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learning because the requisite updating of conditional probabilities 
is described by Bayes’ theorem. Since a Bayesian learner processes 
information optimally, it should have an evolutionary advantage 
over other types of agents, and one might therefore expect the 
human brain to have evolved such that it implements an ideal 
Bayesian learner (Geisler and Diehl, 2002). Indeed, there is sub-
stantial evidence from studies on various domains of learning and 
perception that human behavior is better described by Bayesian 
models than by other theories (e.g., Kording and Wolpert, 2004; 
Bresciani et al., 2006; Yuille and Kersten, 2006; Behrens et al., 2007; 
Xu and Tenenbaum, 2007; Orbán et al., 2008; den Ouden et al., 
2010). However, there remain at least three serious difficulties 
with the hypothesis that humans act as ideal Bayesian learners. 
The first problem is that in all but the simplest cases, the applica-
tion of Bayes’ theorem involves complicated integrals that require 
burdensome and time-consuming numerical calculations. This 
makes online learning a challenging task for Bayesian models, and 
any evolutionary advantage conferred by optimal learning might 
be outweighed by these computational costs. A second and associ-
ated problem is how ideal Bayesian learning, with its requirement 
to evaluate high-dimensional integrals, would be implemented 

IntroductIon
Learning can be understood as the process of updating an agent’s 
beliefs about the world by integrating new and old information. 
This enables the agent to exploit past experience and improve pre-
dictions about the future; e.g., the consequences of chosen actions. 
Understanding how biological agents, such as humans or animals, 
learn requires a specification of both the computational principles 
and their neurophysiological implementation in the brain. This can 
be approached in a bottom-up fashion, building a neuronal circuit 
from neurons and synapses and studying what forms of learning 
are supported by the ensuing neuronal architecture. Alternatively, 
one can choose a top-down approach, using generic computational 
principles to construct generative models of learning and use these 
to infer on underlying mechanisms (e.g., Daunizeau et al., 2010a). 
The latter approach is the one that we pursue in this paper.

The laws of inductive inference, prescribing an optimal way 
to learn from new information, have long been known (Laplace, 
1774, 1812). They have a unique mathematical form, i.e., it has 
been proven that there is no alternative formulation of inductive 
reasoning that does not violate either consistency or common 
sense (Cox, 1946). Inductive reasoning is also known as Bayesian 
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neuronally (cf. Yang and Shadlen, 2007; Beck et al., 2008; Deneve, 
2008). The third difficulty is that Bayesian learning constitutes a 
normative framework that prescribes how information should be 
dealt with. In reality, though, even when endowed with equal prior 
knowledge, not all agents process new information alike. Instead, 
even under carefully controlled conditions, animals and humans 
display considerable inter-individual variability in learning (e.g., 
Gluck et al., 2002; Daunizeau et al., 2010b). Despite previous 
attempts of Bayesian models to deal with individual variability 
(e.g., Steyvers et al., 2009; Nassar et al., 2010), the failure of ortho-
dox Bayesian learning theory to account for these individual dif-
ferences remains a key problem for understanding (mal)adaptive 
behavior of humans. Formal and mechanistic characterizations of 
this inter-subject variability are needed to comprehend fundamen-
tal aspects of brain function and disease. For example, individual 
differences in learning may result from inter-individual variability 
in basic physiological mechanisms, such as the neuromodulatory 
regulation of synaptic plasticity (Thiel et al., 1998), and such differ-
ences may explain the heterogeneous nature of psychiatric diseases 
(Stephan et al., 2009).

These difficulties have been avoided by descriptive approaches 
to learning, which are not grounded in probability theory, notably 
some forms of reinforcement learning (RL), where agents learn the 
“value” of different stimuli and actions (Sutton and Barto, 1998; 
Dayan and Niv, 2008). While RL is a wide field encompassing a 
variety of schemes, perhaps the most prototypical and widely used 
model is that by Rescorla and Wagner (1972). In this description, 
predictions of value are updated in relation to the current predic-
tion error, weighted by a learning rate (which may differ across 
individuals and contexts). The great advantage of this scheme is 
its conceptual simplicity and computational efficiency. It has been 
applied empirically to various learning tasks (Sutton and Barto, 
1998) and has played a major role in attempts to explain electro-
physiological and functional magnetic resonance imaging (fMRI) 
measures of brain activity during reward learning (e.g., Schultz 
et al., 1997; Montague et al., 2004; O’Doherty et al., 2004; Daw et al., 
2006). Furthermore, its non-normative descriptive nature allows 
for modeling aberrant modes of learning, such as in schizophrenia 
or depression (Smith et al., 2006; Murray et al., 2007; Frank, 2008; 
Dayan and Huys, 2009). Similarly, it has found widespread use 
in modeling the effects of neuromodulatory transmitters, such as 
dopamine, on learning (e.g., Yu and Dayan, 2005; Pessiglione et al., 
2006; Doya, 2008).

Despite these advantages, RL also suffers from major limita-
tions. On the theoretical side, it is a heuristic approach that does 
not follow from the principles of probability theory. In practi-
cal terms, it often performs badly in real-world situations where 
environmental states and the outcomes of actions are not known 
to the agent, but must also be inferred or learned. These practical 
limitations have led some authors to argue that Bayesian principles 
and “structure learning” are essential in improving RL approaches 
(Gershman and Niv, 2010). In this article, we introduce a novel 
model of Bayesian learning that overcomes the three limitations 
of ideal Bayesian learning discussed above (i.e., computational 
complexity, questionable biological implementation, and failure 
to account for individual differences) and that connects Bayesian 
learning to RL schemes.

Any Bayesian learning scheme relies upon the definition of a 
so-called “generative model,” i.e., a set of probabilistic assumptions 
about how sensory signals are generated. The generative model we 
propose is inspired by the seminal work of Behrens et al. (2007) 
and comprises a hierarchy of states that evolve in time as Gaussian 
random walks, with each walk’s step size determined by the next 
highest level of the hierarchy. This model can be inverted (fitted) 
by an agent using a mean-field approximation and a novel approxi-
mation to the conditional probabilities over unknown quantities 
that replaces the conventional Laplace approximation. This ena-
bles us to derive closed-form update equations for the posterior 
expectations of all hidden states governing contingencies in the 
environment. This results in extremely efficient computations that 
allow for real-time learning. The form of these update equations is 
similar to those of Rescorla–Wagner learning, providing a Bayesian 
analogon to RL theory. Finally, by introducing parameters that 
determine the nature of the coupling between the levels of the 
hierarchical model, the optimality of an update is made conditional 
upon parameter values that may vary from agent to agent. These 
parameters encode prior beliefs about higher-order structure in the 
environment and enable the model to account for inter-individual 
(and inter-temporal intra-individual) differences in learning. In 
other words, the model is capable of describing behavior that is 
subjectively optimal (in relation to the agent’s prior beliefs) but 
objectively maladaptive. Importantly, the model parameters that 
determine the nature of learning may relate to specific physiological 
processes, such as the neuromodulation of synaptic plasticity. For 
example, it has been hypothesized that dopamine, which regu-
lates plasticity of glutamatergic synapses (Gu, 2002), may encode 
the precision of prediction errors (Friston, 2009). In our model, 
this precision-weighting of prediction errors is determined by the 
model’s parameters (cf. Figure 4). Ultimately, our approach may 
therefore be useful for model-based inference on subject-specific 
computational and physiological mechanisms of learning, with 
potential clinical applications for diagnostic classifications of psy-
chiatric spectrum disorders (Stephan et al., 2009).

To prevent any false expectations, we would like to point out 
that this paper is of a purely theoretical nature. Its purpose is to 
introduce the theoretical foundations and derivation of our model 
in detail and convey an understanding of the phenomena it can 
capture. Owing to length restrictions and to maintain clarity and 
focus, several important aspects cannot be addressed in this paper. 
For example, it is beyond the scope of this initial theory paper to 
investigate the numerical exactness of our variational inversion 
scheme, present applications of model selection, or present evi-
dence that our model provides for more powerful inference on 
learning mechanisms from empirical data than other approaches. 
These topics will be addressed in forthcoming papers by our group.

This paper is structured as follows: First, we derive the general 
structure of the model, level by level, and consider both its exact and 
variational inversion. We then present analytical update equations 
for each level of the model that derive from our variational approach 
and a quadratic approximation to the variational energies. Following 
a structural interpretation of the model’s update equations in terms 
of RL, we present simulations in which we demonstrate the model’s 
behavior under different parameter values. Finally, we illustrate the 
generality of our model by demonstrating that it can equally deal with 
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In other words: u = x
1
 for both x

1
 = 1 and x

1
 = 0 (and vice versa). 

This means that knowing state x
1
 allows for an accurate predic-

tion of input u: when the switch is on, it is light; when it is off, it is 
dark. The deterministic nature of this relation does not affect the 
generality of our argument and will later be replaced by a stochastic 
mapping when dealing with perceptual uncertainty below.

Since x
1
 is binary, its probability distribution can be described by 

a single real number, the state x
2
 at the next level of the hierarchy. 

We then map x
2
 to the probability of x

1
 such that x

2
 = 0 means 

that x
1
 = 0 and x

1
 = 1 are equally probable. For x

2
 → ∞ the prob-

ability for x
1
 = 1 and x

1
 = 0 should approach 1 and 0, respectively. 

