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Sato et al., 2004; Daunizeau et al., 2007; Trujillo-Barreto et al., 
2008; Wipf and Nagarajan, 2009; for related approaches). The 
further assumption of Gaussian distributions for the priors and 
parameters (hence “PEB,” Friston, et al., 2002) enables a simple 
matrix formulation of the generative model in terms of covari-
ance components (cf, Gaussian process modeling): Consider 
the linear model

Y LJ E J 0 E= + = +( ) ( )1 2  (1)

where Y ∈ n × t is a n (sensors) × t (time points) matrix of sensor 
data; L ∈ n × p is the n × p (sources) “leadfield” or “gain” matrix, 
J ∈ p × t is the matrix of unknown primary current density parame-
ters, and E(l)∼N(0,C(l)) are random terms sampled from zero-mean, 
multivariate Gaussian distributions1. For multiple trials, the data 
can be further concatenated along the temporal dimension, for 
example to accommodate induced (non-phase-locked) effects that 
would be removed by trial-averaging (Friston et al., 2006).

A GenerAtive Model
The spatial covariance matrices C(1) and C(2) can be represented by 
a linear mixture of covariance components, Qh

l( ):

C E Q( ) ( ) ( ) ( )cov expl l
h
l

h
l

h
= ( ) = ( )∑   (2) 

introduction
Distributed approaches to the EEG/MEG inverse problem typi-
cally entail the estimation of ∼104 parameters, which reflect the 
amplitude of dipolar current sources (in one to three orthogonal 
directions) at discrete points within the brain, using data from 
only ∼102 sensors that are positioned on (EEG), or a short dis-
tance from (MEG), the scalp (Mosher et al., 2003). For such ill-
posed inverse problems, a Bayesian formulation offers a natural 
way to introduce multiple constraints, or priors, to “regularize” 
their solution (Baillet and Garnero, 1997). In particular, there is 
growing interest in Bayesian approaches to integrate EEG and 
MEG data, and data from functional magnetic resonance imag-
ing (fMRI), in so-called multi-modal integration or “fusion” 
schemes (e.g., Trujillo-Barreto et al., 2001; Sato et al., 2004; 
Daunizeau et al., 2007; Ou et al., 2010; Luessi et al., 2011). Here, 
we review our recent work in this area, in terms of a parametric 
empirical Bayesian (PEB) framework that allows the fusion of 
multiple modalities, and subjects, within the same generative 
model.

The linearity of the electromagnetic forward model for E/
MEG (which maps each source to each sensor, based on quasi-
static, numerical approximations to Maxwell’s equations) 
means that the inverse problem can be expressed as a two-level, 
hierarchical, probabilistic generative model, in which (hyper) 
parameters of the higher level (sources) represent priors on the 
parameters of the lower level (sensors). This hierarchical formu-
lation allows the application of an Empirical Bayesian approach, 
in which the hyperparameters that control the prior distribu-
tions can be estimated from the data themselves (see below, and 
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1In fact, the error covariance of these distributions is assumed to factorize into 
temporal, V, and spatial, C, components (Friston et al., 2006), such that: vec(E(l )) 
~N(0,V ⊗ C(l)), where vec vectorizes a matrix and ⊗ represents the Kronecker 
tensor product. For simplicity, we will assume the temporal component (e.g., au-
tocorrelations) are known, and focus here on optimizing the spatial components.

Frontiers in Human Neuroscience www.frontiersin.org August 2011 | Volume 5 | Article 76 | 1

Review ARticle
published: 24 August 2011

doi: 10.3389/fnhum.2011.00076

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/Human_Neuroscience/about
http://www.frontiersin.org/human_neuroscience/10.3389/fnhum.2011.00076/abstract
http://www.frontiersin.org/human_neuroscience/10.3389/fnhum.2011.00076/abstract
http://www.frontiersin.org/human_neuroscience/10.3389/fnhum.2011.00076/abstract
http://www.frontiersin.org/people/rikhenson/9458
http://www.frontiersin.org/people/danielwakeman/14810
http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive
http://www.frontiersin.org/Human_Neuroscience/editorialboard


where h
l( ) is the “hyperparameter” for the h-th component of the 

l-th level (and its exponentiation ensures positive covariance com-
ponents). This results in the generative model illustrated by the 
Bayesian dependency graph in Figure 1, which has the associated 
probability densities:

p p( | , ) ( , ) ( | ) ( , )( ) ( ) ( ) ( )Y JJ J C 0 C 1 1 2 2= = L  (3)

Note that the assumption of a zero-mean for the sources 
in the second term in Eq. 3 means that C(2) functions as a 
“shrinkage prior” on the sources. Indeed, it can be shown that 
when the source covariance matrix is the identity matrix (i.e., 
Q(2) = I

p
⇒C(2) = exp((2))I

p
, where I

p
 is a p × p identity matrix), 

the posterior (conditional) mean of J (see below) corresponds to 
the standard “L2 minimum norm” (MMN), or Tikhonov, solu-
tion (Mosher et al., 2003; Hauk, 2004; Phillips et al., 2005). The 
MMN solution explains data with minimal source energy, where 
the relative weighting of data fit and source energy is controlled 
by a regularization parameter, whose value is often derived from 
an empirical estimate of the signal-to-noise ratio (Fuchs et al., 
1998). An elegant aspect of the above Empirical Bayesian for-
mulation is that the degree of regularization is controlled by the 
hyperparameters, h

l( ), whose values are optimized in a principled 
manner based on maximizing (a bound on) the model evidence 
(see below, and Phillips et al., 2005).

Furthermore, the general formulation above allows multiple 
spatial priors, on both the sources and the sensors. At the sen-
sor-level, for example, one could assume separate white-noise 
components ( )( )Q I1

1 = n  for each type of sensor (see Application 1 

below), and/or further empirical estimates of (non-brain) noise 
sources; e.g., from empty-room MEG recordings (Henson et al., 
2009a). At the source level, one could add additional smooth-
ness priors (Sato et al., 2004; Friston et al., 2008), or in a more 
extreme case, one could use hundreds of cortical “patches” 
within the solution space, to encourage a sparse solution. The 
latter “multiple sparse priors” (MSP) approach (Friston et al., 
2008) entails Q q qh h h

T( )2 = , where q
h
 ∈ p × 1 are sampled from 

a p × p matrix that encodes the proximity of sources within 
the cortical mesh.

With many hyperparameters (and a potentially complex cost 
function for gradient ascent; see below), it becomes prudent to 
further constrain their values, using normal hyperpriors:

p( ) ( )� � �=  ,  (4)

where  is a vector of hyperparameters concatenated over source 
and sensor levels. A (weak) shrinkage hyperprior can be imple-
mented by setting  = −4 (i.e., a small prior mean of exp(−4) 
for each covariance component; though strictly speaking, the log-
covariance has prior mean of −4) and  = 16 × I (i.e., a large prior 
variance, allowing exp( )( )h

l  to vary over several order of magnitude; 
Henson et al., 2007). This furnishes a sparse distribution of hyper-
parameters, where those that are not helpful (in maximizing the 
model evidence) shrink to zero; such that their associated covari-
ance components Qh

l( ) are effectively switched off. This is a form of 
automatic model selection (Friston et al., 2007), in that the optimal 
model will comprise only those covariance components with non-
negligible hyperparameters2.

Model inversion
The optimal (conditional) mean and covariance of the hyperpara-
meters ( ˆ , ˆ� �) are found using a Variation Bayesian approach under 
the Laplace approximation (Friston et al., 2007). This maximizes a 
cost function called the variational “free-energy,” under the Laplace 
assumption:

ˆ , ˆ max arg ( , , )
,

� � � � �
� �

= 

The free-energy is related to the log of the model evidence; i.e., 
given a generative model M defined by Eqs 2–4, then:

ln | ln , , , ,p p d d� � � � � �M M( ) = ( ) 



∫∫ ∧ ∧

J J Y| ≈ 

If the generative model were linear in the (hyper) parameters, 
this approximate equality would be exact. However, in our case, 
the model is effectively a Gaussian process model and is therefore 
non-linear in the hyperparameters. This renders the free-energy a 
lower bound on log-evidence, but one that has been shown to be 
effective in selecting between models of the present type (Friston 
et al., 2007). For the generative model in Figure 1, the free-energy 
is (ignoring constants):

Basic generative (PEB) model

(1)(2) (2)

,

(1)

(2)C (1)C

...

