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(Masquelier et al., 2009). As we just review here the main results 
of these studies, we redirect the interested reader to the original 
references for more details.

Role of Rhythmic neuRal synchRonization in 
spontaneous bRain activity duRing Rest
A growing body of neuroimaging research has documented that, in 
the absence of an explicit task – the so-called “resting state,” the brain 
exhibits structured spatiotemporal patterns of activity. In particular, 
analysis of the fMRI blood oxygen level-dependent (BOLD) fluctua-
tions (<0.1 Hz) during such conditions has revealed the existence 
of consistent networks, called resting state networks (Biswal et al., 
1995). Among them, the so-called default-mode network is believed 
to play an important role (Shulman et al., 1997; Gusnard and Raichle, 
2001; Greicius et al., 2003; Fox et al., 2005; Raichle and Mintun, 
2006). Although this network could be associated with daydream-
ing, free association, stream of consciousness, or inner rehearsal in 
humans, similar patterns have been found in anesthetized monkeys, 
demonstrating that this network reveals intrinsic properties of the 
brain (Vincent et al., 2007). Since, a series of other networks has been 
identified (Mantini et al., 2007). These findings using the hemody-
namic BOLD signal are supported by direct measurements of the 
neural activity: namely, even for distant regions, the slow fluctuations 
(<0.1 Hz) of the neural firing rate and of the gamma band power of 
the local field potential (LFP) can be correlated (Nir et al., 2008).

To understand the origin of this type of activity, a large-scale model 
of the brain is necessary. This can be done by considering the network 
of anatomically connected brain regions, such as the one known for the 
macaque via the CoCoMac database (Kötter, 2004; Kötter and Wanke, 
2005), as shown in Figure 1A. At this large-scale, propagation delays 
are taken into account, via the choice of an axonal conduction velocity 
and the use of inter-regional distances. At the local level, the underly-
ing network of excitatory and inhibitory spiking neurons,  considered 

intRoduction
Rhythmic neural synchronization is commonly found in the brain 
and involves a number of different frequency bands. Such activ-
ity is found during the execution of a number of tasks (Tallon-
Baudry, 2009) and even when a subject is at rest (Nir et al., 2008). 
The origin of such rhythms has received quite a lot of attention 
either experimentally or in modeling studies and a number of 
mechanisms have been found. The issue of their role is far less 
clear, as a general consensus has not been attained. On one side, 
as rhythmic neural activity correlates with a number of cogni-
tive processes and behavior, its role is believed to be important 
for information processing (Fries, 2009). On the other side, it 
is believed that this rhythmic synchrony is just concomitant to 
information processing but do not participate in it. Two facts 
make this question difficult to answer. Direct evidence of the role 
of rhythmic synchrony can be obtained by manipulating these 
rhythms but only few results have been obtained for the induced 
behavioral (Stopfer et al., 1997) and neural activity (Sohal et al., 
2009) changes. Second, the way information is processed in the 
brain is not sufficiently characterized to attribute a well-defined 
role to rhythmic synchrony. As modeling allows a more complete 
and deeper investigation, this approach appears as a convenient 
tool to explore this question.

Based on our recent modeling work, we review here evidence 
for a constructive role of rhythmic neural activity in different situ-
ations. First, we show how local rhythmic synchrony can induce a 
spatiotemporally organized spontaneous activity at the brain level 
during rest (Deco et al., 2009). Then, we show how rhythmic syn-
chrony contributes positively to attention (Buehlmann and Deco, 
2008) and information transfer between different neural pools 
(Buehlmann and Deco, 2010). Finally, we show how the learning 
of repeatedly presented input patterns by spike timing- dependent 
plasticity (STDP) can be enhanced by rhythmic  synchrony 

The role of rhythmic neural synchronization in rest and task 
conditions

Gustavo Deco1,2* Andres Buehlmann1, Timothée Masquelier1 and Etienne Hugues1

1 Unit for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
2 Institut Català de Recerca i Estudis Avançats, Universitat Pompeu Fabra, Barcelona, Spain

Rhythmic neural synchronization is found throughout the brain during many different tasks and 
even at rest. Beyond their underlying mechanisms, the question of their role is still controversial. 
Modeling can bring insight on this difficult question. We review here our recent modeling results 
concerning this issue in different situations. During rest, we show how local rhythmic synchrony 
can induce a spatiotemporally organized spontaneous activity at the brain level. Then, we show 
how rhythmic synchrony decreases reaction time in attention and enhances the strength and 
speed of information transfer between different groups of neurons. Finally, we show that when 
rhythmic synchrony creates firing phases, the learning with spike timing-dependent plasticity 
of repeatedly presented input patterns is greatly enhanced.