Conversely, for x
2
 → −∝ the probabilities for x

1
 = 1 and x

1
 = 0 

should approach 0 and 1, respectively. This can be achieved with 
the following empirical (conditional) prior density:

 
p x x s x s x x s xx x

1 2 2 2
1

1 2
1 11| ( ) ( ( )) Bernoulli( ; ( ))( ) = − =−  (2)

where s(·) is a sigmoid (softmax) function:

 
s x

x
( )

exp( )
=

+ −
def 1

1
 (3)

Put simply, x
2
 is an unbounded real parameter of the probability 

that x
1
 = 1. In our light/dark example, one might interpret x

2
 as the 

tendency of the light to be on.
For the sake of generality, we make no assumptions about the 

probability of x
2
 except that it may change with time as a Gaussian 

random walk. This means that the value of x
2
 at time k will be nor-

mally distributed around its value at the previous time point, x k
2

1( ) :−

 
p x x x x x xk k k k k k

2 2
1

3 2 2
1

3
( ) ( ) ( ) ( ) ( ) ( )| , ; ,exp( )− −( ) = +( )N k v  (4)

Importantly, the dispersion of the random walk (i.e., the vari-
ance exp(kx

3
 + v) of the conditional probability) is determined by 

the parameters k and v (which may differ across agents) as well 
as by the state x

3
. Here, this state determines the log-volatility of 

the environment (cf. Behrens et al., 2007, 2008). In other words, 

(i) discrete and continuous environmental states, and (ii) determinis-
tic and probabilistic relations between environmental and perceptual 
states (i.e., situations with and without perceptual uncertainty).

theory
the generatIve model under mInImal assumptIons
An overview of our generative model is given by Figures 1 and 2. To 
model learning in general terms, we imagine an agent who receives a 
sequence of sensory inputs u(1), u(2),…,u(n). Given a generative model 
of how the agent’s environment generates these inputs, probability 
theory tells us how the agent can make optimal use of the inputs 
u(1),…,u(k−1) and any further “prior” information to predict the next 
input u(k). The generative model we introduce here is an extension 
of the model proposed by Daunizeau et al. (2010b) and also draws 
inspiration from the work by Behrens et al. (2007). Our model is 
very general: it can deal with states and inputs that are discrete or 
continuous and uni- or multivariate, and it equally accounts for 
deterministic and probabilistic relationships between environmen-
tal events and perceptual states (i.e., situations with and without 
perceptual uncertainty). However, to keep the mathematical deri-
vation as simple as possible, we initially deal with an environment 
where the sensory input u(k) ∈ {0, 1} on trial k is of a binary form; 
note that this can be readily extended to much more complex envi-
ronments and input structures. In fact, at a later stage we will also 
deal with stochastic mappings (i.e., perceptual uncertainty; cf. Eq. 
45) and continuous (real-valued) inputs and states (cf. Eq. 48).

For simplicity, imagine a situation where the agent is only inter-
ested in a single (binary) state of its environment; e.g., whether it 
is light or dark. In our model, the environmental state x

1
 at time k, 

denoted by x k
1 0 1( ) , ,∈{ }  causes input u(k). Here, x k

1
( )  could represent 

the on/off state of a light switch and u the sensation of light or dark-
ness. (For simplicity, we shall often omit the time index k). In the 
following, we assume the following form for the likelihood model:

 
p u x u u

x x
| 1

11 11( ) = ( ) −( ) −
 (1)

Figure 1 | Overview of the hierarchical generative model. The probability at 
each level is determined by the variables and parameters at the next highest 
level. Note that further levels can be added on top of the third. These levels 

relate to each other by determining the step size (volatility or variance) of a 
random walk. The topmost step size is a constant parameter q. At the first level, 
x1 determines the probability of the input u.
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exact InversIon
It is instructive to consider the factorization of the generative 
density

 

p u x x x x x

p u x x

k k k k k k

k k

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

, , , , , ,

, ,

1 2 3 2
1

3
1

1 2

− −( )
=

x

(( ) ( ) ( ) ( ) ( ) ( ), , | , ,k k k k k kx x x p x x3 2
1

3
1

2
1

3
1x − − − −( ) ( )

 (7)

In this form, the Markovian structure of the model becomes 
apparent: the joint probability of the input and the states at time k 
depends only on the states at the immediately preceding time k − 1. 
It is the probability distribution of these states that contains the 
information conveyed by previous inputs u u uk k( ... ) ( ) ( ),..., ;1 1 1 1− −= ( )def

 
i.e.:

 
p x x p x x uk k k k k

2
1

3
1

2
1

3
1 1 1( ) ( ) ( ) ( ) ( ... ), , |− − − − −( ) = ( )  (8)

By integrating out x k
2

1( )−  and x k
3

1( )−  we obtain the following com-
pact form of the generative model at time k:

 

p u x x x x x p x xk k k k k k k k( ) ( ) ( ) ( ) ( ) ( ) ( ) (, , , , | , ,1 2 3 2
1

3
1

2
1

3
1x − − − −( ) )) ( ... )

( ) ( )

( ) ( ) ( ..

|

, , |

u

x x

p u x u

k

k k

k k

1 1

2
1

3
1

1

−

−∞

∞

−∞

∞

− −

( )

=

∫∫
d d

x .. )k −( )1
 (9)

Once u(k) is observed, we can plug it into this expression and 
obtain

 
p x uk k( ) ( ... ), |x 1( )  (10a)

This is the quantity of interest to us, because it describes the poste-
rior probability of the time-dependent states, x(k) (and time-inde-
pendent parameters, x), in the agent’s environment. This is what 
the agent infers (and learns), given the history of previous inputs. 
Computing this probability is called model inversion: unlike the 
likelihood p(u(k)|x(k), x, u(1…k − 1)) the posterior does not predict data 
(u(k)) from hidden states and parameters but predicts states and 
parameters from data.

In the framework we introduce here, we model the individual 
variability between agents by putting delta-function priors on the 
parameters:

 

p x u p x u p u

p u

k k k k k( ) ( ... ) ( ) ( ... ) ( ... )

( ..

, | | , |

|

x x x

x

1 1 1

1

( ) = ( ) ( )
.. ) ( )k

a( ) = −d x x
 (10b)

where x
a
 are the fixed parameter values that characterize a par-

ticular agent at a particular time (e.g., during the experimental 
session). This corresponds to the common distinction between 
states (as variables that change quickly) and parameters (as vari-
ables that change slowly or not at all). In other words, we assume 
that the timescale at which parameter estimates change is much 
larger than the one on which state estimates change, and also 
larger than the periods during which we observe agents in a 
single experiment. This is not a strong assumption, given that 
the model has multiple hierarchical levels of states that give the 
agent the required flexibility to adapt its beliefs to a changing 
environment. In effect, this approach gives us a family of Bayesian 
learners whose (slowly changing) individuality is captured by 

the tendency x
2
 of the light switch to be on performs a Gaussian 

random walk with volatility exp(kx
3
 + v). Introducing v allows 

for a volatility that scales independently of the state x
3
. Everything 

applying to x
2
 now equally applies to x

3
, such that we could add as 

many levels as we please. Here, we stop at the fourth level, and set 
the volatility of x

3
 to q, a constant parameter (which may again 

differ across agents):

 
p x x x xk k k k

3 3
1

3 3
1( ) ( ) ( ) ( )| , ; ,− −( ) = ( )q qN  (5)

Given full priors on the parameters, i.e., p(k, v, q) , we can now 
write the full generative model

 

p u x x x x x

p u x

k k k k k k

k k

( ) ( ) ( ) ( ) ( ) ( )

( ) (

, , , , , , , ,

|

1 2 3 2
1

3
1

1

− −( )
=

k v q

)) ( ) ( ) ( ) ( ) ( )

( ) ( )

| | , , ,

|

( ) ( ) ( )−

−

p x x p x x x

p x x

k k k k k

k k

1 2 2 2
1

3

3 3
1

k v

,, , , ,( ) ( )q k v q( ) ( ) ( )− −p x x pk k
2

1
3

1

 (6)

Given priors on the initial state p x x2
0

3
0( ) ( ), ,( )  the generative 

model is defined for all times k by recursion to k = 1. Inverting this 
model corresponds to optimizing the posterior densities over the 
unknown (hidden) states x = {x

1
, x

2
, x

3
} and parameters x = {k, v, 

q}. This corresponds to perceptual inference and learning, respec-
tively. In the next section, we consider the nature of this inversion 
or optimization.

Figure 2 | generative model and posterior distributions on hidden 
states. Left: schematic representation of the generative model as a Bayesian 
network. x x xk k k

1 2 3
( ) ( ) ( ), ,  are hidden states of the environment at time point k. 