(2)

(1)
1Q

(1)

(2)
1Q (2)

2Q ...(1)
2Q

( )C ( )C( )
h

( )
h

J

YL

Fixed Variable Data
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Figure 1 | A Bayesian dependency graph representing the basic 
generative model used for the eeg/Meg inverse problem for one subject 
and one sensor-type (modality) within the Parametric empirical Bayesian 
(PeB) framework. The variables are defined in Eqs 2–4 in the text.

2Note that, although the prior mean and variance of these hyperpriors encourage a 
sparse distribution of hyperparameters, such hyperpriors do not necessarily furnish 
a sparse distribution of parameters, i.e., a sparse distribution of source estimates.
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horizontal and vertical visual angles of approximately 3.66° and 
5.38°. As soon as they saw the face or scrambled face, subjects used 
either their left or right index finger to report whether they thought 
it was symmetrical or asymmetrical about a vertical axis through its 
center (having been instructed that this judgment corresponded to 
more or less symmetrical “than average,” where an idea of average 
symmetry was obtained from exposure to practice stimuli). This 
task was chosen because it can be performed equally well for faces 
and scrambled faces.

There were 300 different faces and 150 different scrambled 
faces. Of the faces, 150 were from famous people and 150 were 
from unfamiliar (previously unseen) people. Scrambled faces were 
created by a 2D Fourier transform of 150 of the face images, from 
which the phases were permuted before transforming back to the 
image space, and masking by the outline of the original face image. 
Scrambled faces were therefore approximately matched for spatial 
frequency power density and for size. Each face or scrambled face 
was either repeated immediately or after a lag of 5–15 intervening 
items. Trials with famous faces that were not recognized during a 
subsequent debriefing (approximately 39 on average) were ignored 
as invalid trials, as were trials involving unfamiliar faces incorrectly 
labeled as famous during debriefing (approximately 25 on average). 
There were thus nine types of valid trial in total (initial presentation, 
immediate repetition, and delayed repetition of each of famous faces, 
unfamiliar faces and scrambled faces), but for present purposes, no 
distinction was made between initial and repeated presentations, or 
between famous and unfamiliar faces, resulting in just two condi-
tions of interest: all valid face trials and all scrambled face trials. Each 
subject performed the experiment twice (several days apart); once 
for concurrent MEG + EEG and once for fMRI + MRI.

On the MEG + EEG visit, 900 trials were presented in a pseu-
dorandom order (constrained only by the two types of repetition 
lag), split equally across six sessions of ∼7.5 min. The mean reac-
tion times were 894 ms for faces and 912 ms for scrambled faces. 
For the fMRI + MRI session, the 900 trials were divided into nine 
sessions of 7 min, and within each session, blocks of ∼18 trials were 
separated by 20 s of passive fixation (in order to estimate baseline 
levels of activity).

MeG + eeG Acquisition
The MEG data were recorded with a VectorView system (Elekta 
Neuromag, Helsinki, Finland), with a magnetometer and two 
orthogonal planar gradiometers located at 102 positions within 
a hemispherical array in a light Elekta-Neuromag magnetically 
shielded room. The position of the head relative to the sensor array 
was monitored continuously by feeding sinusoidal currents (293–
321 Hz) into four head-position indicator (HPI) coils attached 
to the scalp. The simultaneous EEG was recorded from 70 Ag–
AgCl electrodes in an elastic cap (EASYCAP GmbH, Herrsching-
Breitbrunn, Germany) according to the extended 10–10% system 
and using a nose electrode as the recording reference. Vertical and 
horizontal EOG (and ECG) were also recorded. All data were sam-
pled at 1.1 kHz with a low-pass filter of 350 Hz. Subjects were 
seated, and viewed the stimuli that were projected onto a screen 
∼1.33 m from them.

 � � � � � � � ��, , ln lnY C YY C( ) = − ( ) − −( ) ( ) +− − −tr 1 1 1T T| | - -
 

(5)
where C = LC(2)LT + C(1), C(l) = S

h
 exp ˆ ( ) ( )αh

l
h
l( )Q , and ,Ω are the 

means and variances respectively of the (hyper)prior distributions 
of hyperparameters, as in Eq. 4 (see Friston, et al., 2007, for details). 
The free-energy can also be considered as the difference between the 
model accuracy (

a
, the first two terms) and the model complexity 

(
c
, the second two terms). Heuristically, the first two terms rep-

resent the probability of the data under the assumption they have 
a covariance C. This follows directly from Gaussian assumptions 
about random effects in the model. The second two terms represent 
the departure or divergence of the hyperparameters (encoding the 
covariance) from our prior beliefs. This reports the complexity of 
the model (i.e., the effective number of parameters that are used 
to explain the data).

Having estimated the hyperparameters, the posterior estimate 
(conditional mean) of the sources is given by:

ˆ max ( | ) ( )J J Y PY P C L C= = = −

J
p T2 1

 (6)

where P is the inverse operator, which is evaluated at the conditional 
means of the hyperparameters ( )α̂α . For more precise description 
of the algorithm and update rules (in the general case considered 
in Applications 1–3 below), see Figure 2.

Note that the free-energy (Eq. 5) is only a function of the mean 
and covariance of the hyperparameters (empirical prior source 
covariances) and not the parameters (source solution), which are 
essentially eliminated from the free-energy cost function. This is 
crucial because it means the real inverse problem lies in optimiz-
ing the empirical priors on the sources, not the sources per se; the 
source solution is a rather trivial problem that is solved with Eq. 
6, once the hard problem has been solved. Classical inverse solu-
tions (e.g., MMN and beamforming) use Eq. 6 and ignore the hard 
problem by making strong assumptions about the prior covariance 
(i.e., by assuming full priors). By using a hierarchical model, these 
priors become empirical and can be optimized under parametric 
(Gaussian) assumptions. This allows us to extend the optimization 
of spatial priors to include multiple modalities and subjects; some-
thing that classical solutions cannot address (optimally). Before 
extending this PEB framework to multi-modal and multi-subject 
integration, we introduce the example dataset used to illustrate 
this integration.

Methods And procedure
subjects And experiMentAl desiGn
Eighteen healthy young adults (eight female) were drawn from the 
MRC Cognition and Brain Sciences unit Volunteer Panel. The study 
protocol was approved by the local ethics review board (CPREC 
reference 2005.08). The paradigm was similar to that used previ-
ously under EEG, MEG, and fMRI (Henson, et al., 2003; Henson 
et al., 2009a). A central fixation cross (presented for a random 
duration of 400–600 ms) was followed by a face or scrambled face 
(presented for a random duration of 800–1000 ms), followed by 
a central circle for 1700 ms. The faces/scrambled faces subtended 
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Figure 2 | Full pseudocode description for multi-subject, multi-modal MNM 
inversion based on spm_eeg_invert.m in SPM8. For details of the ReML 
algorithm and its precise updates using a Fisher-Scoring ascent on free-energy cost 
function, see Friston et al. (2008). (Note that an alternative “greedy search” 
algorithm is used for maximizing the free-energy in the case of MSP inversions.) 
The two main stages are: (1) optimizing the source component hyperparameters 
over subjects (by re-referencing each subject’s gain matrix and data to an “average” 
space), and (2) optimizing the sensor and source hyperparameters separately for 
each subject, using the single optimized source component from stage 1. For a 
single subject, the first stage has negligible effect. Note also that this example 

assumes a single set of k trials: the full code allows for different numbers of trials 
for different numbers of conditions. We have also ignored any filtering or temporal 
whitening of the data (see Friston et al., 2006, for more details). + refers to the 
pseudoinverse; catj refers to the vertical concatenation of a vector or matrix along 
the j-th dimension; tr refers to the trace of a matrix; X = svd(Y, m) refers to a 
single-value decomposition of the matrix Y in order to produce the matrix X 
containing the m singular vectors with the highest singular values. Note that these 
update rules are generic – i.e., apply to all Applications in this paper – all that 
changed across Applications was the choice of data (Y) and covariance components 
(Q), as illustrated in the generative models shown in subsequent Figures.
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In order to determine a time–frequency window on which to 
focus for the source analysis (i.e., to select data features of inter-
est), a time–frequency analysis was performed over the sensors 
using fifth-order Morlet wavelets from 6 to 90 Hz, centered every 
2 Hz and 20 ms. The logarithm of the resulting power estimates 
was baseline-corrected (by subtracting the mean log-transformed 
power at each frequency during the −500 to 0-ms period). The 2D 
time–frequency data were then averaged over trials and channels 
(of a given modality) and analyzed with statistical parametric map-
ping (SPM). We used a paired t-test of the mean difference between 
faces and scrambled faces across subjects, with the resulting statis-
tical map corrected for multiple comparisons across peristimulus 
times and frequencies using Random Field Theory (Kilner and 
Friston, 2010).