Keywords: oscillations, resting state, attention, communication, learning

Edited by:
Thilo Womelsdorf, Robarts Research 
Institute London, Canada

Reviewed by:
Miles A. Whittington, Newcastle 
University, UK
Paul H. E. Tiesinga, Radboud University 
Nijmegen, Netherlands

*Correspondence:
Gustavo Deco, Unit for Brain and 
Cognition, Department of Information 
and Communication Technologies, 
Universitat Pompeu Fabra, Roc 
Boronat, 138, 08018 Barcelona, Spain. 
e-mail: gustavo.deco@upf.edu

Frontiers in Human Neuroscience www.frontiersin.org February 2011 | Volume 5 | Article 4 | 1

Review ARticle
published: 07 February 2011

doi: 10.3389/fnhum.2011.00004



homogeneous for simplicity, can be modeled using the classical reduced 
model of a Wilson–Cowan unit (Wilson and Cowan, 1972), where 
noise is added. When each unit is driven under its oscillatory thresh-
old – above which a gamma oscillation develops, it is shown that for a 
sufficiently large coupling all units oscillate, the network activity exhib-
iting an irregular dynamics. We divide the network in two structural 
communities (see Figure 1B), calculate the level of synchrony of each 
community using an analog of the Kuramoto (1984) order param-
eter and also calculate the BOLD signal using a hemodynamic model 
(Friston et al., 2003). We observe slow fluctuations of the communities 
synchrony levels and of their calculated BOLD signal (Figure 2). These 
fluctuations get anticorrelated for an intermediate range of noise levels 
(Figure 2), in line with the experimental observations (Fox et al., 2005). 
Note the optimal noise level where the anticorrelation is maximal, 
indicating the presence of stochastic resonance.

Role of Rhythmic neuRal synchRonization in 
attention and infoRmation tRansfeR
In area V4 of behaving monkeys, attention has been shown to mod-
ulate the firing rate of neurons whose receptive fields contain the 
attended stimulus. When the receptive field contains one stimulus, 

attention increases the firing rate. When two stimuli are presented, 
the firing rate increases if the stronger stimulus is attended but 
decreases when the weaker one is attended. This behavior is called 
biased competition (Moran and Desimone, 1985; Desimone and 
Duncan, 1995). Furthermore, associated with an increase of gamma 
frequency range power of the LFP with attention, neurons acti-
vated by an attended stimulus exhibit increased gamma frequency 
synchronization compared with neurons activated by a distractor 
stimulus1 (Fries et al., 2001). Although rate and gamma synchrony 
modulations occur simultaneously, it is not clear if and how they 
are mechanistically related.

A number of theoretical studies have investigated the neural 
mechanisms subserving attention. In the presence of a gamma 
oscillation, a number of these studies have found that attentional 
modulations could be reproduced (Niebur et al., 1993; Tiesinga 
et al., 2004; Borgers et al., 2005, 2008; Buia and Tiesinga, 2006, 2008; 
Borgers and Kopell, 2008; Buehlmann and Deco, 2008; Zeitler et al., 

Figure 1 | Structure of the large-scale model of the macaque brain. (A) Structural connectivity matrix (existing connections in red) between the 33 regions of 
the CoCoMac database. The network is separated in two communities (yellow separation lines). (B) Cortical surface representation of the two communities (yellow 
and green). Figure adapted from Deco et al. (2009).

Figure 2 | Blood oxygen level-dependent signal analysis. (A) BOLD 
fluctuations for each community (1: black; 2: red) and for the difference (blue). (B) 
Correlation between the synchronization level of the two communities versus the 

noise level: simulations (points) and non-linear least-squared fitting (curve). Note 
the stochastic resonance effect: there is an optimal noise level for which both 
communities are maximally anticorrelated. Figure adapted from Deco et al. (2009).

