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Similar findings in monkeys (Roberts et al., 1994) provide further 
support that these two dopaminergic systems exhibit functional 
interactions. Moreover, the importance of investigating connectiv-
ity is highlighted by a study that demonstrated that alterations in 
dopaminergic-related movement, either hyperkinesia or akinesia, 
resulted not from changes in overall levels of cortical or striatal 
activity but instead from dopamine-related changes in the coor-
dinated activity of neurons between the cortex and the striatum 
(Costa et al., 2006). Thus, the goal of the present human pharma-
cological fMRI study is to assess the effects of dopaminergic aug-
mentation with bromocriptine on functional connectivity between 
the PFC and striatum during working memory function.

In a previous human pharmacological fMRI study, we found 
that bromocriptine modulated different working memory proc-
esses during the performance of a verbal delayed recognition task 
(Gibbs and D’Esposito, 2005). The relationship between items 
retrieved from working memory and PFC activity was correlated, 
but only in the bromocriptine session (i.e., slower retrieval rate 
was associated with more PFC activity and faster retrieval rate with 
less PFC activity). Additionally, bromocriptine did not modulate 
the encoding or retention stages of the task. In the present study, 
we have re-analyzed this fMRI data using a multivariate method 
to investigate the effect of administration of a bromocriptine on 
functional connectivity between the PFC and striatum during 
working memory function.

Materials and Methods
subjects
The same 13 subjects’ data (ages 21–30) were used from the 
original study (Gibbs and D’Esposito, 2005). All procedures were 
approved by The University of California Berkeley Committee for 
the Protection of Human Subjects.

introduction
Dopamine is critical for working memory (Cools and D’Esposito, 
2009), which refers to the temporary retention of information that 
was just experienced but no longer exists in the external environ-
ment, or was just retrieved from long-term memory. Numerous 
studies in animals and humans have shown that working memory 
depends on the function of the prefrontal cortex (PFC; Fuster, 
2008). The PFC contains a high concentration of dopamine 
receptors receiving diffuse ascending inputs from the midbrain 
(Goldman-Rakic et al., 1992; Robbins, 2000). In monkeys, depletion 
of PFC dopamine or pharmacological blockade of dopamine recep-
tors induces impairment on working memory tasks (Brozoski et al., 
1979; Sawaguchi and Goldman-Rakic, 1991) and administration 
of dopamine agonists reverses these impairments (Brozoski et al., 
1979; Arnsten et al., 1994). Dopamine also plays a prominent role 
in the striatal function, which differs from its role in PFC function 
(Crofts et al., 2001). Dopamine in the PFC is proposed to stabilize 
task-relevant working memory representations by reducing suscep-
tibility to distraction (Durstewitz et al., 2000; Seamans and Yang, 
2004). Conversely, dopamine in the striatum may rapidly update 
working memory representations in a task-relevant manner (Frank 
et al., 2001; Gruber et al., 2006). In support of these hypotheses, a 
human pharmacological fMRI study found that administration of 
the dopaminergic agonist bromocriptine modulated striatal and 
PFC activity during the flexible updating and stable maintenance 
of representations, respectively (Cools et al., 2007).