Using an initial peak threshold of p < 0.001 (uncorrected), only 
one cluster showed greater source energy for faces than scram-
bled faces that survived correction for its extent within the time– 
frequency space in the EEG data, which ranged between 8 and 
18 Hz and from 100 to 220 ms (Figure 3A). A similar cluster was 
found in the MEG data, but did not quite survive correction for 
extent. No reliable increases in power were found for scrambled 
faces relative to faces. This face-related power increase coincided 
with a general increase in power for faces and scrambled faces rela-
tive to pre-stimulus baseline, which was distributed maximally over 
posterior EEG sensors and lateral MEG sensors (Figure 3B), and 
coincided with an evoked component that peaked around 160 ms 
(corresponding to the N170 and M170 for EEG and MEG compo-
nents respectively, Henson et al., 2010).

Mri + fMri pre-processinG
Analysis of all MRI data was performed with SPM8. The T1-weighted 
MRI data were segmented and spatially normalized to gray mat-
ter, white matter, and CSF segments of an MNI template brain in 
Talairach space (Ashburner and Friston, 2005).

After coregistering the T2*-weighted fMRI volumes in space, 
and aligning their slices in time, the volumes were normalized using 
the parameters from the above T1 normalization, resampled to 
3 mm × 3 mm × 3 mm voxels, and smoothed with an isotropic 
8 mm full-width-at-half-maximum (FWHM) Gaussian kernel. 
The time-series in each voxel were scaled to a grand mean of 100, 
averaged over all voxels and volumes.

Statistical analysis was performed using the usual summary 
statistic approach to mixed effects modeling. In the first stage, 
neural activity was modeled by a delta function at stimulus onset 
and the ensuing BOLD response was modeled by convolving these 
with a canonical hemodynamic response function (HRF) to form 
regressors in a general linear model (GLM). Voxel-wise parameter 
estimates for the resulting regressors were obtained by maximum-
likelihood estimation, treating low-frequency drifts (cut-off 128 s) 
as confounds, and modeling any remaining (short-term) temporal 
autocorrelation as an autoregressive AR(1) process.

Images of the parameter estimates for each voxel comprised 
the summary statistics for the second-stage analysis, which treated 
subjects as a random effect. Contrast images of the canonical HRF 
parameter estimates for each subject were entered into a repeated-
measures ANOVA, with the nine conditions (correcting for non-
sphericity of the error, Friston et al., 2002). An SPM of the F-statistic 

A 3D digitizer (Fastrak Polhemus Inc., Colchester, VA, USA) was 
used to record the locations of the EEG electrodes, the HPI coils 
and approximately 50–100 “head points” along the scalp, relative 
to three anatomical fiducials (the nasion and left and right pre-
auricular points).

fMri + Mri Acquisition
MRI data were acquired on a 3T Trio (Siemens, Erlangen, Germany). 
Subjects viewed the stimuli via a mirror and back-projected screen. 
A T1-weighted structural volume was acquired with GRAPPA 3D 
MPRAGE sequence (TR = 2250 ms; TE = 2.99 ms; flip-angle = 9°; 
acceleration factor = 2) with 1 mm isotropic voxels. Two FLASH 
sequences, and a DWI sequence, were also acquired, but are not uti-
lized here. The fMRI volumes comprised 33 T2-weighted transverse 
echoplanar images (EPI; 64 mm × 64 mm, 3 mm × 3 mm pixels, 
TE = 30 ms) per volume, with blood oxygenation level dependent 
(BOLD) contrast. EPIs comprised 3 mm thick axial slices taken 
every 3.75 mm, acquired sequentially in a descending direction. A 
total of 210 volumes were collected continuously with a repetition 
time (TR) of 2000 ms. The first five volumes discarded to allow for 
equilibration effects.

These data will be available for download from http://central.
xnat.org as part of the BioMag2010 data competition (Wakeman 
and Henson, 2010).

MeG + eeG pre-processinG
External noise was removed from the MEG data using the tempo-
ral extension of signal-space separation (SSS; Taulu et al., 2005) 
as implemented with the MaxFilter software Version 2.0 (Elekta-
Neuromag), using a moving window of 4 s and correlation coef-
ficient of 0.98 (resulting in removal of 0–9 components, with an 
average of six across participants/windows). The MEG data were 
also compensated for movement every 200 ms within each session. 
The total translation between first and last sessions ranged from 
0.74–9.39 mm across subjects (median = 3.34 mm).

Manual inspection identified a small number of bad channels: 
numbers ranged across subjects from 0–12 (median of 1) in the 
case of MEG, and 0–7 (median of 1) in the case of EEG. These 
were recreated by MaxFilter in the case of MEG, but rejected in 
the case of EEG. After reading data from all three sensor-types 
into a single SPM8 data format file3, the data were epoched from 
−500 to +1000 ms relative to stimulus onset (adjusting for the 
34-ms projector delay), adjusted for the mean across the −500 
to 0-ms baseline, and down-sampled to 250 Hz (using an anti-
aliasing low-pass filter of approximately 100 Hz). Epochs in which 
the EOG exceeded 150 μV were rejected (number of rejected 
epochs ranged from 0 to 311 across subjects, median = 76), leav-
ing approximately 400 valid face trials and 245 valid scrambled 
trials on average. The EEG data were re-referenced to the average 
over non-bad channels.

It is these epoched, pre-processed datasets that were used in 
the three PEB applications below. For simplicity, only the mag-
netometer data are reported here; i.e., “MEG” refers to the 102 
magnetometer channels (results from planar gradiometers can be 
obtained from the authors; see also Henson et al., 2009a).

3http://www.fil.ion.ucl.ac.uk/spm
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mesh; see below), the F-values in each cluster were binarized to form 
three prior spatial (diagonal) covariance components with 18, 38, 
and 33 non-zero entries (see Results below).

eeG/MeG forwArd ModelinG
The inverse of the spatial normalization used to map each subject’s 
T1-weighted MRI image to the MNI template was used to warp a 
cortical mesh from that template brain back to each subject’s MRI 
space (see Mattout et al., 2007 for further details). The resulting 
“canonical” mesh was a continuous triangular tessellation of the 
gray/white matter interface of the neocortex (excluding cerebellum) 
created from a canonical T1-weighted MPRAGE image in MNI 
space using FreeSurfer (Fischl et al., 2001). The surface was inflated 
to a sphere and down-sampled using octahedra to achieve a mesh 
of 8196 vertices (4098 per hemisphere) with a mean inter-vertex 

was then computed to compare the average of the (six) face condi-
tions against that of the (three) scrambled conditions. This SPM{F} 
was thresholded for regions of at least 10 contiguous voxels that 
survived the peak threshold of p < 0.05 (family-wise error-corrected 
across the whole-brain). This analysis produced three clusters, in 
right mid-fusiform, right lateral occipital cortex, and a homologous 
cluster on the left that encompassed both fusiform and occipital 
regions. All these regions evidenced a higher BOLD signal for faces 
than scrambled faces (reported later in Figure 6B). These clusters are 
in general agreement with previous fMRI studies reporting a similar 
contrast of faces versus non-face objects (e.g., a subset of Henson 
et al., 2003), most likely corresponding to what have been called the 
“FFA” and “OFA” (Kanwisher et al., 1997). After a nearest-neighbor 
projection to the vertices in the template cortical mesh (which has a 
one-to-one correspondence with vertices in each  subject’s canonical 