They generate u(k), the input at time point k, and depend on their immediately 
preceding values x k

2
1( )− , x k

3
1( )−  and the parameters q, v, k. Right: the minimal 

parametric description q(x) of the posteriors at each level. The distribution 
parameters m (posterior expectation) and s (posterior variance) can be found 
by approximating the minimal parametric posteriors to the mean-field marginal 
posteriors. For multidimensional states x, m is a vector and s a covariance 
matrix.
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p x u q x

x

k k k

k k k

1
1

1

1 1 1

( ) ( ... ) ( )

( ) ( ) ( )

|

Bernoulli ;

x

m m

,( ) ≈ ( )
= ( ) = ( )) − −x k x

k
k1

11 1
1

( )
( )

( )( )m

 (12)

At the second and third level, the maximum entropy distribution 
of the unbounded real variables x

2
 and x

3
, given their means and 

variances, is Gaussian. Note that the choice of a Gaussian distribu-
tion for the approximate posteriors is not due simply to computa-
tional expediency (or the law of large numbers) but follows from 
the fact that, given the assumption that the posterior is encoded by 
its first two moments, the maximum entropy principle prescribes a 
Gaussian distribution. Labeling the means m

2
, m

3
 and the variances 

s
2
, s

3
, we obtain

 
p x u q x xk k k k k k

2
1

2 2 2 2
( ) ( ... ) ( ) ( ) ( ) ( )| ; ,x m s,( ) ≈ ( ) = ( )N  (13)

 
p x u q x xk k k k k k

3
1

3 3 3 3
( ) ( ... ) ( ) ( ) ( ) ( )| ; ,x m s,( ) ≈ ( ) = ( )N  (14)

Now that we have approximate posteriors q that we treat as 
known for all but the ith level, the next step is to determine the 
variational posterior ˆ( )q xi  for this level i. Variational calculus shows 
that given q(x

j
) (j ∈ {1, 2, 3} and j ≠ i), the approximate posterior 

ˆ |( ) ( ) ( ... )q x p x ui
k

i
k k( ) ( )≈ ,x 1  under the mean-field approximation is 

proportional to the exponential of the variational energy I(x
i
) (Beal, 

2003):

 

ˆ exp( ) ( )q x I xi
k

i
i
k( ) = ( )( )1

Z
 (15)

Z i  is a normalization constant that ensures that the integral (or 
sum, in the discrete case) of q̂  over x equals unity. Under our 
generative model, the variational energy is

 

I x q x p u x x u xi
k

i
k k

i
k

\i
k) k

\i
( ) ( ) ( ) ( ) ( ... )ln , , , |( ) = ( ) ( )−

\
( (dx 1 1 kk)

X

i j
j i

i

q x q x

\

\

∫

∏( ) = ( )
≠

 (16)

where x
\i
 denotes all x

j
 with j ≠ i and X

\i
 is the direct product of 

the ranges (or values in the discrete case) of the x
j
 contained 

in x
\i
. The integral over discrete values is again a sum. In what 

follows, we take this general theory and unpack it using the 
generative model for sequential learning above. Our special 
focus here will be on the form of the variational updates that 
underlie inference and learning and how they may be imple-
mented in the brain.

results
the varIatIonal energIes
To compute ˆ ( )q xi

k( ), we need q x i
k

\
( )( ) and therefore the suffi-

cient statistics l
\i
 = {m

\i
,s

\i
} for the posteriors at all but the ith 

level. One could try to extract them from ˆ ,( )q x i
k

\( )  but that would 
constitute a circular problem. We avoid this by exploiting the 
hierarchical form of the model: for the first level, we use the 
sufficient statistics of the higher levels from the previous time 
point k − 1, since information about input u(k) cannot yet have 
reached those levels. From there we proceed upward through 
the hierarchy of levels, always using the updated parameters l\i

k( ) 

their priors on the parameters. For other examples where sub-
jects’ beliefs about the nature of their environment were mod-
eled as priors on parameters, see Daunizeau et al. (2010b) and 
Steyvers et al. (2009).

In principle, model inversion can proceed in an online fashion: 
By (numerical) marginalization, we can obtain the (marginal) pos-
teriors p x uk k

2
1( ) ( ... )|( ) and p x uk k

3
1( ) ( ... )| ;( )  this is the approach adopted 

by Behrens et al. (2007), allowing one to compute p(u(k+1), x(k+1), 
x|u(1…k)) according to Eq. 6, and subsequently p(u(k+1), x|u(1…k+1)) 
once u(k+1) becomes known, and so on. Unfortunately, this (exact) 
inversion involves many complicated (non-analytical) integrals for 
every new input, rendering exact Bayesian inversion unsuitable for 
real-time learning in a biological setting. If the brain uses a Bayesian 
scheme, it is likely that it relies on some sufficiently accurate, but 
fast, approximation to Eq. 9: this is approximate Bayesian inference. 
As described in the next section, a generic and efficient approach is 
to employ a mean-field approximation within a variational scheme. 
This furnishes an efficient solution with biological plausibility and 
interpretability.

varIatIonal InversIon
Variational Bayesian (VB) inversion determines the posterior dis-
tributions p(x(k), x|u(1…k)) by maximizing the log-model evidence. 
The log-evidence corresponds to the negative surprise about the 
data, given a model, and is approximated by a lower bound, the 
negative free energy. Detailed treatments of the general principles 
of the VB procedure can be found in numerous papers (e.g., Beal, 
2003; Friston and Stephan, 2007). The approximations inherent in 
VB enable a computationally efficient inversion scheme with closed-
form single-step probability updates from trial to trial. In particular, 
VB can incorporate the so-called mean-field approximation which 
turns the joint posterior distribution into the product of approxi-
mate marginal posterior distributions:

 

p x u p x u p u

p x

k k k k k

k

( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ), | = | , |

| ,
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x x x

x

1 1 1

uu q x

q x q x

k

i

n

i
k

i
k

i
k

1

1

... ≈

≈

( )

=

( )

( ) ( )

( ) ( )
( ) ( )

∏ ˆ

ˆ

 (11)

Based on this assumption, the variational maximization of the neg-
ative free energy is implemented in a series of variational updates 
for each level i of the model separately. The second line in Eq. 11 
represents the mean-field assumption (factorization of the poste-
rior), while the third line reflects the fact that we assume a fixed 
form q(·) for the approximate marginals ˆ( ).q ⋅  We make minimal 
assumptions about the form of the approximate posteriors by fol-
lowing the maximum entropy principle: given knowledge of, or 
assumptions about, constraints on a distribution, the least arbitrary 
choice of distribution is the one that maximizes entropy (Jaynes, 
1957). To keep the description of the posteriors simple and bio-
logically plausible, we take them to be characterized only by their 
first two moments; i.e., by their mean and variance. At the first 
level, we have a binary state x

1
 with a mean m

1
 = p(x

1
 = 1). Under 

this constraint, the maximum entropy distribution is the Bernoulli 
distribution with parameter m

1
 (where the variance m

1
(1 − m

1
) is 

a function of the mean):
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is no problem in a continuous time setting, where the mode of 
the variational energy can be updated continuously (cf. Friston, 
2008)). However, for the discrete updates we seek, one can use 
the expectation m2

1( )k −  as the expansion point for time k, when the 
agent receives input u(k) and the expectation of x k

2
( ) is m2

1( ).k −  In 
terms of computational and mnemonic costs, this is the most 
economical choice since this value is known. Moreover, it yields 
analytical update equations which (i) bear structural resemblance 
to those used by RL models (see Structural Interpretation of the 
Update Equations) and (ii) can be computed very efficiently in 
a single step:

 
s

s s
2

2 1

1

1
k

k k
( )

( ) ( )=
/ +ˆ ˆ

 (22)

 
m m s d2 2

1
2 1

( ) ( ) ( ) ( )k k k k= +−  (23)

where, for clarity, we have used the definitions

 
ˆ ( ) ( )m m1 2

1k ks= ( )−def  (24)

 
d m m1 1 1

k k k( ) ( ) ( )= −def ˆ  (25)

 
ˆ ˆ ˆ( ) ( ) ( )s m m1 1

1
1

11k k k= −( )− −def  (26)

 
ˆ ( ) ( ) ( )

s s
km v

2 2
1 3

1k k k

= +− +−def
e  (27)

formulated in terms of precisions (inverse variances) π2 21( ) ( )/ ,k k=def
s  

ˆ / ˆ ,( ) ( )π1 11k k=def
s  ˆ / ˆ ,( ) ( )π2 21k k=def

s  the variance update (Eq. 22) takes the 
simple form

 
π π

π2 2

1

1k k

k
( ) ( )

( )= +ˆ
ˆ

 (28)

in the context of the update equations, we use the hat notation to 
indicate “referring to prediction.” While the ˆ ( )mi

k are the predictions 
before seeing the input u(k), the ˆ ( )si

k and ˆ ( )πi
k  are the variances (i.e., 

uncertainties) and precisions of these predictions (see Structural 
Interpretation of the Update Equations).

The approach that produces these update equations is concep-
tually similar to a Gauss–Newton ascent on the variational energy 
that would, by iteration, produce the Laplace approximation (cf. 
Figure 3). The same approach can be taken at the third level, where 
we also have a Gaussian approximate posterior:

 
π π3 3
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2 2 2 22
k k k k k kw w r( ) ( ) ( ) ( ) ( ) ( )= + +( )ˆ k

d  (29)

 
m m s
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( ) ( ) ( ) ( ) ( )k k k k kw= +−  (30)

 with π3 31( ) ( )/k k=def
s and

 

ˆ ( )
( )

π3
3

1

1k
k

=
+−

def

s q
 (31)

for levels lower than the current level and pre-update values 
l\i

k( )−1  for higher levels. Extending the approach suggested by 
Daunizeau et al. (2010b), and using power series approxima-
tions where necessary, the variational energy integrals can then 
be calculated for all x

i
, giving
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Substituting these variational energies into Eq. 15, we obtain the 
posterior distribution of x under the mean-field approximation.