1Note that, in V1, a decrease in gamma frequency synchronization has recently been 
found (Chalk et al., 2010). However, different mechanisms than in V4 are believed 
to be at play.
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modeling framework (see Figure 4A), general effects of gamma 
synchronization on information transfer between two neural pools 
were studied by measuring the transfer entropy (TE) between these 
two clusters (Buehlmann and Deco, 2010). TE is an information 
theoretical measure that quantifies the statistical coherence between 
systems and is able to distinguish between shared and transported 
information (Schreiber, 2000). In accordance with the experiments 
we found that (i) there is an optimal phase relation at which TE 
is highest between the two groups of neurons, (ii) TE increases 
as a function of the gamma power (Figure 4B), and (iii) the time 
required to reach 50% of the TE after stimulus onset decreases as a 
function of gamma power (Figure 4C). Taken together, these find-
ings support the CTC hypothesis and, as rhythmic neural synchro-
nization makes information transport more efficient, they suggest 
that it has a behavioral relevance.

Role of Rhythmic neuRal synchRonization in 
leaRning with spike timing-dependent plasticity
Recent experiments have established that in cortex information 
can be encoded in the spike times of neurons relative to the phase 
of a background oscillation in the LFP – a phenomenon referred 
to as “phase-of-firing coding” (PoFC; Montemurro et al., 2008; 
Kayser et al., 2009; Vinck et al., 2010). These firing phase preferences 
could result from combining an oscillatory drive with a stimulus-
dependent current that would produce the variations in preferred 
phases (Hopfield, 1995), a mechanism that has experimental sup-
port in vitro (Tiesinga et al., 2002; Schaefer et al., 2006; McLelland 
and Paulsen, 2009). However, it remains unknown if such a firing 
activity can be decoded, that is if downstream neurons can respond 
selectively to patterns of phases in their inputs and if this behavior 
can be learnt.

A recent modeling study has shown that PoFC has a major 
impact on downstream learning and decoding when associated 
with the now well-established STDP (Masquelier et al., 2009). 
STDP is a physiological mechanism of activity-driven synaptic 

2008; Ardid et al., 2010). In other studies (Deco and Rolls, 2005; 
Hugues and Jose, 2010), it was found that attentional modulations 
could be induced by a top-down bias to a non-oscillating asynchro-
nous network. In conclusion, while network gamma oscillations 
could help, these results demonstrate that they are not mandatory 
to induce attentional modulations. We review here a study inves-
tigating this question further.

Biased competition has been implemented in a network of excita-
tory and inhibitory spiking neurons (see Figure 3A), where atten-
tion is modeled as an additional input to the neurons encoding the 
attended stimulus (Deco and Rolls, 2005). When the attentional 
effects on gamma synchronization are included (Buehlmann and 
Deco, 2008), the model results are compatible with the experiments: 
when a stimulus is presented there is correlated neural activity in 
the gamma frequency band, and its power is stronger in the neurons 
encoding the attended stimulus than in the neurons encoding the 
unattended stimulus. By increasing the AMPA synaptic conduct-
ance and decreasing simultaneously the NMDA one to preserve 
charge entry, we can create a gamma oscillation in the network and 
increase its power. When the gamma power level is increased, the 
attentional rate modulation decreases monotonically but the gamma 
modulation first increases up to a maximum and then decreases 
(Figure 3B). These results suggest that rate and gamma modula-
tions can occur independently of each other and are therefore not 
concomitant effects. However, if the rate modulation is accompanied 
by a gamma modulation, reaction times are found to be shorter, 
implying a behavioral relevance for gamma synchronization.

One potential role of rhythmic neural activity may be to enhance 
communication between neural pools. In fact, an experimental 
study has shown that the correlation of neural activity in two neu-
ral clusters depends on the phase relation of the neural activity 
in the two clusters (Womelsdorf et al., 2007). This result suggests 
that effective connectivities in a network can be maximized or 
minimized by synchronization, a hypothesis also known as com-
munication through coherence (CTC; Fries, 2005). In a similar 

Figure 3 | in attention, rate and gamma modulations are not concomitant 
effects. (A) Schematic representation of the network. The network consists of 
excitatory and inhibitory spiking neurons, with full synaptic connectivity. All neurons 
receive as external inputs (Poissonian) spike trains characterized by their rate. The 
excitatory neurons are organized in three pools: the non-specific neurons (NS) and 
the two selective pools (S1, S2) that receive the input encoding the stimulus (with 
rate νin). One of the two selective pools gets an additional bias (νbias). All neurons get 