Figure 3 | The eeg and Meg data used to illustrate applications of PeB. (A) 
Shows a thresholded, 2D Statistical Parametric Map (SPM) for a mass univariate 
paired t-test across the 18 subjects (corresponding to the GLM inset) testing for 
increases in the (log of the) total energy (induced and evoked) for faces relative to 
scrambled faces every 2 Hz between 6 and 90 Hz (y-axis of SPM) and every 
20 ms between −500 and +1000 ms (x-axis is SPM) based on a Morlet Wavelet 
decomposition of data from each sensor, followed by averaging over these 
sensors. The peak threshold corresponds to p < 0.001 uncorrected, with the 
extent of the time–frequency region outlined in red for EEG surviving p < 0.05 

(corrected) for multiple comparisons, using Random Field Theory (a similar region 
can be seen in the MEG data). (B) Shows time–frequency plots of total 
log-energy separately for each sensor for the average response to faces and 
scrambled faces. Inset is the trial-averaged evoked response for the sensors 
[circled in (B)] that showed maximal energy increases versus baseline, with the 
blue line corresponding to faces and the green line corresponding to scrambled 
faces (i.e., showing the evoked N/M170 component that is likely to be the 
dominant component of the energy increase between 8 and 18 Hz, 100 and 
220 ms, for faces relative to scrambled faces).
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variance; see Figure 2). This resulted in r = 3 temporal modes for 
every subject (Friston et al., 2006). Thus the covariance matrices 
for each modality of approximately 63 × 63 (reduced sensors × sen-
sors) on average were estimated from approximately 645 × 3 (tri-
als × reduced time points) samples.

For simplicity (and to highlight to benefits of fMRI priors), 
we used simple generative models with a single source compo-
nent (the identity matrix, Q I1

2( ) = p, i.e., MMN model) for source 
reconstruction (Table 1). Having estimated the inverse operator, 
P (Eq. 6), the power of the source estimate for each condition 
(within the same time–frequency window, averaged across tri-
als) was calculated for each vertex, and smoothed across vertices 
using eight iterations of a graph Laplacian. The logarithm of these 
smoothed power values was then truncated (to remove very small 
values), scaled by the resulting mean value over vertices and tri-
als, and interpolated into a 3D space of 2 mm × 2 mm × 2 mm 
voxels. Finally, the 3D images were smoothed with an isotropic 
3D Gaussian with a FWHM of 8 mm (to allow for residual inter-
subject differences). Note that the inverse operator is estimated 
from the covariance across sensors over a range of times/fre-
quencies within the time–frequency window of interest (more 
precisely, by the temporal modes resulting after SVD of the data 
filtered to this window, as above), which can be used to reconstruct 
a timecourse for each source; it is only when subsequently per-
forming statistics on power estimates that such source estimates 
are averaged across time and frequency to produce a single scalar 
value for each source.

results
In this section we present the results of model inversion using the 
exemplar data of the previous section. We focus on three generaliza-
tions of the basic model above that enable (symmetric and asym-
metric) fusion of different imaging modalities and, finally, the fusion 
of data from different subjects. Note that the same optimization 
scheme was used for all three Applications (as shown in Figure 2); 
the only difference across Applications was the specific choice of 
covariance components at source and/or sensor levels, Qh

l( )  (as shown 
in Table 1).

spacing of ∼5 mm. The normal to the surface at each vertex was cal-
culated from an estimate of the local curvature of the surrounding 
triangles (Dale and Sereno, 1993). The same inverse-normalization 
procedure was applied to template inner skull, outer skull and scalp 
meshes of 2562 vertices.

The MEG and EEG sensor positions were projected onto each 
subject’s MRI space by a rigid-body coregistration based on mini-
mizing the sum of squared differences between the digitized fidu-
cials and the manually defined fiducials on the subject’s MRI, and 
between the digitized head points and the canonical scalp mesh 
(excluding head points below the nasion, given absence of the nose 
on the T1-weighted MRI). The gain matrix (L) was then created 
within SPM8 by calls to FieldTrip functions4, using a single shell 
based on the inner skull mesh for the MEG data (Nolte, 2003), and 
a three-shell boundary element model (BEM) based on inner skull, 
outer skull and scalp meshes for the EEG data (Fuchs et al., 2002). 
Lead fields for each sensor were calculated for a dipole at each 
point in the canonical cortical mesh, oriented normal to that mesh.

eeG/MeG inversion pArAMeters
A spatial dimension reduction was achieved by singular-value 
decomposition (SVD) of the outer product of the gain matrix, 
with a cut-off of exp(−16) for the normalized eigenvalues (which 
retained over 99.9% of the variance). This produced m = 55 − 68 
spatial modes across subjects for the MEG (magnetometer) data, 
and m = 61 − 69 for the EEG data (see Figure 2).

Based on the suprathreshold SPM results for comparison of 
faces versus scrambled faces in the sensor time–frequency analysis 
(see above), the data were projected onto a (Hanned) time window 
between +100 and +220 ms, and a frequency band from 8 to 18 Hz. 
The resulting covariance across sensors was averaged across all tri-
als of both trial-types (faces and scrambled), effectively capturing 
induced and evoked power (Friston et al., 2006). A temporal dimen-
sion reduction was achieved by an SVD of this mean covariance, 
once projected onto the spatial modes, using a cut-off of exp(−8) 
for the normalized eigenvalues (which retained over 95% of the 

Table 1 | Summary of the differences in generative model across Applications 1–3.

Application Q1
(2) Q2

(2) Q3
(2) Q4

(2) Q11
(1) Q21

(1)
1

(2)
1
(2),Ω 1

(1)
1
(1),Ω 2

(1)
2
(1),Ω

1 EEG ip – – – in – −4, 16 −4, 16 –

MEG ip – – – – in −4, 16 – −4, 16

EEGu ip – – – in in −4, 16 −4, 16 +4, 1/16

MEGu ip – – – in in −4, 16 +4, 1/16 −4, 16

E + MEG ip – – – in in −4, 16 −4, 16 −4, 16

2 E + MEG + fMRI ip g1 g2 g3 in in −4, 16 −4, 16 −4, 16

3 Group-optimized ip g1 g2 g3 in in −4, 16 −4, 16 −4, 16

E + MEG + fMRI Q

ip, in represent p × p, n × n identity matrices, given p sources and n sensors. Gh represents a p × p matrix whose elements are zero except for those on the leading 
diagonal that correspond to vertices within the hth fMRI cluster, which are set to one (see Application 2). Q represents a p × p matrix that is a linear combination of 
the source covariance components Qh

(2) , the linear weightings of which are the hyperparameter estimates from group-optimization (see Application 3). For remaining 
symbols, see main text.

4http://fieldtrip.fcdonders.nl/
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For simplicity, we restrict the present example to just h = 1 
 sensor–noise component per sensor-type, equal to the identity 
matrix (i.e., isotropic or white-noise), Q I Cj n j j nj j

( ) ( ) ( )exp( )1 1 1= ⇒ = λ Ι .
Because the model evidence is conditional on the data, one 

cannot evaluate the advantage of fusing MEG and EEG simply 
by comparing the model evidence for the fused model (Figure 4) 
relative to that for a model of the MEG or the EEG data alone 
(Figure 1). Rather, one can fit the concatenated (MEG and EEG) 
data, and compare the model evidence for “unimodal” versus 
“bimodal” models by varying the sensor-level hyperpriors for each 
sensor-type (Eq. 4). If we increase the hyperprior mean for the j-th 
sensor-type to j

( )1 4= +  (i.e., a proportional increase in the prior 
noise variance of exp(8)≈3000) and decrease its hyperprior variance 
to ω j

( ) /1 1 16=  (i.e., tell the model we are confident the j-th modal-
ity is largely noise), then we are effectively discounting data from 
that sensor-type. This is because the noise for that sensor-type is 
modeled as very high relative to the other modality. Because such 
hyperpriors are part of the model, their veracity can be compared 
using the free-energy approximation to the log-evidence in the 
usual way. In other words, if the j-th modality is uninformative, 
then the “unimodal” model for the other modality will have more 
evidence than the “bimodal model.” More specifically, we can use 
the free-energy (Eq. 5) to test whether a “bimodal” fusion model 
with symmetric and weak shrinkage hyperpriors (i.e., ηj

( )1 4= −  and 
ω j

( )1 16=  for j = 1 and j = 2) has more evidence than either of the 

ApplicAtion 1: fusion of eeG And MeG dAtA
The first extension of the basic generative model (Figure 1) is to a 
symmetric fusion model of MEG and EEG data (Henson et al., 2009a). 
This is shown schematically in Figure 4. Effectively, this corresponds 
to concatenating the data, gain matrices, and sensor error terms for 
each sensor-type, such that Eq. 1 becomes, for j = 1…d sensor-types:
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 (7)