According to Eqs 15 and 17–19, ˆ ( )q xi
k( ) depends on u(k), li

k( ),−1  
l\i

k( ),−1  l\i
k( ), and x. In the next section, we show that it is possible to 

derive simple closed-form Markovian update equations of the form

 
l l l l xi

k
i

k
i
k

i
k

i
kf u( ) ( ) ( ) ( ) ( ), , , ,= ( )− −1 1

\ \
 (20)

Update equations of this form allow the agent to update its approxi-
mate posteriors over xi

k( ) very efficiently and thus optimize its beliefs 
about the environment in real time. We now consider the detailed 
form of these equations and how they relate to classical heuristics 
from RL.

the update equatIons
At the first level of the model, it is simple to determine q(x

1
) since 

ˆ / expq x I x1 1 11( ) = ⋅ ( )( )Z  is a Bernoulli distribution with parameter

 
m1 1 1k k kq x u( ) = =( ) =ˆ ( ) ( )  (21)

and therefore already has the form required of q(x
1
) by Eq. 12. We 

can thus take q x q x1 1( ) = ( )ˆ  and have in Eq. 21 an update rule of 
the form of Eq. 20.

At the second level, q̂ x2( ) does not have the form required of 
q x2( ) by Eq. 13 since it is only approximately Gaussian. It is pro-
portional to the exponential of I(x

2
) and would only be Gaussian 

if I(x
2
) were quadratic. The problem of finding a Gaussian 

approximation q x q x2 2( ) ≈ ( )ˆ  can therefore be reformulated as 
finding a quadratic approximation to I(x

2
). The obvious way to 

achieve this is to expand I(x
2
) in powers of x

2
 up to second order. 

The choice of expansion point, however, is not trivial. One pos-
sible choice is the mode or maximum of I(x

2
), resulting in the 

frequently used Laplace approximation (Friston et al., 2007). This 
has the disadvantage that the maximum of I(x

2
) is unknown and 

has to be found by numerical optimization methods, precluding 
a single-step analytical update rule of the form of Eq. 20 (this 
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We denote by I  the quadratic function obtained by expansion 
of I around xi

k
i
k( ) ( )= −m 1  (see Figure 3 for a graphical summary). 

Its exponential has the Gaussian form required by Eqs 13 and 14 
(where Z i  is a normalization constant):

q x
x

i
k

i
k

i
k

i
k

i
k

i

( )

( )

( ) ( )

( )
exp exp( ) = −

−( )
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2 2

1
2

πs

m

s Z�
�II xi

k( )( )( )  (36)

This equation lets us find mi
k( )  and si

k( ).  Taking the logarithm on 
both sides and then differentiating twice with respect to xi

k( )  gives

 

si
k

i
kI x

( )

( )
= − ( ) =1

2∂ 
const.  (37)

where ∂2 denotes the second derivative, which is constant for a 
quadratic function. Because ∂2I and ∂2

I  agree at the expansion 
point xi

k
i
k( ) ( ),= −m 1  we may write

 

s
m

i
k

i
kI

( )

( )
= −

∂ ( )−

1
2 1  (38)

A somewhat different line of reasoning leads to mi
k( ).  Since mi

k( ) 
is the argument of the maximum (argmax) of q (and exponentia-
tion preserves the argmax) mi

k( ) has to be the argmax of I . Starting 
at any point xi

k( ) the exact argmax of a quadratic function can be 
found in one step by Newton’s method:
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 (39)

If we choose xi
k( ) to be the expansion point mi

k( ),−1  we have agree-
ment of I with I  up to the second derivative at this point and may 
therefore write

 

m m
m

m
m s mi

k
i
k i

k

i
k i

k
i
k

i
k
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I
I( ) ( )
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( )
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− −1

1

2 1

1 11)( )  (40)

Plugging I(x
2
) from Eq. 18 into Eqs 38 and 40 now yields the 

parameter update equations (Eqs 22 and 23) of the form Eq. 20 
for the second level. For the third level (or indeed any higher level 
with an approximately Gaussian posterior distribution we may 
wish to include), the same procedure gives Eqs 29 and 30. Note 
that this method of obtaining closed-form Markovian parameter 
update equations can readily be applied to multidimensional x

i
’s 

with approximately multivariate Gaussian posteriors by reinter-
preting ∂I as a gradient and 1/∂2I as the inverse of a Hessian in 
Eqs 38 and 40.

structural InterpretatIon of the update equatIons
As we have seen, variational inversion of our model, using a new 
quadratic approximation to the variational energies, provides a 
set of simple trial-by-trial update rules for the sufficient statistics 
l

i
 = {m

i
, s

i
} of the posterior distributions we seek. These update 

equations do not increase in complexity with trials, in contrast to 
exact Bayesian inversion, which requires analytically intractable 
integrations (cf. Eq. 9). In our approach, almost all the work is in 
deriving the update rules, not in doing the actual updates.
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 (34)

The derivation of these update equations, based on this novel 
quadratic approximation to I(x

2
)and I(x

3
), is described in detail in 

the next section, and Figure 3 provides a graphical illustration of 
the ensuing procedure. The meaning of the terms that appear in 
the update equations and the overall structure of the updates will 
be discussed in detail in the Section “Structural Interpretation of 
the Update Equations.”

quadratIc approxImatIon to the varIatIonal energIes
While knowing I(x

i
) (with i = 1, 2, 3) gives us the unconstrained 

posterior q̂ xi( ) given q x i\( ), we still need to determine the con-
strained posterior q(x

i
) for all but the first levels, where q x q x1 1( ) = ( )ˆ . 

Schematically, our approximation procedure can be pictured in the 
following way:

 

p x u q x I xi
k k

i
k

i
k( ) ( ) ( ) ( )( )  → ( ) ( )| , ∝...1

x
mean field

Gau

ˆ exp

sssian → ( ) ( )( ) ( )q x I xi
k

i
k∝ exp 

 (35)

Figure 3 | Quadratic approximation to the variational energy. 
Approximating the variational energy I (x ) (blue) by a quadratic function leads 
(by exponentiation) to a Gaussian posterior. To find our approximation I x( )  
(red), we expand I (x ) to second order at the preceding posterior expectation 
m(k−1). The argmax of I x( ) is then the new posterior expectation m(k). This 
generally leads to a different result from the Laplace approximation (dashed), 
but there is a priori no reason to regard either approximation as more exact 
than the other.
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decrease from trial to trial. This corresponds to the case in which 
the agent believes that x

2
 is fixed; the information from every 

trial then has the same weight and new information can only 
shrink s

2
. On the other hand, even with ekm v3 0+ ≈ ,  s

2
 has a lower 

bound: when s
2
 approaches zero, the denominator of Eq. 22 

approaches 1/s
2
 from above, leading to ever smaller decreases 

in s
2
. This means that after a long train of inputs, the agent still 

learns from new input, even when it infers that the environment 
is stable.

The precision formulation (cf. Eq. 28)

 

π π
π2 2

1 2
1 1

1 1
3

1

k k

k k

k
k

( ) ( )
( ) −( ) +

( )
−( )= + =

+
+ˆ

ˆ
ˆ

s
s

km ve
 (41)

illustrates that three forms of uncertainty influence the posterior 
variance s2

( ):k  the informational ( )( )s2
1k −  and the environmental 

(ekm v3
1( )

)
k − +  uncertainty at the second level (see discussion in the 

next paragraph), and the uncertainty ˆ ( )s1
k  of the prediction at the 

first level. While environmental uncertainty at the second level thus 
decreases precision π2

( )k  relative to its previous value π2
1

2
11( ) ( )/ ,k k− −= s  

predictive uncertainty at the first level counteracts that decrease, 
i.e., it keeps the learning rate s2

( )k  smaller than it would otherwise 
be. This makes sense because prediction error should mean less 
when predictions are more uncertain.

The update rule (Eq. 30) for m
3
 has a similar structure to 

that of m
2
 (Eq. 23) and can also be interpreted in terms of RL. 