Given the strong anatomical connectivity between the PFC and 
striatum (Alexander et al., 1986), coordinated activity between these 
two brain regions is likely critical for optimum working memory 
function. For example, in rats, destruction of dopamine terminals 
within PFC leads to functional changes in the striatum in terminal 
regions of dopaminergic midbrain projections (Pycock et al., 1980). 
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cognitive tasks
Subjects were administered 1.25 mg bromocriptine, a D2 ago-
nist, or a lactose placebo in a two session, double-blind, coun-
ter-balanced design. Scanning occurred approximately 120 min 
after administration of the drug or placebo and sessions occurred 
approximately 1 week apart. fMRI scans were acquired while 
the subjects performed four types of working memory trials, as 
described previously (Gibbs and D’Esposito, 2005). Briefly, two or 
six letters were presented for 4 s (cue period), followed by a 12-s 
delay period in which the screen was blank. Following the delay, 
a single-case probe letter appeared for 2 s (probe period) and 
subjects indicated with a manual button press whether the single 
letter was part of the set of letters seen during the cue period. 
The probe period was followed by a jittered inter-trial interval 
that ranged from 8 to 12 s. The probe letter was presented either 
superimposed upon (e.g., intact) or masked (e.g., degraded) by a 
background of visual noise. Behaviorally, the subjects showed no 
difference between the masked or superimposed probes, therefore 
this data was collapsed between the two stimuli types. Four tri-
als of each of the four types (2-letters intact, 2-letters degraded, 
6-letters intact, and 6-letters degraded) were presented during 
each 7-min run. There were six runs per session, for a total of 96 
trials per scanning session.

Different memory load levels allowed us to calculate the 
reaction time (RT) slope (RT at the 6-letter condition minus 
the 2-letter condition divided by change across memory load) 
and RT intercept for each subject. We chose two levels based on 
prior reports that RT increases linearly with set size (Sternberg, 
1966) and that RT slope is sensitive to memory retrieval effi-
ciency and RT intercept estimates motor speed under conditions 
of no memory load (Sternberg, 1969). Control tasks to assess 
motor speed and vigilance on drug and placebo sessions were 
also performed. These included the box completion task and the 
numerical cancelation task (Lewis and Kupke, 1977). ANOVAs 
were first used to test the effects of load, perceptual degrada-
tion, and bromocriptine on RT and accuracy for all subjects, and 
are reported in the original paper (Gibbs and D’Esposito, 2005). 
Planned comparisons used t-tests to investigate the effect of drug 
on accuracy in low- and high-span subjects, as well as RT slope 
in low- and high-span subjects.

Baseline working memory capacity was measured since previous 
human and pharmacological studies have shown that the effect 
of dopaminergic agonists on behavioral performance and neu-
ral activity depends on an individual’s baseline working memory 
capacity (Cai and Arnsten, 1997; Kimberg et al., 1997). Subjects 
with higher working memory capacity perform worse on working 
memory tasks after dopaminergic augmentation, whereas subjects 
with lower working memory capacity perform better. Also, in a 
recent human PET study, we found that an individual’s working 
memory capacity positively correlated with their dopamine syn-
thesis capacity (Cools et al., 2008). We measured working memory 
capacity by performance on the listening version (Salthouse and 
Babcock, 1991) of the Daneman and Carpenter (1980) reading span 
task. Subjects were divided into low- and high-span groups based on 
the span task score, with individuals with a score of 4.0 and above 
being high-span. Eight subjects were classified as high-span, and 
five subjects as low-span.

Mri Methods
MRI data acquisition
Functional and structural images were acquired with a Varian 
INOVA 4.0T scanner and a TEM send-and-receive RF head 
coil. Functional images were acquired using a 2-shot gradient 
echo EPI sequence, providing 18 5.0-mm thick axial slices with 
a 0.5-mm inter-slice gap, TR of 2,000 ms, 22.4 cm × 22.4 cm 
field of view, and a 64 × 64-matrix size, resulting in an in-plane 
resolution of 3.5 mm × 3.5 mm. The first 10 images from each 
run were removed to approach steady-state tissue magnetiza-
tion. High-resolution MP-Flash 3-D T1-weighted scans were 
also acquired.