To accommodate different scaling and measurement units across 
the different sensor-types, the data and gain matrices are re-scaled 
(after projection to the m

j
 spatial modes) as follows:





Y
Y

Y Y

L
L

L L

j
j

m j j
T

j
j

m j j
T

j

j

=

=

1

1

tr

tr

( )

( )

 (8)

where tr(X) is the trace of X. This effectively normalizes the data 
so that the average second-order moment (i.e., sample variance if 
the data are mean-corrected) of each spatial mode is the average 
variance expected under independent and identical sources with 
unit variance (ignoring sensor noise). If the gain matrices for each 
sensor-type were perfect (and expressed in the same physical units), 
this scaling would be redundant. In the absence of such knowledge 
however, it allows for arbitrary scaling of the lead fields from dif-
ferent modalities and enables the relative levels of sensor noise to 
be estimated for each sensor-type; those levels being proportional 
to exp(λλ j

( ))1 . This is arguably more principled than estimating rela-
tive noise levels from, for example, the pre-stimulus period (e.g., 
Molins et al., 2007), which does not discount brain “noise” from 
the sources5. For tests of the validity of this scaling, and further 
discussion, see Henson et al. (2009a).

Note that the sources in J and their priors (left-hand branch 
of Figure 4) are unchanged. It is the sensor-level covariance com-
ponents (right-hand branches of Figure 4) that are augmented. 
Specifically, the sensor error covariance, C(1), becomes:
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where C j
( )1  for each sensor-type j is again estimated by a linear 

combination of covariance components:

C Qj jh jhh

( ) ( ) ( )1 1 1= ∑ 

Symmetric multimodal (E+MEG) fusion model

(1)(2)

,
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Source and sensor space

Figure 4 | The extension of the generative model in Figure 1 to the 
fusion of eeg and Meg data, i.e., j = 1–2 modalities (Y1 and Y2). This model 
was the one used to produce the results in Figure 5; i.e., with one minimum 
norm source prior (Q I1

2( ) = p, where ip is a p × p identity matrix for the p 
sources) and one white-noise sensor component for each modality (Q Ij nj

( )1 = , 
where nj is the number of sensors for the j-th sensor-type).

5For MEG data, an estimate of sensor–noise covariance can be obtained from emp-
ty-room recordings (Henson et al., 2009a), for which the noise consists of a random 
component intrinsic to the SQUID sensors and associated electronics, plus a com-
ponent from environmental magnetic noise (that has not been fully attenuated by 
magnetic shielding). Methods for estimating such sensor–noise covariance for EEG 
data are less obvious however.
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(Mattout et al., 2007) is useful, because this provides a one-to-one 
mapping between the vertices of each subject’s cortical mesh 
and the vertices in standard (e.g., MNI) space. This allows the 
fMRI clusters to be defined by different subjects, or, as here, by 
group statistics on spatially normalized fMRI data across sub-
jects. Figure 6B shows a MIP of clusters of at least 10 voxels, 
whose peak statistical values survived p < 0.05 (corrected) for 
multiple comparisons across the brain, where that statistic is the 
F-value for a two-tailed6 paired t-test of faces versus scrambled 
faces across the same 18 subjects whose EEG/MEG data are con-
sidered here. This furnished three clusters, in right fusiform and 
right lateral occipital cortex, plus a single cluster encompassing 
similar regions on the left. Each cluster gives a vector, q

h
, across 

vertices for the h-th cluster, whose values are the interpolated 
fMRI activation values for each vertex within that cluster, and 
zero otherwise. The corresponding source prior covariance com-
ponent is then:

Q G q qh h h

T
f f( ) ( ) ( )2 = ( )

where G(·) is some matrix function, and f(x) is some scalar “linkage” 
function (linking fMRI activation values, which could be statistic 
values or % signal change, to EEG/MEG prior covariance terms). 
Here, we use a Heaviside linkage function corresponding to f(x) = 1 
for x > 0, and f(x) = 0 otherwise, and G(·) = diag(·) (which puts the 
values of f on the leading diagonal of a matrix), since such simple 
“binary, variance” priors were sufficient for similar data in Henson 
et al. (2010). In other words, the prior variance for all vertices within 
a cluster was equal (regardless of the F-value of the corresponding 
voxels in the fMRI analysis), and the prior covariance between ver-
tices was zero [positive covariance could be introduced by setting 
G(·) to the identity function; i.e., defining covariance components 
by the outer product of f(q

h
)].

An important aspect of this approach to integration of fMRI with 
EEG/MEG is that each fMRI cluster contributes a distinct covari-
ance component; i.e., each cluster can be up- or down-weighted 
by its own hyperparameter, h

( )2  (for further discussion and evi-
dence for this claim, see Henson et al., 2010). This allows for the fact 
that the neural activity giving rise to the BOLD data might not be 
expressed proportionally in E/MEG data. Note that this approach 
is fundamentally different from assuming (ad hoc) fixed values for 
the variance of source activity in these regions (cf, Liu et al., 1998), 
but is functionally similar to having a separate hyperprior for the 
variance (or precision) at each source location, and increasing the 
mean (or dispersion) of that hyperprior for locations corresponding 

two “unimodal” models that effectively discount the other modality 
with an asymmetric noise hyperprior (j

( )1 4= +  and ωj
( ) /1 1 16=  for 

j = 1 or j = 2). See Table 1 for a summary of the different models 
used in this Application.

The resulting free-energies for each of these three models 
– unimodal EEG (MEG discounted), unimodal MEG (EEG dis-
counted) or bimodal EEG + MEG are shown in the leftmost 
panel of Figure 5. In nearly all subjects (shown by lines), the 
bimodal (fused) model has a higher evidence than either uni-
modal model, as confirmed by two-tailed, paired t-tests rela-
tive to unimodal EEG: t(17) = 3.70, p < 0.005, and relative to 
unimodal MEG, t(17) = 2.98, p < 0.01. This advantage of fusion 
was manifest both in improved model accuracy (middle panel), 
one-tailed t > 2.71, p < 0.05, and reduced model complexity 
(rightmost panel), one-tailed t > 1.88, p < 0.05, relative to both 
unimodal models. These results complement and extend our 
previous evaluation of MEG + EEG fusion, where we examined 
the change in the posterior precision of the source estimates 
(Henson et al., 2009a).

The reconstructed sources also show differences between the 
separate and fused inversions (Figure 6A). The mean source power 
across subjects on the MNI cortical surface is similar for all three 
models (see maximum intensity projections – MIPs – inset in the 
top right of each column), with a predominance of power in bilat-
eral occipito-temporal cortex, especially on the right. The reliability 
of this pattern across subjects, as reflected by t-values surviving 
p < 0.001 uncorrected within the MNI volumetric space (the main 
MIPs in each column), were more different across inversions how-
ever, being greater on the left in the case of EEG alone and greater 
on the right in the case of MEG alone. Importantly however, the 
t-values for the bimodal model recovered a bilateral pattern, which 
also spread more anteriorly along the ventral surface of the tempo-
ral lobe (consistent with the fMRI data in Figure 6B). Indeed, the 
maxima in left (−30 −60 −14) and right (+42 −72 −14) fusiform 
survived correction for multiple comparisons across the volume, 
t(17) > 6.40, p < 0.05 corrected. This more plausible source recon-
struction following fusion of EEG and MEG echoes that found 
when using MSP in Henson et al. (2009a).