also an input (νext) that simulates the spontaneous activity in the surrounding 
cerebral cortex. (B) Rate modulation (solid curve) and gamma modulation (dashed 
curve) as a function of the modification ratio gAMPA/gNMDA for excitatory synaptic 
conductances. Increasing this ratio increases rhythmic gamma band power (dotted 
curve), decreases the rate modulation monotonically while gamma modulation 
peaks around gAMPA/gNMDA ≈ 0.12. Either of the two modulations can be dominant, 
depending on the gamma power. Figure adapted from Buehlmann and Deco (2008).
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mation to be encoded in the spike phases, and STDP provides an 
appealing mechanism to learn how to decode them. Consistent with 
our scheme a growing body of experimental evidence in animals 
and humans demonstrates that successful Long-Term Memory 
encoding correlates with increased oscillatory activity across a 
broad range of frequencies (from the theta to the gamma frequency 
bands), in both sensory and associative areas (see Jensen et al., 2007; 
Klimesch et al., 2008; Tallon-Baudry, 2009 for recent reviews).

discussion
In this review, we have presented recent modeling results which 
suggest that rhythmic neural synchronization can have a variety 
of roles. During rest, when the brain is close to a spontaneous 
state, we have found that if local rhythms are sustained, they tend 
to form synchronized clusters of brain regions, creating in this 

 regulation, where an excitatory synapse receiving a spike before a 
postsynaptic one is emitted is potentiated (Long-Term Potentiation) 
whereas its strength is weakened the other way around (Long-Term 
Depression). STDP has been observed both in vivo and in vitro, in 
many species (from insects to mammals) and in many brain areas 
(see Caporale and Dan, 2008 for a review).

Specifically, a single neuron equipped with STDP (Figure 5) can 
robustly detects a randomly repeating pattern of input currents 
hidden in a subset of its afferents when it is encoded in their firing 
phases (Figure 6). The oscillatory drive improves the spike times’ 
reliability, by decreasing their sensitivity to initial conditions and 
avoiding jitter accumulation, so that they depend mainly on the 
current input values. The ability of STDP to detect repeating spike 
patterns had been noted before in continuous activity (Masquelier 
et al., 2008), but it turns out that oscillations greatly facilitate learn-
ing, which is possible even when only a small fraction of the affer-
ents (∼10%) exhibits PoFC. A benchmark with more conventional 
rate-based codes demonstrated the superiority of oscillations and 
PoFC for both STDP-based learning and speed of decoding, which 
only takes one oscillatory cycle.

Simultaneously resetting all the afferents’ potentials every now 
and then is a similar alternative to adding a common oscillatory 
drive, which also leads to reproducible spike times that STDP can 
pick. This may be a valid description of what happens during dis-
crete sensory processing such as saccades or sniffs (Uchida et al., 
2006), or with “stimulus onset paradigms,” in which a given sensory 
system is in a spontaneous state before being presented with a 
stimulus. But the fact that periods of oscillatory activity are found 
throughout the brain, and the suggestion that they could be par-
ticularly useful for the continuous cognitive processes, in which no 
reference time such as stimulus onsets is available, means that the 
oscillatory drive model may be of great practical importance.

Even if they are still speculative, these results suggest how two 
simple mechanisms present in the brain may combine construc-
tively to induce a kind of temporal coding: oscillations allow infor-

Figure 4 | increasing network gamma frequency band power leads to 
mean transfer entropy increase and time for information transfer decrease. 
(A) Schematic representation of the network. The network consists of two 
parts. In each part, there are excitatory (S, NS) and inhibitory (I) spiking neuron 
pools, which are interconnected. The connectivity is full. The selective pool (S) 
receives the external input (νin) and has strong recurrent connections. The two 
parts of the network are connected via the selective pools by both feedforward 
and feedback connections. All neurons get also an input (νext) that simulates the 

spontaneous activity in the surrounding cerebral cortex. (B) When the 
modification ratio gAMPA/gNMDA increases, both gamma power (dashed line) and TE 
(solid line) increase. (C) Rise times of TE as a function of the modification ratio. 
Information starts flowing after stimulus onset when, consequently, TE starts 
rising. The plot shows the time required to reach 50% of the average TE. TE 
clearly rises faster for higher gamma band power. In both graphics, error bars 
indicate 95% confidence intervals; averaged over 100 trials. Figure adapted from 
Buehlmann and Deco (2010).