Although perhaps not obvious at first glance, d2
( )k  (Eq. 34) rep-

resents prediction error. It is positive if the updates at the sec-
ond level (of m

2
 and s

2
) in response to input u(k) indicate that 

the agent was underestimating x
3
. Conversely, it is negative if 

the agent was overestimating x
3
. This can be seen by noting 

that the uncertainty about x
2
 has two sources: informational, 

i.e., the lack of knowledge about x
2
 (represented by s

2
), and 

environmental, i.e., the volatility of the environment (repre-
sented by ekm v3 + ). Before receiving input u(k) the total uncer-
tainty is ˆ .( ) ( ) ( )

s s
km v

2 2
1 3

1k k k

= +− +−

e  After receiving the input, the 
updated total uncertainty is s m m2 2 2

1 2( ) ( ) ( ) ,k k k+ −( )−  where s
2
 has 

Crucially, the update equations for m
2
 and m

3
 have a form that 

is familiar from RL models such as Rescorla–Wagner learning 
(Figure 4). The general structure of RL models can be summa-
rized as:

prediction prediction learning rate prediction err( ) ( )k k= + ×−1 oor

As we explain in detail below, this same structure appears in Eqs 
23 and 30 – displayed here in their full forms:
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The term d m m1 1 2
1( ) ( ) ( )k k ks= − ( )−  in Eq. 23 corresponds to the 

prediction error at the first level. This prediction error is the 
difference between the expectation m1

( )k  of x
1
 having observed 

input u(k) and the prediction ˆ ( ) ( )m m1 2
1k ks= ( )−  before receiving u(k); 

i.e., the softmax transformation of the expectation of x
2
 before 

seeing u(k). Furthermore, s2
( )k  in Eq. 23 can be interpreted as 

the equivalent of a (time-varying) learning rate in RL models 
(cf. Preuschoff and Bossaerts, 2007). Since s

2
 represents the 

width of x
2
’s posterior and thus the degree of our uncertainty 

about x
2
, it makes sense that updates in m

2
 are proportional to 

this estimate of posterior uncertainty: the less confident the 
agent is about what it knows, the greater the influence of new 
information should be.

According to its update Eq. 22, m
2
 always remains positive 

since it contains only positive terms. Crucially, s
2
, through ˆ ,s2  

depends on the log-volatility estimate m
3
, from the third level 

of the model. For vanishing volatility, i.e., ekm v3 0+ ≈ , s
2
 can only 

Figure 4 | interpretation of the variational update equations in terms of rescorla–Wagner learning. The Rescorla–Wagner update is ∆prediction = learning 
rate × prediction error. Our expectation update equations can be interpreted in these terms.
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increase the learning rate, allowing the environmental uncertainty 
to rise more easily, while negative prediction errors decrease the 
learning rate. The term r

2
d

2
 thus exerts a stabilizing influence on 

the estimate of m
3
.

This automatic integration of all the information relevant to 
a situation is typical of Bayesian methods and brings to mind a 
remark made by Jaynes (2003, p. 517) in a different context: “This 
is still another example where Bayes’ theorem detects a genuinely 
complicated situation and automatically corrects for it, but in such 
a slick, efficient way that one is [at first, we would say] unaware 
of what is happening.” In the next section we use simulations to 
illustrate the nature of this inference and demonstrate some of its 
more important properties.

sImulatIons
Here, we present several simulations to illustrate the behavior of 
the update equations under different values of the parameters q, 
v, and k. Figure 5 depicts a “reference” scenario, which will serve as 
the basis for subsequent variations. Figures 6–8 display the effects 
of selectively changing one of the parameters q, v, and k, leading 
to distinctly different types of inference.

The reference scenario in Figure 5 (and Figure 9, top row) illus-
trates some basic features of the model and its update rules. For 
this reference, we chose the following parameter values: q = 0.5, 
v = −2.2, and k = 1.4. Overall, the agent is exposed to 320 sensory 
outcomes (stimuli) that are administered in three stages. In a first 
stage, it is exposed to 100 trials where the probability that x

1
 = 1 is 

0.5. The posterior expectation of x
1
 accordingly fluctuates around 

0.5 and that of x
2
 around 0; the expected volatility remains relatively 

stable. There then follows a second period of 120 trials with higher 
volatility, where the probability that x

1
 = 1 alternates between 0.9 

and 0.1 every 20 trials. After each change, the estimate of x
1
 reliably 

approaches the true value within about 20 trials. In accordance with 
the changes in probability, the expected outcome tendency x

2
 now 

fluctuates more widely around zero. At the third level, the expected 
log-volatility x

3
 shows a tendency to rise throughout this period, 

displaying upward jumps whenever the probability of an outcome 
changes (and thus x

2
 experiences sudden updates). As would be 

anticipated, the expected log-volatility declines during periods of 
stable outcome probability. In a third and final period, the first 
100 trials are repeated in exactly the same order. Note how owing 
to the higher estimate of volatility (i.e., greater ekm v3 +

), the learn-
ing rate has increased, now causing the same sequence of inputs 
to have a greater effect on m

2
 than during the first stage of the 

simulation. As expected, a more volatile environment leads to a 
higher learning rate.

One may wonder why, in the third stage of the simulation, the 
expected log-volatility m

3
 continues to rise even after the true x

2
 has 

returned to a stable value of 0 (corresponding to p(x
1
 = 1) = 0.5; see 

the fine black line in Figure 5). This is because a series of three x
1
 = 1 

outcomes, followed by three x
1
 = 0 could just as well reflect a stable 

p(x
1
 = 1) = 0.5 or a jump from p(x

1
 = 1) = 1 to p(x

1
 = 1) = 0 after 

the first three trials. Depending on the particular choice of param-
eters q, v, and k, the agent shows qualitatively different updating 
behavior: Under the parameters in the reference scenario, it has a 
strong tendency to increase its posterior expectation of volatility 
in response to unexpected stimuli. For other parameterizations (as 

been updated according to Eq. 22 and ekm v3
1( )k − +  has been replaced 

by the squared update of m
2
. If the total uncertainty is greater 

after seeing u(k), the fraction in d2
( )k  is greater than one, and m

3
 

increases. Conversely, if seeing u(k) reduces total uncertainty, m
3
 

decreases. (Since x
3
 is on a logarithmic scale with respect to x

2
, 

the ratio and not the difference of quantities referring to x
2
 is 

relevant for the prediction error in x
3
). It is important to note 

that we did not construct the update equations with any of these 
properties in mind. It is simply a reflection of Bayes optimality 
that emerges on applying our variational update method.

The term corresponding to the learning rate of m
3
 is
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 (42)

As at the second level, this is proportional to the variance s
3
of the 

posterior. But here, the learning rate is also is proportional to the 
parameter k and a weighting factor w k

2
( ) for prediction error. k deter-

mines the form of the Gaussian random walk at the second level 
and couples the third level to the second (cf. Eqs 4 and 30); w k

2
( ) is a 

measure of the (environmental) volatility ekm v3 +  of x
2
 relative to its 

(informational) conditional uncertainty, s
2
. It is bounded between 

0 and 1 and approaches 0 as ekm v3 +  becomes negligibly small relative 
to s

2
; conversely, it approaches 1 as s

2
 becomes negligibly small 

relative to ekm v3 + . This means that lack of knowledge about x
2
 (i.e., 

conditional uncertainty s
2
) suppresses updates of m

3
 by reducing 

the learning rate, reflecting the fact that prediction errors in x
2
 are 

only informative if the agent is confident about its predictions of 
x

2
. As with the prediction error term, this weighting factor emerged 

from our variational approximation.
The precision update (Eq. 29) at third level also has an interpret-

able form. In addition to d2
( )k  and w k

2
( ), we now also have the term 

r k
2
( ) (Eq. 33), which is the relative difference of environmental and 

informational uncertainty (i.e., relative to their sum). Note that it 
is a simple affine function of the weighting factor w k

2
( )

 r wk k
2 22 1( ) ( )= −  (43)

As at the second level, the precision update is the sum of the preci-
sion ˆ ( )π3

k  of the prediction, reflecting the informational and envi-
ronmental uncertainty at the third level, and the term

 

k
d

2

2 2 2 22
w w rk k k k( ) ( ) ( ) ( )+( )  (44)

Proportionality to k2 reflects the fact that stronger coupling 
between the second and third levels leads to higher posterior 
precision (i.e., less posterior uncertainty) at the third level, while 
proportionality to w

2 
depresses precision at the third level when 

informational uncertainty at the second level is high relative to 
environmental uncertainty; the latter also applies to the first sum-
mand in the brackets. The second summand r

2
d

2
 means that, when 

the agent regards environmental uncertainty at the second level as 
relatively high (r

2
 > 0), volatility is held back from rising further 

if d
2
 > 0 by way of a decrease in the learning rate (which is pro-

portional to the inverse precision), but conversely pushed to fall 
if d

2
 < 0. If, however, environmental uncertainty is relatively low 

(r
2
 < 0), the opposite applies: positive volatility prediction errors 
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The nature of the simulation in Figure 5 is not only determined 
by the choice of values for the parameters q, v, and k, but also by 
initial values for m

2
, s

2
, m

3
, and s

3
 (the initial value of m

1
 is s(m

2
)). 

in the scenarios described below), this is not the case. Importantly, 
this ambiguity disappears once the model is inverted by fitting it 
to behavioral data (see Discussion).

Figure 5 | reference scenario: q = 0.5, v = −2.2, k = 1.4. A simulation of 
320 trials. Bottom: the first level. Input u is represented by green dots. In the 
absence of perceptual uncertainty, this corresponds to x1. The fine black line is 
the true probability (unknown to the agent) that x1 = 1. The red line shows 
s(m2); i.e., the agent’s posterior expectation that x1 = 1. Given the input and 

update rules, the simulation is uniquely determined by the value of the 
parameters q, v, and k. Middle: the second level with the posterior 
expectation m2 of x2. Top: the third level with the posterior expectation m3 of x3. 
In all three panels, the initial values of the various m are indicated by circles at 
trial k = 0.