MRI data analysis
Image volumes were corrected for slice timing skew using tem-
poral sync-interpolation and corrected for movement using 
rigid-body transformation parameters. Image preprocessing 
and statistical analyses were performed using SPM21. Images 
were resampled to 2 mm × 2 mm × 2 mm and smoothed with 
an 8-mm FWHM Gaussian kernel. A high-pass filter removed 
frequencies below 0.01 Hz from the data. Structural T1-weighted 
images were normalized to the Montreal Neurological Institute 
(MNI) reference brain. Transformations calculated by normal-
izing each subject’s structural images were applied to the func-
tional images collected in each run. Data were analyzed using 
the general linear model (GLM). For each subject, BOLD signal 
during the cue, delay, and probe periods in each trial type were 
modeled as impulses of neural activity convolved with the SPM 
canonical hemodynamic response function. A covariate at the 
onset of the cue period of the task (first TR, 0 s) modeled early 
encoding processes; one at the third TR (4 s) modeled late encod-
ing processes. Since encoding processes may continue into the 
delay period of the task, this late cue period activity was mod-
eled to reduce noise in the estimate of the baseline but was not 
included in the univariate analyses (Zarahn et al., 1999). The early 
and late phases of the delay period were modeled with covariates 
at the fifth and seventh TRs, respectively (8 and 12 s). We only 
investigated the late phase due to potential overlap between the 
late encoding and the early delay period processes. The probe 
period was modeled with a covariate at the onset of the probe 
(ninth TR, 16 s).

Region-of-interest definition
Prefrontal cortex region-of-interests (ROIs) from the left and right 
middle frontal gyrus (MFG) were generated from the original study 
(Gibbs and D’Esposito, 2005), which were the only regions that 
showed a relationship between activity and working memory func-
tion. ROIs were created using the MarsBar software package2 in 
SPM2 (Brett et al., 2002) with 7 mm radius spheres centered on 
the coordinates derived from the original study (MNI coordinates: 
28, 36, 26, right; −28, 36, 26, left). Whole caudate ROIs were also 
created from the MNI brain atlas. All ROIs were reversed normal-
ized for each subject, and multivariate analyses were conducted 
in native space.

1www.fil.ion.ucl.ac.uk/spm
2http://marsbar.sourceforge.net
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effect was not statistically significant. There was also a trend toward 
reduced accuracy (t = −1.81, p < 0.06; Figure 1). No drug effect was 
found on the control tasks that assessed motor speed and vigilance.

Functional Mri results
We investigated the effects of bromocriptine on frontal–striatal 
functional connectivity in high- and low-span individuals while 
performing a delayed recognition task during each task period. Since 
behavioral differences between high- and low-span groups were 
found only on high-load trials, we focus solely on this condition.

Cue and delay periods
No differences in MFG-caudate functional connectivity between 
drug and placebo sessions were found in either the cue or delay 
periods.

Probe period
After bromocriptine administration, low-span individuals exhib-
ited significant increases in functional connectivity between left 
MFG and left caudate compared to placebo (t = 2.73, p < 0.05, 
Figure 2). Drug-induced increases in connectivity between right 
MFG and right caudate were also found but were not statistically 
significant. No other differences in connectivity between the ROIs 
were found. Differences in functional connectivity between left 
MFG and caudate on drug versus placebo negatively correlated sig-
nificantly with the drug effect on RT slope, in that individuals who 
exhibited the greatest improvement in RT slope after bromocriptine 
administration also exhibited the greatest increase in MFG-caudate 
connectivity (r2 = 0.72, p < 0.05; Figure 3).

High-span individuals exhibited significant functional connec-
tivity between left MFG and left caudate, and right MFG and right 
caudate, on both placebo and drug sessions, with no significant drug 
effect (Figure 2). However, five out of eight high-span individuals 
exhibited drug-induced decreases in connectivity between right MFG 
and right caudate, and four out of eight individuals between left MFG 
and left caudate. There was a trend in the correlation between the 
drug effects on right MFG and right caudate connectivity and the 
drug effect on task accuracy (r2 = 0.34, p < 0.07), in that individuals 
who worsened the most after bromocriptine administration exhib-
ited the greatest decrease in MFG-caudate connectivity (Figure 3).