Figure 5 | Neural architecture. Excitatory afferent neurons 1, …, n (on the 
left) receive individual input currents I1, …, In plus a common oscillatory drive 
i(t), which leads to a current-to-phase conversion: the stronger the current the 
earlier a neuron fires during an oscillation cycle. Afferents project with plastic 
weights w1, …, wn to one downstream neuron equipped with STDP. This 
neuron will gradually become selective to the spike wave corresponding to 
the repeating current pattern. Figure adapted from Masquelier et al. (2009).
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networks, potentiating some synapses, and depressing others, 
which can change the interaction between the two networks and 
the relative phase of their oscillations and in turn how synapses 
evolve. What controls this complex dynamical process is a funda-
mental issue to understand how brain connectivity evolves with 
experience, but still very little is known. However, it is reason-
able to think that selection of incoming information can be done 
in this way. Consider two neural groups A and B, projecting on 
a second network, all of them oscillating in the same frequency 
band. Depending on the mean phase of A and B spikes, the pat-
terns of A spikes may be learned with STDP (following the results 
presented in section ‘Role of Rhythmic Neural Synchronization in 
Learning with Spike Timing-dependent Plasticity’), but synapses 
from B neurons may be systematically depressed. This selection 
mechanism may be flexible, the phase relationships changing for 
example with the context: in the previous example, the learning 
of the patterns of B spikes would then become possible, while the 
patterns of A spikes would be forgotten. Note that, as STDP is a 
slow process, this mechanism will occur on a much longer times-
cale than communication occurs.

At a broader level, these results show that rhythmic synchrony 
can have an important impact on the efficiency of neural commu-
nication at different scales, by providing a temporal organization of 
neural activity. However, these findings should also be investigated 
experimentally to check if the modeling hypotheses are appropri-
ate and the rhythms sufficiently strong so that these effects are 
effectively present.
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way spatiotemporally organized activity at the brain scale level. 
Rhythmic synchrony was also found to decrease reaction time 
in attention and enhance information transfer between different 
groups of neurons, in line with the CTC hypothesis (Fries, 2005). 
Finally, when rhythmic synchrony creates firing phases (PoFC), 
the learning with STDP of repeatedly presented input patterns is 
greatly enhanced.

Among the mechanisms we have considered in this review on 
rhythmic neural synchronization, PoFC, CTC, and STDP involve 
spike timing and may be at work simultaneously. An interesting 
issue is to understand how they relate to each other in the brain, 
and if they facilitate each other or not. An oscillation in a net-
work, either of intrinsic or extrinsic origin, can induce PoFC in 
the discharge of its neurons, the mean input to a neuron control-
ling generally its mean firing phase with respect to this oscillation. 
When a first neural network projects to a second one, and that 
both exhibit an oscillation in the same frequency band, the phase 
to which the incoming spikes arrive to the second network rela-
tive to its oscillation (taking into account an eventual conduction 
delay) is believed to play a role in the effective communication 
between the two networks (CTC; Fries, 2005; Womelsdorf et al., 
2007). The information conveyed from the first network spikes will 
be “filtered” by the second, some neurons having a more important 
effect on the second network activity than others due to their firing 
phase. Note that beyond these phenomena at the individual neuron 
level, the phase between the oscillations in the two networks will 
also depend on the global behavior of the neural populations in 
these networks.

In the case where synapses between these two networks are 
equipped with STDP, learning will of course depend on the relative 
timing between the spikes in the first and in the second network, 
and therefore on the firing phases in the case of oscillatory net-
works. This learning will sculpt the connectivity between these 

Figure 6 | Downstream neuron input and response after learning (A) 
Input spike trains from afferents 150, …, 250, for the [0, 3]-s period. Spikes 
come in waves because of the oscillatory drive. Gray rectangles designate the 
periods where the pattern is presented, and the afferents that are involved in it 
(0, …, 199 here). Three inserts [horizontal grid size = 1 rad (in phase) = 20 ms] 
zoom on adequate periods to illustrate that the spike phases of the afferents 
involved in the pattern are the same (except for the noise) for different pattern 

presentations, which is not true for other afferents (200, …, 1999 here). The 
repetition of the pattern spike wave allows the pattern to be learned by STDP. 
(B) Postsynaptic membrane potential as a function of time: it oscillates at the 
same frequency as the afferents (and possibly with a phase lag due to 
conduction delays), but reaches the threshold if and only if the pattern is 
presented. See Masquelier et al. (2009) for details. Figure adapted from 
Masquelier et al. (2009).
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