ApplicAtion 2: AsyMMetricAl inteGrAtion of eeG And MeG dAtA 
with fMri dAtA
The second extension of the basic generative model is to an integra-
tion of MEG and EEG with fMRI (Henson et al., 2010), as shown in 
Figure 7. This corresponds to asymmetric multi-modal integration 
(as distinct from the symmetric integration in the previous section; 
Daunizeau et al., 2005), in the sense that the fMRI data are not fit 
simultaneously with the MEG and EEG data (i.e., do not appear 
at the bottom of the dependency graph in Figure 7), but rather are 
used to define the prior covariance components on the sources (i.e., 
the fMRI data correspond to the third data type, Y

0
, at the top of 

the graph). The reason for this is reviewed later.
To map fMRI data to a (small) number of covariance compo-

nents (Qh>1
2( )  in Figure 7), the typical procedure is to threshold an 

SPM of the relevant contrast of fMRI data to produce a number 
of clusters (contiguous suprathreshold voxels). These clusters 
can then be projected to the nearest corresponding vertices in 
each subject’s cortical mesh. Here the canonical cortical mesh 

6A two-tailed test was used in order to make minimal assumptions about the 
mapping between BOLD and EEG/MEG signals (Henson et al., 2010; though in 
the present data, all three clusters did show a greater BOLD signal for faces than 
scrambled faces). Note also that we are using fMRI priors that are defined by the 
difference between faces versus scrambled faces, yet inverting the E/MEG data after 
collapsing across both faces and scrambled faces (and only contrasting faces versus 
scrambled faces after estimating the sources). This is a subtle but important point 
that we discuss in detail elsewhere (Henson et al., 2007): In brief, this rests on the 
assumption that the generators of the power (within our time–frequency window) 
induced by faces and scrambled faces versus pre-stimulus baseline coincide with 
those that show differences in such power for faces versus scrambled faces. One 
measure of the extent to which this is a valid assumption is the free-energy: if this 
assumption were false, we would not anticipate an increase in free-energy when 
adding the fMRI priors (Henson et al., 2010).
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no longer any maxima that survive whole-brain correction, the 
t-value of the right fusiform maximum with fMRI priors (+40 
−42 −22) increased from 4.21 (without fMRI priors) to 4.68 (with 
fMRI priors). Note also that the mean source energy is not only 
more focal, relative to the model without fMRI priors (inset in 
rightmost panel of Figure 6A), but also more anterior, i.e., “deeper” 
(further from the sensors). This shows how fMRI priors can over-
come the well-known bias of the MMN solution toward diffuse 
superficial source estimates (the reason may be due in part to the 
sparsity afforded by discrete, compact priors, in the same way that 
others have shown how sparse priors reduce the superficial bias 
of L2-norm based inverse solutions; Trujillo-Barreto et al., 2004; 
Friston et al., 2008). Note however that the “sparseness” of such 
fMRI priors will depend on the threshold used to define the fMRI 
clusters (e.g., we would obtain fewer and larger clusters had we 
reduced the statistical threshold)8.

A symmetrical fMRI + E/MEG fusion model?
It is worth noting at this point that one could also consider a sym-
metric version of E/MEG and fMRI integration, one possible exam-
ple of which shown in Figure 9 (see also Luessi et al., 2011). Here, a 
common set of electrical sources (J) generate both the E/MEG and 

to  significant fMRI signal (Sato et al., 2004)7. In other words, each 
fMRI activation locus may, after the hyperparameters have been 
optimized, show a greater or smaller variance than other compo-
nents not based upon fMRI. One important example of this dissocia-
tion between fMRI and electromagnetic activation would be when 
the fMRI data in one or more regions reflects neural activity arising 
before or after the time window of E/MEG data modeled (given the 
much slower dynamics of the BOLD signal). For example, it is pos-
sible that some of the clusters in the present fMRI data reflect neural 
activity that is related to face processing but outside our 100–220 ms 
time window (see Henson et al., 2010, for further discussion). The 
ability of this approach to discount such “invalid” spatial priors has 
previously been demonstrated by simulation (Phillips et al., 2005; 
Mattout et al., 2006).

For real data, the effect of adding the three fMRI source priors 
to the basic MMN prior (the identity matrix Q I1

2( ) = p) on the free-
energy for each combination of sensor-type – EEG data alone, MEG 
data alone, or fused EEG + MEG data – is shown in Figure 8A. 
In nearly all subjects, the addition of the fMRI priors increased 
the free-energy significantly for each sensor-type, resulting in a 
significant improvement on average, t(17) > 3.46, p < 0.005. The 
impact on source reconstruction for the fused EEG + MEG case 
is shown in Figure 6C, where it can be seen that the fMRI priors 
have “pulled” the source energy to the right fusiform region, in 
terms of both the mean source energy on the surface (inset) and 
group-level statistics in volumetric space. Indeed, while there are 

Figure 5 | The bars in the leftmost plot show the mean across subjects of 
the maximized free-energy (F) bound on the model log-evidence (arbitrary 
units) for (1) “unimodal” eeg model (eegu), (2) “unimodal” Meg model 
(Megu), and (3) bimodal “fusion” model (e + Meg). All models explain the 
same concatenated EEG and MEG data (projected to the time–frequency window 
identified in Figure 3), but “unimodal” models have a sensor-level hyperprior with 

a high mean and precision for the other modality, which effectively discounts data 
of that modality as noise (see text). The circles joined by lines show the results for 
each individual subject. The middle and rightmost plots show the two parts of the 
free-energy: the accuracy (Fa) and the model complexity (Fc); see text for details 
(note that these differ by constant terms that not included here). The advantage of 
EEG and MEG fusion is reflected by the increase in F and Fa and decrease in Fc.

7There are important differences between the present approach and that of Sato 
et al. (2004): we optimize covariance components (not precisions), and use fMRI 
to add formal priors (in terms of components) as opposed to modulating the mean 
of the hyperpriors. Our approach does not suppress signal from non-fMRI areas. 
It would be an interesting future project to compare the two approaches formally. 
For present purposes, the similarity of the two approaches is more relevant, in that 
both provide a principled source-specific soft constraint on the reconstruction, ba-
sed on fMRI.

8It is interesting to consider how the effect of fMRI priors might depend on their re-
lative “size” (spatial extent – i.e., number of non-zero elements). In general, their ef-
fect is likely to depend on the data. If the true sources overlap with only one of those 
components, then its hyperparameter is still likely to be greater than those of other 
components, even if those components have a larger spatial extent, unless there is a 
high correlation in the mean gain vectors associated with each cluster of vertices. In 
the latter case, it is possible that “bigger” components will be favored, because their 
hyperparameter estimate can remain smaller (less far from its shrinkage hyperprior 
mean) while still fitting the data as well. The same is likely to apply to covariance 
components with comparable spatial extent, but higher magnitudes of non-zero 
elements (i.e., higher prior variances on the source parameters), as might happen 
for example if the covariance components were a continuous (rather than binary, 
as here) function of the underlying fMRI statistic or fMRI signal.
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(voxel-size) of the fMRI data (relative to the density of the electri-
cal sources modeled). The separate error component for the fMRI 
data can also be relatively simple, e.g., a similar spatial smoothness 

fMRI data. In this case, the (spatial) forward model for the fMRI data 
(L

0
) is relatively simple; e.g., a spatial smoothing kernel that depends 

on the spatial dispersion of the BOLD signal and spatial resolution 

Figure 6 | Maximal intensity Projections (MiPs) in MNi space for increases 
in the log-energy for faces, relative to scrambled faces, within a 100 to 
220-ms, 8–18 Hz time–frequency window. The MIPs inset to the top right of 
each panel show the average increase in this face-related energy across 
subjects for the 512 vertices showing the maximal such increase. The main 
MIPs in each panel represent SPMs of the corresponding t-statistic (thresholded 
at p < 0.001 uncorrected), after interpolating the cortical source energies for each 
subject into a 3D volume. (A) shows (from left to right) the results for inverting 

EEG data alone, MEG data alone, or from fusing EEG and MEG data in the 
“bimodal” model of Figures 4–5. (B) shows the results of the same contrast 
but on the fMRI data (though two-tailed, and at a higher threshold of p < 0.05 
corrected for multiple comparisons). (C) shows the results of inverting EEG and 
MEG data after the addition of three fMRI priors [those in (B)] using the 
generative model shown in Figure 7. (D) Shows the results of group-
optimization of the fMRI priors used in (C), using the generative model shown in 
Figure 10.
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less for fMRI than E/MEG, which means that the fMRI data are likely 
to have the dominant effect on the estimation of the location of 
electrical sources. This likely dominance of the fMRI data therefore 
questions the value of such a symmetric fusion model. Furthermore, 
there are potential problems that arise when electrical sources do 
not produce detectable fMRI signals and vice versa.

