun-
tered, but the above description should 
capture the essence of mutual information 
during oscillations. Thus one can imagine 
that competing demands determine opti-
mal oscillation amplitude and frequency, 
to which must be added the effects of the 
intrinsic properties of the cells involved. 
At the same time, oscillation frequency is 
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we have described here suggest how phase 
coding may yield efficiency in hippocampal 
network computations.
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