Figure 6 | reduced q = 0.05 (unchanged v = −2.2, k = 1.4). Symbols have the same meaning as in Figure 5. Here, the expected x3 is more stable. The learning 
rate in x2 is initially unaffected but owing to more stable x3 it no longer increases after the period of increased volatility.
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little consequence in practice since, when chosen reasonably, they 
let the time series of hidden states x(k) quickly converge to values 
that do not depend on the choice of initial value to any appreci-
able extent. In the simulations of Figures 5–8, we used m2

0 0( ) ,=  
s2

0 1( ) ,=  and s3
0 1( ) .=

Any change in the initial value m3
0( ) of m

3
 can be neutralized by cor-

responding changes in k and v. We may therefore assume m3
0 0( ) =  

without loss of generality but remembering that k and v are only 
unique relative to this choice. However, the initial values of m

2
, 

s
2
, and s

3
 are, in principle, not neutral. They are nevertheless of 

Figure 7 | reduced v = −4 (unchanged q = 0.5, k = 1.4). Symbols have the same meaning as in Figure 5. The small learning rate in x2 leads to an extremely stable 
expected x3. Despite prediction errors, the agent makes only small updates to its beliefs about its environment.

Figure 8 | reduced k = 0.2 (unchanged q = 0.5, v = −2.2). Symbols have the same meaning as in Figure 5. x2 and x3 are only weakly coupled. Despite uncertainty 
about x3, only small updates to m3 take place. Sensitivity to changes in volatility is reduced. x2 is not affected directly, but its learning rate does not increase with volatility.
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of the dependency of the learning rate on s
3
. This paradoxical effect 

can be understood by examining Eqs 30 and 29, where smaller k 
exerts opposite direct and indirect effects on the learning rate for m

3
. 

Indirectly, the learning rate is increased, in that smaller k increases 
s

3
. But this is dominated by the dependency of the learning rate on 
k, which leads to a decrease in learning for smaller k. This is quite 
an important property of the model: it makes it possible to have low 
learning rates in a highly volatile environment. This scenario describes 
an agent which is keen to learn but fails because the levels of its model 
are too weakly coupled for information to be passed efficiently up 
the hierarchy. In other words, the agent’s low-level adaptability is 
accompanied by uncertainty about higher-level variables (i.e., vola-
tility), leading to inflexibility. In anthropomorphic terms, one might 
imagine a person who displays rigid behavior because he/she remains 
uncertain about how volatile the world is (e.g., in anxiety disorders).

The simulations described above switch between two probability 
regimes: p(x

1
 = 1) = 0.5 and p(x

1
 = 1) = 0.9 or 0.1. The stimulus 

distributions under these two regimes have different variances (or 
risk). Figure 10 shows an additional simulation run where risk is 
constant, i.e., p(x

1
 = 1) = 0.85 or 0.15, throughout the entire simu-

lation. One recovers the same effects as in the reference scenario. 
We now consider generalizations of the generative model that relax 
some of the simplifying assumptions about sensory mappings and 
outcomes we made during its exposition above.

perceptual uncertaInty
The model can readily accommodate perceptual uncertainty at the 
first level. This pertains to the mapping from stimulus category x

1
 

to sensory input u. To allow for perceptual uncertainty, for example 
when the sensory inputs are ambiguous or affected by noise, we 
replace the deterministic relation in Eq. 1 by a stochastic one (cf. 
Daunizeau et al., 2010b):

If we reduce q (the log-volatility of x
3
) from 0.5 in the reference 

scenario to 0.05, we find an agent which is overly confident about 
its prior estimate of environmental volatility and expects to see lit-
tle change (Figure 6; Figure 9, second row). This leads to a greatly 
diminished learning rate for x

3
, while learning in x

2
 is not directly 

affected. There is, however, an indirect effect on x
2
 in that the learning 

rate at the second level during the third period is no longer notice-
ably increased by the preceding period of higher volatility. In other 
words, this agent shows superficial (low-level) adaptability but has 
higher-level beliefs that remain impervious to new information.

Figure 7 (and Figure 9, third row) illustrate the effect of reducing 
v, the absolute (i.e., independent of x

3
) component of log-volatility, 

to −4. The multiplicative scaling exp(v) of volatility is thus reduced 
to a sixth of that in the reference scenario. This leads to a low 
learning rate for x

2
, which in turn leads to little learning in x

3
, since 

the agent can only infer changes in x
3
 from changes in x

2
 (cf. Eq. 

30). This corresponds to an agent who pays little attention to new 
information, effectively filtering it out at an early stage.

The coupling between x
2
 and x

3
 can be diminished by reducing 

the value of k, the relative (i.e., x
3
-dependent) scaling of volatility in 

x
2
 (k = 0.2 in Figure 8; Figure 9, bottom row). This impedes the flow 

of information up the hierarchy of levels in such a way that the agent’s 
belief about x

3
 is effectively insulated from the effects of prediction 

error in x
2
 (cf. Eq. 30). This leads to less learning about x

3
 and to a 

much larger posterior variance s
3
 than in any of the above scenarios 

(see Figure 9, right panel). As with a reduced q (Figure 6), learning 
about x

2
 itself is not directly affected, except that, in the second stage 

of the simulation, higher volatility remains without effect on the learn-
ing rate of x

2
 in the third stage. This time, however, this effect is not 

caused by overconfidence about x
3
 (due to small q) as in the above 

scenario. Instead, it obtains despite uncertainty about x
3
 (large s

3
), 

which would normally be expected to lead to greater learning because 

Figure 9 | Simulations including standard deviations of posterior distributions. Top to bottom: the four scenarios from Figure 5–8. Left: m2 (bold red line); fine 
red lines indicate the range of ± s2  around m2. Right: m3 (bold blue line); fine blue lines indicate the range of ± s3  around m3. Circles indicate initial values.
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If u(k) ≈ h
a
, one sees that m1 1( )k ≈  regardless of m2

( ).k  Likewise, 
m1 0( )k ≈  if u(k) ≈ h

b
. This means that if the sensory input is sufficiently 

discriminable, x
2
 has no influence on the agent’s belief about x

1
. 

If, however, the sensory input is ambiguous in that u(k) is far from 
both h

a
 and h

b
 (rendering all exponential terms similarly small) we 

have m m1 2
( ) ( ) ;k ks≈ ( )  i.e., the agent has to rely on its belief about x

2
 to 

predict stimulus category. Importantly, the update equations for 
the higher levels of the model are not affected by this introduction 
of perceptual uncertainty at the first level.

Inference on contInuous-valued states
A generative model that comprises a hierarchy of Gaussian random 
walks can be applied to many problems of learning and inference. 
Here, we provide a final example, where the bottom-level state 
being inferred is not binary but continuous (i.e., a real number). 
Our example concerns the exchange rate between the U.S. Dollar 
(USD) and the Swiss Franc (CHF) during the first 180 trading days 
of the year 2010 (source: http://www.oanda.com). In this example, 
the agent represented by our model can be seen as an individual 
market observer (e.g., a currency trader), with the model describ-
ing how he “perceives” the relative value (and volatility) of USD. 
To maintain notational continuity with the preceding sections, we 
call this value x

2
 even though it occupies the lowest level of the 

hierarchy. In other words, the input u is generated directly from x
2
 

(without passing through a binary state x
1
). The data u are taken 

to be the closing USD–CHF exchange rates of each trading day 
with a likelihood model

 
p u x u x| ; ,2 2( ) = ( )N a  (48)

where a is the constant variance with which the input u is normally 
distributed around the true value x

2
. This can be regarded as a 

measure of uncertainty (i.e., how uncertain the trader is about his 

 
p u x u ua

x

b

x
| ; , ; ,1

11 1( ) = ( ) ⋅ ( ) −N Nh a h a  (45)

Here, the input u is no longer binary but a real number whose 
distribution is a mixture of Gaussians. If x

1
 = 1, the probability 

of u is normally distributed with constant variance a around a 
constant value h

a
, corresponding to the most likely sensation if 

x
1
 = 1. If, however, x

1
 = 0, the most likely sensation is h

b
 with the 

probability of u normally distributed with the same variance a. The 
greater a (relative to the squared distance (h

a
 − h

b
)2), the greater 

the perceptual uncertainty. The main point here is that with this 
modification, the model can account for situations where x

1
 can 

no longer be inferred with certainty from u. The variational energy 
of the first level now is
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With Eq. 15, we find the update rule for m
1
:
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Figure 10 | A simulation where risk is constant (q = 0.2, v = −2.3, k = 1.6). Symbols have the same meanings as in Figure 5. The same basic phenomena shown 
in Figure 5 can be observed here.
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these parameters using the same variational techniques we have 
considered for the hidden states. This would involve optimizing the 
free energy bound on the evidence for each agent’s model (prior 
beliefs) integrated over time (i.e., learning). Alternatively, one 
could optimize performance by selecting those agents with prior 
beliefs (about the parameters) that had the best free energy (made 
the most accurate inferences over time). Colloquially, this would 
be the difference between training an expert to predict financial 
markets and simply hiring experts whose priors were the closest to 
the true values. We will deal with these issues of model inversion 
and selection in forthcoming work (Mathys et al., in preparation). 
We close this article with a discussion of the neurobiology behind 
variations in priors and the neurochemical basis of differences in 
the underlying parameters of the generative model.

dIscussIon
In this article, we have introduced a generic hierarchical Bayesian 
framework that describes inference under uncertainty; for exam-
ple, due to environmental volatility or perceptual uncertainty. The 
model assumes that the states evolve as Gaussian random walks 
at all but the first level, where their volatility (i.e., conditional 
variance of the state given the previous state) is determined by 
the next highest level. This coupling across levels is controlled by 
parameters, whose values may differ across subjects. In contrast to 
“ideal” Bayesian learning models, which prescribe a fixed process 
for any agent, this allows for the representation of inter-individual 
differences in behavior and how it is influenced by uncertainty. 
This variation is cast in terms of prior beliefs about the parameters 
coupling hierarchical levels in the generative model.