One common approach to the different spatial scales of fMRI 
and M/EEG is to make both the fMRI data (Y0) and M/EEG source 
estimates (J) depend on a third, latent variable (e.g., Trujillo-Barreto 
et al., 2001; Daunizeau et al., 2007; Ou et al., 2010). This variable 
can have a spatial prior (e.g., for smoothness, or for sparseness) that 
encourages a common spatial covariance structure across fMRI and 
M/EEG parameters (with possibly different temporal profiles). This 
alleviates the problems associated with having the current estimates 
J generate both the fMRI data and the M/EEG sensor data that is 
depicted in Figure 9. However, the value of such models is still 
unclear when one considers the vastly different temporal resolu-
tions of the two modalities. fMRI data are typically only sampled 
every few seconds, and are themselves the product of a temporal 
smoothing of electrical activity by the HRF. Therefore a full spati-
otemporal multi-modal fusion model would entail a forward model 
for the fMRI data that took into account hemodynamic smoothing. 
This could even take the form of a biophysical model with many 
parameters, based on physiological knowledge of hemodynamics 
(e.g., Sotero and Trujillo-Barreto, 2008). In this situation, there 
would be (temporal) information about the sources in the E/MEG 
data that is not present in the fMRI data. For this additional tempo-
ral information in the E/MEG data to aid estimation of the spatial 

kernel (Flandin and Penny, 2007). Note that the fMRI kernel matrix 
L

0
 would generally have a higher ratio of rows to columns than the 

E/MEG gain matrix L
1
; reflecting the typically greater number of 

fMRI measurements (voxels) than E/MEG measurements (for a 
single time point). In other words, the indeterminacy in the spatial 
mapping from electrical sources to measurements is typically much 

Possible symmetric (M/EEG+fMRI) multimodal fusion model

(0)

,

(1)

(2)C(0)C

...

(2)

(0)
hQ

(0)

(2)
hQ

(1)C(1)

... (1)
hQ ...

(2)C( )C (2)
h

( )
h

0 J

( )C( )
h

10 J

0Y 1Y

1

0L 1L
0 1

M/EEG data1YFixed Variable fMRI data0Y

Source and sensor/voxel space

Figure 9 | A possible symmetric model for fusion of eeg/Meg data and 
fMri data (cf. Figure 7).

Figure 8 | The bars show the difference in the mean across subjects of 
the maximized free-energy bound on the model log-evidence (arbitrary 
units) for two models: with versus without the three fMri priors (A), or 
with versus without group-optimization of those priors (B), for eeg data 
alone, Meg data alone, or the combined eeg and Meg data. The circles 
show values for each subject’s difference. fMRI priors significantly improve 
the mean free-energy, but their group-optimization does not (as expected, see 
text). F(1) refers to the maximal free-energy from the first stage of group-
optimization of the fMRI source hyperparameters, whereas the F(2) refers to 
the maximal free-energy from the second stage of individual inversion of each 
subject when using the group-optimized source prior (see Figure 2).

Asymmetric (E+MEG+fMRI) multimodal integration model
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Figure 7 | The extension of the generative model in Figure 4 to the 
addition of fMri priors (Y0).
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fMRI  priors. Starting with the simple case of one modality, the 
basic idea for group models is to concatenate the data from i = 1…s 
subjects over samples:

A Y A Y A L A L

J

J

E1 1 1 1

1

1
1� … � � … � � …, , , , ,( )

s s s s

s

  =  

















+ ,, ( )Es
1   (9)

This contrasts with the model in Eq. 7 where we concatenated 
over channels. In multi-modal integration, we consider each new 
modality as an additional set of sensors that are picking up signals 
generated by the same sources. For multi-subject integration, the 
sources may be different but are deployed under the same spatial 
priors; because we examine subjects under the assumption that (a 
priori) they have the same functional anatomy. This means each 
subject’s data constitute a separate realization and should be treated 
as a further sample of the same thing. We therefore concatenate 
over samples (analogous to concatenating over multiple trials from 
one subject; Friston et al., 2006). However, to do this we must rea-
lign the subjects’ data so that the effective lead fields are the same 
over subjects. This is achieved by a “re-referencing” matrix, A

i
, that 

projects each subject’s gain matrix to a common or “average” gain 
matrix; i.e., A

i
L

i
 = 〈A

i
L

i
〉 (see also Valdés-Hernández et al., 2009, for 

a related approach). This average is computed with the constraint 
that its preserves the information (on average) in the sensor data:

A L L L A L A LL LLi i i i i i
T Ts t tr n= = = { } =     : . . : max arg | | : ( )

This is a complicated non-linear problem that can be solved 
using recursive least squares and an implicit generalized eigenvalue 
solution (see Figure 2). Clearly, the average lead field cannot neces-
sarily “see” all the data sampled by the original (subject-specific) 
lead fields. Typically about 10% of the data is lost, in the sense it lies 
in the null space of the average lead field. Nonetheless, this form of 
re-referencing is an improvement on that described in Litvak and 
Friston (2008), where all the lead fields were re-referenced to the 
first A

i
L

i
 = L

1
, under the assumption that this was representative of 

the remaining lead fields. The solution above is an improvement in 
the sense that one does not have to assume the first subject’s lead 
field is “representative,” and the re-referencing does not depend on 
which subject is designated as the “first.”

Crucially, although the sources J
i
 are subject-specific, the empiri-

cal source priors are the same. This prior is used in the hope that 
pooling data across individuals will provide extra constraints on 
the hyperparameters (assuming sources are sampled from a spatial 
prior that is common to subjects). If this prior assumption is cor-
rect, the ensuing subject-specific reconstructions should improve 
the consistency of the source localization across subjects (but not 
bias any trial-specific differences at any given location).

In practice, group-optimization entails two stages of hyperpa-
rameter optimization (see Figure 2): In the first stage, the source 
hyperparameters h

( )2  are estimated based using Eq. 9. In the second-
stage, a single weighted combination of the source priors (weighted 
by the hyperparameters estimated in the first stage; S

h
 exp α̂h

(2) (2)( )Qh ) 
is combined with the sensor covariance components, and their hyper-
parameters estimated separately for each subject’s (unreferenced) data 
and gain matrix, as in Eq. 7.

distribution of the sources, or for that matter, for the ability of the 
additional spatial information in the fMRI data to aid estimation 
of the temporal profile of the sources, there would need to be some 
dependency between the spatial and temporal parameters control-
ling the electrical currents in the brain. Unfortunately, there is no 
principled reason to think that there will be strong dependencies 
of this sort, because there is no evidence that the potential range 
of dynamics of electromagnetic sources varies systematically across 
different parts of the brain. If the spatial and temporal parameters 
of forward models are indeed (largely) conditionally independent, 
then the most powerful approach to EEG/MEG and fMRI integra-
tion may be asymmetric: i.e., using EEG/MEG data as temporal 
constraints in whole-brain fMRI models, or using fMRI data as 
spatial priors on the EEG/MEG inverse problem, as considered here.

ApplicAtion 3: Group-optiMizAtion of source priors
The final extension of the basic generative model in Figure 1 is to 
the group-optimization of source priors, as shown in Figure 10. 
For each modality, there are now there are multiple datasets (Y

i
 for 

the i-th subject), each explained by separate source distributions 
(J

i
) with separate error terms (E

i
), but sharing the same priors. 