Multivariate data analysis
We implemented a functional connectivity analysis method that 
examines beta-series correlations which imply how strongly two 
regions are interacting (Gazzaley et al., 2004; Rissman et al., 2004). 
This method allows for the examination of the functional connectiv-
ity between brain regions during distinct stages in a task. To compute 
functional connectivity, a unique parameter estimate (beta value) 
for the events in each trial are computed for each subject and then 
sorted by task period (i.e., cue, delay, probe), yielding a beta time 
series. The extent to which two regions interact is quantified by the 
extent to which their respective beta time series are correlated. If 
the beta time series of one region is correlated with another region’s 
beta time series, this will result in a relatively larger r value. The 
correlation of beta-series averaged across the voxels were calcu-
lated between the MFG and caudate ROIs (left MFG-right MFG, 
left MFG-left caudate, right MFG-right caudate, left caudate-right 
caudate) for both the placebo and drug sessions, during each stage 
of the task. An arc-hyperbolic tangent transform was then applied 
to the correlation coefficients, and Fisher’s r to z transformation was 
implemented to yield z-scores (see Rissman et al., 2004 for detailed 
methods). Subjects were then divided into low and high-span groups 
and t-tests were conducted between drug and placebo sessions. Only 
data from correct trials was utilized. Mean z-values are reported, 
and asterisks indicate significant differences between placebo and 
drug sessions, p < 0.05, corrected for multiple comparisons. Pearson 
correlation coefficient R-values between z-scores and behavioral 
measures are shown at p < 0.05 and a trend of p < 0.07.

results
behavioral results
As previously reported (Gibbs and D’Esposito, 2005), on pla-
cebo, high-span subjects exhibited a faster memory retrieval rate 
(i.e., lower RT slope scores) as compared to low-span individuals 
(t = −1.83, p < 0.05, Figure 1). The speed of retrieval in low-span 
subjects was 46 ms/item as compared to 25 ms/item in high-span 
subjects. After bromocriptine administration, RT slope scores and 
accuracy significantly improved in low-span individuals (RT slope: 
t = −2.86, p < 0.05; accuracy: t = 6.67, p < 0.003; Figure 1). In 
contrast, 6/8 high-span individuals exhibited worsened RT slope 
scores on bromocriptine compared to placebo, although the group 

FIguRe 1 | The effect of bromocriptine on RT slope and accuracy on high-load trials on a delayed recognition task is dependent on working memory span. 
Data shown represents mean ± SE of the mean. Asterisks indicate p < 0.05; # indicate p < 0.06.
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with worsening in behavioral performance. Given that the results in 
high span subjects did not reach statistical significance likely due to 
our small sample size, this particular finding will need replication. 
Nevertheless, the new findings that we report are consistent with 
previous studies in both animals and humans that suggest too much 
or too little dopamine can be detrimental to behavioral performance, 
which is reflected by changes in neural activity (e.g., Williams and 
Goldman-Rakic, 1995; Cools et al., 2007; Cools and D’Esposito, in 
press). In humans, we have shown that individuals with lower work-
ing memory span have lower dopamine synthesis capacity (Cools 
et al., 2008). Thus, we have proposed that low-span individuals with 
suboptimal baseline dopamine levels are boosted into optimal range 
with dopaminergic augmentation whereas high-span individuals 
with optimal baseline dopamine levels are “overdosed.” Our findings 
suggest that fronto-striatal connectivity is strengthened with optimal 
dopamine levels and weakened with suboptimal levels.

Only a few human studies have examined the effects of dopamin-
ergic modulation on functional connectivity between PFC and the 
striatum. For example in one study of healthy individuals, increased 
frontal–striatal functional connectivity was associated with faster 
set shifting on the Wisconsin card sorting task (Nagano-Saito et al., 

discussion
In our initial report of this data on the effects of bromocriptine on 
working memory function (Gibbs and D’Esposito, 2005), we found 
that the relationship between working memory retrieval processes 
and PFC activity was influenced by dopaminergic augmentation. 
Specifically, PFC activity was correlated with memory retrieval rate 
after bromocriptine administration (i.e., slower retrieval rate was 
associated with more PFC activity and faster retrieval rate with less 
PFC activity), whereas after placebo administration these measures 
were uncorrelated. These results add to the accumulating evidence 
in humans for a role of dopamine in working memory function, 
mediated, at least in part, through modulation of PFC activity 
(Cools and D’Esposito, 2009).