A major goal of our work was to eschew the complicated integrals 
in exact Bayesian inference and instead derive analytical update 
equations with algorithmic efficiency and biological plausibility. 
For this purpose, we used an approximate (variational) Bayesian 
approach, under a mean-field assumption and a novel approxima-
tion to the posterior energy function. The resulting single-step, 
trial-by-trial update equations have several important properties:

(i) They have an analytical form and are extremely efficient, 
allowing for real-time inference.

(ii) They are biologically plausible in that the mathematical ope-
rations required for calculating the updates are fairly basic 
and could be performed by single neurons (London and 
Hausser, 2005; Herz et al., 2006).

(iii) Their structure is remarkably similar to update equations 
from standard RL models; this enables an interpretation that 
places RL heuristics, such as learning rate or prediction error, 
in a principled (Bayesian) framework.

(iv) The model parameters determine processes, such as preci-
sion-weighting of prediction errors, which play a key role 
in current theories of normal and pathological learning and 
may relate to specific neuromodulatory mechanisms in the 
brain (see below).

(v) They can accommodate states of either discrete or conti-
nuous nature and can deal with deterministic and probabili-
stic mappings between environmental causes and perceptual 
consequences (i.e., situations with and without perceptual 
uncertainty).

“perception” of USD value relative to CHF). On top of this input 
level, we can now add as many coupled random walks as we please. 
For our example, we can describe the hidden states in higher levels 
with Eqs 4 and 5. By the method introduced above, we obtain
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For a = 0 (no perceptual uncertainty), the last two equations 
reduce, as they should, to s2 0( ) ,k =  m2

( ) ( ).k ku=  Note also that since 
I(x

2
) is already quadratic here, no further approximation to the 

mean-field approximation is needed, and m
2
 and s

2
 are the exact 

moments of the posterior under the mean-field approximation. 
Because the higher levels remain the same, the update equations 
for m

3
 and s

3
 are as given in Eqs 29 and 30.

Scenarios with different parameter values for the USD–CHF 
example are presented in Figures 11–14. These scenarios can be 
thought of as corresponding to different individual traders who 
receive the same market data but process them differently. The 
reference scenario (Figure 11) is based on the parameter values 
k = 1, v = −12, q = 0.3, and a = 2·10−5. This parameterization 
conveys a small amount of perceptual uncertainty that leads to 
minor but visible deviations of m

2
 from u. The updates to m

2
 are 

conservative in the sense that they consider prior information 
along with new input. Note also that m

3
 rises whenever the pre-

diction error about x
2
 is large, that is when the green dots denot-

ing u are outside the range m s2 2±  indicated by the red lines. 
Conversely, m

3
 falls when predictions of x

2
 are more accurate. In 

the next scenario (Figure 12), the value of a is further reduced to 
10−6. This scenario thus shows an agent who is effectively without 
perceptual uncertainty. As prescribed by the update equations 
above, m

2
 now follows u with great accuracy and m

3
 tracks the 

amount of change in x
2
. In Figure 13, perceptual uncertainty is 

increased by two orders of magnitude (a = 10−4). Here, the agent 
adapts more slowly to changes in the exchange rate since it cannot 
be sure whether prediction error is due to a change in the true 
value of x

2
 or to misperception. The final scenario in Figure 14 

shows an agent with the same perceptual uncertainty as in the 
reference scenario but a prior belief that the environment is not 
very volatile, i.e., q is reduced from 0.3 to 0.01. Smaller values 
of q smooth the trajectory of m

3
 in a similar way that perceptual 

uncertainty smoothes the trajectory of m
2
.

This example again emphasizes the fact that Bayes-optimal 
behavior can manifest in many diverse forms. The different behav-
iors emitted by the agents above are all optimal under their implicit 
prior beliefs encoded by the parameters that control the evolution 
of high-level hidden states. Clearly, it would be possible to  optimize 
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Figure 11 | inference on a continuous-valued state (q = 0.3, v = −12, 
k = 1, a = 2·10−5). Reference scenario for the model of hierarchical Gaussian 
random walks applied to a continuous-valued state at the bottom level. The 
state is the value x2 of the U.S. Dollar against the Swiss Franc during the first 

180 trading days of the year 2010. Bottom panel: input u representing closing 
exchange rates (green dots). The bold red line surrounded by two fine red 
lines indicates the range m s2 2± . Top panel: The range m s3 3±  of the 
log-volatility x3 of x2.

Figure 12 | reduced a = 10−6 (q = 0.3, v = −12, k = 1). Reduced perceptual uncertainty a with respect to the reference scenario of Figure 11.

Crucially, the closed-form update equations do not depend on 
the details of the model but only on its hierarchical structure and 
the assumptions on which the mean-field and quadratic approxi-

mation to the posteriors rest. Our method of deriving the update 
equations may thus be adopted for the inversion of a large class 
of models. Above, we demonstrated this anecdotally by providing 
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As alternatives to our variational scheme, one could deal with 
the complicated integrals of Bayesian inference by sampling meth-
ods or avoid them altogether and use simpler RL schemes. We 

update equations for two extensions of the original model, which 
accounted for sensory states of a continuous (rather than discrete) 
nature and perceptual uncertainty, respectively.

Figure 13 | increased a = 10−4 (q = 0.3, v = −12, k = 1). Increased perceptual uncertainty a with respect to the reference scenario of Figure 11.

Figure 14 | reduced q = 0.01 (v = −12, k = 1, a = 2·10−5). Reduced q with respect to the reference scenario of Figure 11.
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prediction error, emerge naturally by inverting a full Bayesian 
generative model of arbitrary hierarchical depth under a generic 
mean-field reduction. That is, once we have specified the nature of 
our approximate inversion, the update equations are fully defined 
and do not require any further assumptions. This distinguishes our 
framework conceptually and mathematically from any previously 
suggested approach to Bayesian learning we are aware of.

Our update scheme also has its limitations. The most important 
of these is that it depends on the variational energies being approxi-
mately quadratic. If they are not, the approximate posterior implied 
by our update equations might bear little resemblance (e.g., in terms 
of Kullback–Leibler divergence) to the true posterior. Specifically, 
the update fails if the curvature of the variational energy at the 
expansion point is negative (which implies that the conditional 
variance is negative; see Eq. 38). According to the update Eq. 22, 
s

2
 can never become negative; s

3
 = 1/π

3
 however could become 

negative according to Eq. 29. However, the simulations and appli-
cation to empirical (exchange rate) data in this paper suggest that 
this is not a problem in practice. We are currently investigating the 
properties of our scheme more systematically in a series of theoreti-
cal and empirical analyses that will be published in future work. 
In particular, we will compare our variational inversion scheme 
against other methods such as numerical integration and sampling-
based methods.

In addition to the derivation of these update equations, we have 
provided simulations that demonstrate model behavior under dif-
ferent parameterizations (priors). These simulations confirmed 
the computational efficiency of our approach: the simulations in 
Figures 5–8 (with 320 trials) each take about 5 ms on a standard 
laptop computer. Furthermore, they demonstrate that changes in 
any of the parameters lead to plausible changes in the evolution of 
the states (i.e., as predicted from the structure of the model) and 
that each parameter produces distinctly different behavior.

Maladaptive behavior, owing to inappropriate learning and deci-
sion-making, is at the heart of most psychiatric diseases, and our 
framework may be particularly useful for modeling the underlying 
mechanisms. There are two complementary approaches one might 
consider: phenomenological and neurophysiological. To illustrate 
a phenomenological approach, we will consider extreme settings 
of the parameters in terms of psychopathology. In the example of 
Figures 5–8, variations in the parameters can explain a spectrum 
of different types of inference, some of which may be interpreted 
as aberrant or even pathological. Given the scenario in Figure 8, 
we could adopt an anthropomorphic interpretation of the agent 
and interpret underconfidence about estimates of environmental 
volatility (i.e., high s

3
) as a possible cause of anxiety. In other words, 

knowing that the world is changing quickly is frightening enough, 
but being uncertain about the extent of this change may be even 
more upsetting. Anxiety of this sort is often observed prior to (or 
in the early phase of) psychotic episodes (Häfner et al., 1998). One 
way to reduce anxiety (that is, to reduce the effects of high s

3
 due 

to abnormally low k), would be to reduce q, leading to a scenario 
akin to that in Figure 6. This, however, would induce a rigid high-
level belief that is impervious to prediction error from the lower 
level. Rigid high-level priors of this sort that provide inappropri-
ate predictions for lower levels may provide a metaphor for delu-
sions and hallucinations that constitute the positive symptoms of 

did not  pursue these options because we wanted to take a princi-
pled approach to individual learning under uncertainty; i.e., one 
that rests on the inversion of a full Bayesian generative model. 
Furthermore, we wanted to avoid sampling approximations because 
of the computational burden they impose. Although it is conceiv-
able that neuronal populations could implement sampling meth-
ods, it is not clear how exactly they would do that and at what 
temporal and energetic cost (Yang and Shadlen, 2007; Beck et al., 
2008; Deneve, 2008).