The estimation of the hyperparameters is therefore optimized by 
pooling data across subjects, as was originally demonstrated using 
several hundred sparse priors (MSP, Litvak and Friston, 2008). 
Here, we apply this optimization to the four source priors in the 
 previous section, comprising the MMN constraint plus the three 

Multisubject fusion model
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Figure 10 | The extension of the generative model in Figure 7 to 
group-optimization of source priors, for i = 1–2 subjects, each with data 
from j = 1–2 modalities.
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priors after inverting each subject’s data separately, using Eq. 7. The 
solid vertical line is the single group-optimized estimate, and the 
dotted line is the hyperprior mean of  = −4. Group-optimization 
not only enforces a consistent ratio of hyperparameter estimates 
across subjects, but can also increase those estimates above the aver-
age without group-constraints. In the case of the lOFA/FFA prior 
(lower left panel), for example, the solid line (group-optimized esti-
mate) is to the right of the central tendency of the histogram of indi-
vidual estimates. Or in the case of the right OFA prior (upper right 
panel), its hyperparameter estimate was effectively shrunk to zero 
for some subjects without group-optimization, but remains close 
to the hyperprior mean (as ˆ .αi = −3 86) with group-optimization. It 
should be remembered that this group-optimization assumes that 
the same set of cortical generators exists in all subjects, i.e., that 
subjects differ only in the overall scaling of this set (as reflected by 
single hyperparameter ˆ ( )i

2  for each subject i in the final stage in 
Figure 2), and in their relative sensor-level noise components (as 
reflected by the hyperparameters ˆ ( )i

1  in Figure 2). If one does not 
wish to make this assumption, then group-optimization need not 
be selected, and each subject inverted separately.

discussion
We have reviewed a theoretical framework called Parametric 
Empirical Bayes (PEB) that we believe offers a natural and power-
ful way to introduce multiple constraints into the inverse problem 
of estimating the cortical generators of EEG/MEG data. Empirical 
Bayes is a general approach afforded by hierarchical formulation 
of linear generative models, which is explicitly or implicitly used 
in many other approaches to the EEG/MEG inverse problem (e.g., 
Baillet and Garnero, 1997; Trujillo-Barreto et al., 2001, 2008; Sato 
et al., 2004; Daunizeau et al., 2007; Wipf and Nagarajan, 2009; Ou 
et al., 2010; Luessi et al., 2011). We have illustrated three applica-
tions of PEB to an example dataset: (1) the symmetric integration 
(fusion) of MEG and EEG data, which entailed common source 
priors (a single MMN prior) but separate modality-specific sensor 
error components, (2) the asymmetric integration of EEG/MEG 
data with fMRI data, in which significant clusters in the fMRI data 
form additional, separate spatial priors on the EEG/MEG sources, 
and (3) the optimization of multiple source priors (in this case 
from the fMRI clusters) across subjects, by re-referencing their 
data and gain matrices to a common source space. The benefit 
of these three applications was apparent in improvements in the 
variational free-energy bound on the Bayesian log-evidence of the 
generative model, and/or improvements in the number or location 
of suprathreshold sources in a statistical comparison of spatially 
normalized source images across subjects.

One advantage of an empirical (hierarchical) Bayesian frame-
work is that the degree of regularization of the inverse solution 
by prior constraints is optimized by virtue of an implicit hier-
archical generative model of the data, rather than being fixed 
in advance. This optimization refers to the estimation of the 
hyperparameters in order to maximize (a bound on) the model 
evidence (for further elaboration, see Friston et al., 2007; Wipf and 
Nagarajan, 2009). So, in the case of the spatial priors from fMRI 
in Application 2 above, rather than assuming a fixed ratio (e.g., 
10%) for the prior variance on sources with and without fMRI 
activations (Liu et al., 1998), the hyperparameter  controlling the 

We can combine multi-modal models (Eq. 7) and multi-subject 
models (Eq. 9), as shown in Figure 10, in order to invert joint 
models of the form (for d modalities and s subjects)
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 [10]

This is the most general form of the model currently supported 
by the Matlab routine spm_eeg_invert.m in SPM8.

The effect of group-inversion of the four empirical source priors 
on the free-energy for each combination of sensor-type is shown 
in Figure 8B. Group-optimization had no significant effect on the 
mean free-energy across subjects. This is expected: constraining 
the weighting of source priors across subjects gives less scope for 
maximizing the model evidence for any single subject (relative to a 
model optimized for that subject’s data alone). Indeed, in a previous 
application to hundreds of sparse priors, Litvak and Friston (2008) 
found a decrease in the mean free-energy after group-inversion. 
Rather, the effects of group-optimization are apparent in the statis-
tical tests of the source estimates across subjects, as is apparent in 
Figure 6D. Though the mean source estimates appear little affected 
(inset in Figure 6D), there are many more voxels with t-values 
that survive thresholding (compared to Figure 6C), including a 
suprathreshold cluster in the left, as well as right, fusiform. In fact, 
group-optimization tripled the number of suprathreshold voxels 
(from 1,104 to 3,162) and increased the maximal t-value (in right 
fusiform) from 4.67 to 5.91.

The effect of group-optimization on the hyperparameters them-
selves is shown in Figure 11. The bars constitute a histogram of the 
hyperparameter estimates across subjects, for each of the four source 

Figure 11 | The hyperparameter estimates ( )(2)̂  for the MMN source 
prior (top left) and three fMri source priors (remaining plots; OFA, 
occipital face area; FFA, fusiform face area; l, left, r, right). The solid bars 
constitute a histogram of estimates across subjects without group-
optimization; the solid line reflects the single estimate after group-optimization 
across subjects; and the dotted line shows their prior expectation (( ) )2 4= − . 
Note the different scale of the x-axis in the top right panel.
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fusion of MEG and EEG data in Application 1 (see Henson et al., 
2009a), or further adjustment of the gain matrices for multiple 
modalities with different sensitivities (Huang et al., 2007); (2) the 
possibility of symmetric fusion of E/MEG and fMRI, as discussed 
in Application 2; and (3) the accuracy of the re-referencing to an 
“average” gain matrix for multi-subject fusion in Application 3. 
Other assumptions are generic to the PEB framework. For exam-
ple, PEB’s assumption of Multivariate Gaussian distributions is 
necessary to express the problem sufficiently in terms of first 
and second-order statistics (i.e., means and covariances). This 
is what makes our approach conform to the class of “L2-norm” 
inverse solutions (as distinct from, for example, “L1-norm” solu-
tions, Uutela et al., 1999). This parametric approach also enables 
analytical tractability and reasonable computational efficiency 
of the matrix operations entailed. Relaxing these Gaussian 
assumptions (e.g., using gamma priors, Sato et al., 2004) may 
require more complex optimization algorithms (e.g., Wipf and 
Nagarajan, 2009), while relaxing the Variational assumption that 
the posteriors factorize may require a full Monte Carlo approach 
to optimization (Friston et al., 2007). Nonetheless, the under-
lying tenet of empirical Bayes; namely the use of hierarchical 
generative models, is clearly central to the development of more 
complex and realistic models of multi-subject and multi-modal 
neuroimaging data.

softwAre note
All the models and inversion scheme used in this work are avail-
able in the academic software SPM810, specifically the “spm_eeg_
invert.m” routine.
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variance of each fMRI prior is estimated anew for each dataset9. 
Furthermore, the ability to estimate multiple hyperparameters 
– i.e., the influence of multiple prior constraints – is an impor-
tant advance on traditional approaches to the EEG/MEG inverse 
problem. Application 2 described one advantage, in the context of 
multiple fMRI priors, when different fMRI priors can contribute 
differently to the EEG/MEG data. In particular, if a subset of the 
fMRI priors reflect neural activity that is not represented within 
the time/frequency window of EEG/MEG data being localized, 
then their hyperparameters should shrink to zero. Another exam-
ple is the use of MSP (Friston et al., 2008), that furnish more focal 
solutions. It is the presence of multiple priors that then offers the 
possibility to optimize the relative value of their hyperparameters 
across subjects, as shown in Application 3.

A further advantage of the PEB framework is that the maximi-
zation of variational free-energy not only optimizes the hyperpa-
rameters, but its maximum also provides an upper bound on the 
model log-evidence. This offers a natural way to compare different 
generative models of EEG/MEG data. It can be used, for example, to 
compare different electromagnetic forward models (Henson et al., 
2009b), or to optimize the number of equivalent current dipoles 
(Kiebel et al., 2008). Its maximization can also be used to optimize 
more specific details of the generative model: For example, to explore 
the choice of the “linkage function” that relates fMRI values (e.g., 
t-statistic or % signal change) to the values in the source (co)variance 
matrices in Application 2 above (Henson et al., 2010). One impor-
tant issue for future further consideration however, particularly with 
many hyperparameters, is the possible existence of local maxima in 
the free-energy cost function (Wipf and Nagarajan, 2009).

There are clearly assumptions in this review that deserve fur-
ther exploration. Some of these are specific to the above appli-
cations: For example (1) the particular type of scaling used for 

9The prior mean and variance of the hyperparameters (the hyperpriors), on the 
other hand, are fixed. Nonetheless, they are based on principled reasons, namely 
to provide weak shrinkage (see, for example, Application 1), and could in principle 
be explored by further maximization of the variational free-energy (see Henson 
et al., 2007). 10http://www.fil.ion.ucl.ac.uk/spm
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