In the current study, our aim was to investigate the effect of 
dopaminergic augmentation on functional interactions between the 
PFC and striatum. Re-analyzing our original dataset, we found that 
during the engagement of working memory retrieval processes, bro-
mocriptine increased fronto-striatal connectivity in low-span indi-
viduals, corresponding with improvement in their performance. In 
contrast, high-span individuals exhibited a decrease in fronto-stri-
atal connectivity after bromocriptine administration,  corresponding 

FIguRe 3 | After bromocriptine administration, changes in frontal–striatal connectivity during the probe period of the delayed recognition task correlated 
with changes in behavioral performance (RT slope and accuracy on high-load trials).

FIguRe 2 | The effect of bromocriptine on fronto-striatal connectivity during 
performance of a delayed recognition memory task is dependent on working 
memory span. The mean correlation coefficient (expressed as a z-score) between 

each pair of regions is indicated alongside each arrow and the thickness of the arrows 
is scaled proportionally to this value. Asterisk indicates p < 0.05, for significant 
difference between placebo and drug session, corrected for multiple comparisons.
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synthesis capacity, or whether individuals in our study with low 
dopamine synthesis capacity exhibit a compensatory mechanism 
that leads to greater striatal dopamine receptor concentrations. 
Also, the Cohen study used cabergoline, which has a greater affinity 
for D2 receptors, and a lower affinity for D1 receptors as compared 
to bromocriptine (Gerlach et al., 2003). Thus, it is possible that the 
behavioral improvement we observed in the low-span individuals 
may be due in part to bromocriptine’s actions on PFC D1 receptors.

Animal studies have also observed dopaminergic modulation of 
coherent activity between frontal cortex and striatum. For example, 
in measurements of local field potential (LFP) oscillations in rats, 
it was observed that piriform cortex and striatum exhibit coherent 
rhythmic activity at ∼50 Hz, whereas the frontal cortex is coherent 
with striatum at higher frequencies (∼80–100 Hz; Berke, 2009). 
Dopamine stimulation induced a switch between cortico-striatal 
networks, decreasing the lower frequency striatal LFP oscillations 
(most coherent with piriform cortex), but increasing the higher 
frequency oscillations (most coherent with frontal cortex). Another 
study found that chemical lesions of midbrain dopaminergic 
neurons in rats caused increased coherence of β-frequency (15–
30 Hz) oscillatory activity between frontal cortex and subthalamic 
nucleus (STN), as compared to non-lesioned rats. Administration 
of a dopaminergic agonist to the lesioned rats suppressed these 
oscillations and increased coherent activity at higher frequencies 
(Sharott et al., 2005). In a human EEG study with Parkinson’s 
patients, coherence between STN and frontal cortex was found at 
the 70 to 85-Hz band, but only when patients were on dopamin-
ergic medication (Williams et al., 2002). Despite these empirical 
observations, the exact neuronal mechanisms underlying dopamin-
ergic modulation of fronto-striatal connectivity remains unclear. 
In a study combining optical monitoring and electrophysiology 
recordings in mice (Bamford et al., 2004), dopaminergic agonists 
led to inhibition of cortico-striatal synaptic transmission in a subset 
of terminals by inhibiting synaptic vesicle exocytosis. It was con-
cluded that dopamine strengthens the most active cortico-striatal 
inputs by filtering out activity of less active inputs. Whether this 
type of mechanism underlies dopamine’s effect on fronto-striatal 
connectivity observed in humans warrants further investigation.
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striatal dopamine receptor concentration have decreased dopamine 
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