We would like to emphasize that the examples of update equa-
tions derived here can serve as the building blocks for those of 
more complicated models. For example, if we have more than two 
categories at the first level, this can be accommodated by addi-
tional random walks at the second and subsequent levels; at those 
levels, Eqs 38 and 40 have a straightforward interpretation in n 
dimensions. Inference using our update scheme is thus possible on 
n-categorical discrete states, n-dimensional unbounded continuous 
states, and (by logarithmic or logistic transformation of variables) 
n-dimensional bounded continuous states.

One specific problem that has been addressed with Bayesian 
methods in the recent past concerns online inference of “change-
points,” i.e., sudden changes in the statistical structure of the envi-
ronment (Corrado et al., 2005; Fearnhead and Liu, 2007; Krugel 
et al., 2009; Nassar et al., 2010; Wilson et al., 2010). Our generative 
model based on hierarchically coupled random walks describes 
belief updating without representing such discrete changepoints 
explicitly. As illustrated by the simulations in Figures 5–8, this does 
not diminish its ability to deal with volatile environments. See also 
previous studies where similar models were applied to data gener-
ated by changepoint models (Behrens et al., 2007, 2008) or where 
RL-type update models were equipped with an adjustable learn-
ing rate in order to deal with sudden changes in the environment 
(Krugel et al., 2009; Nassar et al., 2010). One such sudden change in 
the environment that is nicely picked up in the application of our 
model to the empirical exchange rate data is the outbreak of the 
Greek financial crisis in spring 2010. The sudden realization of the 
financial markets that Greece was insolvent led to a flight into the 
USD which is reflected by a sharply increasing value of the Dollar 
against the Swiss Franc visible in the lower panel of Figure 11. 
Because this sudden rise of the Dollar is unexpected, it immedi-
ately leads to a jump in the agent’s belief about the volatility of its 
environment, as is clearly visible in the upper panel of Figures 11 
or 13. In this manner, a sudden event akin to a changepoint is 
detected without representations of changepoints being an explicit 
component of the model.

Clearly, our approach is not the first that has tried to derive trac-
table update equations from the full Bayesian formulation of learn-
ing. Although not described in this way in the original work, even 
the famous Kalman filter can be interpreted as a Bayesian scheme 
with RL-like update properties but is restricted to relatively sim-
ple (non-hierarchical) learning processes in stable environments 
(Kalman, 1960). Notably, none of the previous Bayesian learning 
models we know leads to analytical one-step update equations 
without resorting to additional assumptions that are specifically 
tailored for the update equations (Nassar et al., 2010) or the learn-
ing rate (Krugel et al., 2009). In contrast, in our scheme, the update 
equations and their critical components, such as learning rate or 
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One could, of course, consider alternative formulations of our 
model in which individual learning mechanisms, determined by 
the coupling across levels, are encoded entirely by states. There is 
a simple reason why we did not pursue this alternative. Clearly, 
modeling dynamic aspects of learning, such as rapid updating of 
learning rates, does require a representation involving states (see 
above). On the other hand, within an individual agent’s brain, 
the physiological mechanism underlying this coupling must obey 
some general principles that have been shaped both by (life-long) 
experience and genetic background (cf. RL depends on individual 
genotype (Frank et al., 2007, 2009; Krugel et al., 2009)). Such sta-
ble subject-specific learning mechanisms could be represented in 
two ways. One could choose a relatively deep hierarchical model 
with high-level states that change very slowly. Alternatively, these 
mechanisms could be represented by time-invariant parameters. 
We chose the latter option simply because it provides a more 
concise and interpretable summary of subject-specific learning 
mechanisms. For example, when quantifying individual differ-
ences in computational learning mechanisms as a function of 
individual differences in physiology (e.g., pharmacological treat-
ment) or genetics, it is not only statistically easier to deal with 
time-invariant parameters (i.e., a single number per subject) rather 
than temporal trajectories of states, but the results are also more 
readily interpretable.

It should be emphasized that the idea of fitting learning models 
to subject-specific data and using the ensuing individual param-
eter estimates for assessing inter-individual variability is not new 
and has been pursued by many previous studies (e.g., Steyvers and 
Brown, 2006; Frank et al., 2007, 2009; Krugel et al., 2009). This, 
however, is less straightforward with those “ideal” Bayesian models 
that have no free parameters; in this case, parameters can only be 
taken from adjunct models in which ideal Bayesian models are 
often embedded (e.g., observation or decision models; cf. Brodersen 
et al., 2008). The novelty of our approach is that we transform, by 
variational approximation, an ideal Bayesian learner into a near-
optimal scheme in which parameters represent individual learning 
traits as an integral part of Bayesian learning. These parameters 
shape the ensuing update equations which are analytical and 
have an RL-like structure. By combining the principled nature of 
Bayesian approaches and the practical ease of RL models, we hope 
that our approach will facilitate future empirical investigations of 
individual variability.

The main goal of this paper was to introduce the mathematical 
basis of our approach and illustrate its functionality. Clearly, the 
simulations shown in this paper are anecdotal and cannot fully 
demonstrate or establish the practical utility of our approach. In 
particular, we have not yet demonstrated how our model can be 
inverted (fitted), given empirical measurements. This requires 
extending the present approach with a response model that con-
nects states from the Bayesian learning model to measurable 
responses of a neurophysiological or behavioral sort (cf. Daunizeau 
et al., 2010a,b). We will present this extension in future work and 
demonstrate its use for the analysis of behavioral and neuroimag-
ing data.

In summary, we have introduced a novel and generic frame-
work for approximate Bayesian inference with computation-
ally efficient and interpretable closed-form update equations. 

schizophrenia. In contrast, negative symptoms could be related to 
the scenario in Figure 7: here, a reduction in v renders the agent 
completely passive, such that new information is barely taken in and 
only weakly processed. Notably, in these simple and anecdotal simu-
lations, we chose some parameter settings that lead to superficially 
similar behavior (e.g., Figures 6 and 8). While this indicates some 
degree of interdependence among the parameters, this does not 
mean that the parameters are non-identifiable. Informally, one can 
intuit this by noting the obvious differences expressed in the evolu-
tion of higher-level states of the model; these will be expressed in 
different behavioral predictions, given a suitably chosen sequence of 
stimuli. When fitting the model to empirical data, once can test for 
parameter identifiability more formally using a sensitivity analysis 
or, equivalently but more conveniently, their posterior covariance. 
The identifiability of our model parameters will be examined sys-
tematically in forthcoming work (Mathys et al., in preparation).

From a neurophysiological perspective, it has been proposed 
that dopamine might not encode the prediction error on value 
(Schultz et al., 1997) but instead the value of prediction error, i.e., 
the precision-weighting of prediction errors (Friston, 2009). In 
our model, this process is represented, at the second level, by the 
parameters k and v. It is apparent from the definition Eq. 27 and 
the update Eq. 22 that these parameters influence the precision of 
the prediction on the next trial, the precision of the posterior belief, 
and the learning rate. If dopaminergic midbrain activity encodes 
the conditional (posterior) precision of beliefs, this dopaminergic 
activity should be reflected by estimates of k and v, obtained from 
behavioral, fMRI, or electrophysiological data. This hypothesis can 
be tested using neuropharmacological experiments. In short, by 
harvesting subject-specific parameter estimates for group analyses 
of physiological measurements, hierarchical generative models (of 
the sort considered in this work) could be used to test hypotheses 
about the relations between computational and physiological proc-
esses. We are currently pursuing this approach in ongoing research. 
Alternatively, one can also use our model for analyses at the subject 
level: the sequence of inferred hidden states, as represented by their 
sufficient statistics m and s, can be used as predictor variables in 
analyses of fMRI, EEG, or behavioral data to shed light on the 
neurophysiological correlates of inference and learning (cf. den 
Ouden et al., 2010).

The distinction between hidden states, which vary in time and 
are the dynamic components of the agent’s model of the world, and 
parameters, which are time-invariant and encode stable subject-
specific learning styles, is a key component of our model. One 
might compare this to classical RL models where value estimates 
(states) are updated dynamically while the learning rate is an invari-
ant parameter. In our case, however, the (implicit) learning rate 
is dynamic and results from an interaction between states and 
parameters: the latter determine how higher-level states influence 
lower-level ones. This effect of the static parameters on dynamic 
cross-level coupling can be seen directly from the update equa-
tions above (e.g., Eqs 23 and 27) and is illustrated in Figures 5 
and 10 where the learning rate visibly changes while the param-
eters are fixed. In other words, subject-specific learning mecha-
nisms, represented by cross-level coupling in our model, have both 
dynamic (higher-level states) and static (parameters) components 
in our model.
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