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7. Poor predictive ability. Failure to anticipate picking-up 
by parents (Kanner, 1943), timing of air puffs to eyes 
(Sears et al., 1994), and future position of moving objects 
(Sinha, 2011).

8. Hyper- and hypo-sensitivity to sensory stimuli (Kanner, 1943; 
Volkmar et al., 1986; Oneill and Jones, 1997).

9. Atypical learning. Resistance to conventional training, but 
spontaneous learning of atypical tasks, such as memorizing a 
phonebook (Dawson et al., 2008).

10. Different patterns of generalization in perceptual learning 
(Plaisted et al., 1998), motor learning (Haswell et al., 2009), 
and word-list memory tasks (Beversdorf et al., 2000).

11. Preference of concreteness to abstraction (Kanner, 1943; 
Grandin, 2006).

12. Difficulty in attentional selection or switching (Courchesne 
et al., 1994; Grandin, 2006). Hyper-focus on tasks of interest 
(Robison, 2011).

13. Focus on local features instead of global patterns. Seeing 
“trees” but not “forest.” Superior performance on local tasks. 
Reduced contextual modulation or interference (Frith and 
Happe, 1994; Baron-Cohen, 2002; Happe and Frith, 2006).

14. Impaired recognition of facial emotions and face identity 
(Weeks and Hobson, 1987; Boucher and Lewis, 1992).

IntroductIon
Autism is defined behaviorally. Since Kanner’s (1943) classic paper, 
both psychophysical experiments and case reports have docu-
mented a diverse array of autistic behaviors, ranging from sensory 
perception and motor control, to learning, memory, language, and 
social interaction, and from inferior to superior performances. The 
following is a partial list, starting with the triad used in diagnosis 
(DSM-IV-TR).

1. Impaired social interaction. Apparent more interest in objects 
than people.

2. Impaired communication skills. Rigid and limited use of 
language.

3. Stereotyped behaviors. Repetitive movements, restricted inte-
rests, and insistence on sameness (rituals).

4. Preference of non-social stimuli (such as audio–visual synchrony 
of clapping hands) to social ones (such as eyes, faces, biological 
motion; Osterling and Dawson, 1994; Klin et al., 2009).

5. Easily overwhelmed in social situations or crowded places 
(Kanner, 1943; Grandin, 2006; Robison, 2011).

6. Superior lexical processing of individual words in a pic-
ture naming task (Walenski et al., 2008) but difficulty with 
 grammar (Walesski et al., 2006).
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15. Reduced face-identity aftereffects after face adaptation 
(Pellicano et al., 2007).

16. Impaired motion processing, particularly second-order 
motion and biological motion (Kaiser and Shiffrar, 2009).

17. Better and worse performances on simple and complex tasks, 
respectively, compared with controls (Minshew and Goldstein, 
1998; Bertone et al., 2005; Mottron et al., 2006). Faster learning 
of simple eye-blink conditioning (Sears et al., 1994).

18. Superior absolute pitch judgment (Heaton et al., 1998).

Dozens of autism theories, at levels from anatomy to cognition, 
have already been proposed. Although each has its strengths, 
most theories focus on only a subset of the behaviors and cannot 
explain the majority of them. The lack of a unified account greatly 
impedes efforts to define autism and link its behaviors to under-
lying physiology, anatomy, and ultimately, genetics. Fragmented 
accounts of autistic behaviors sometimes lead to opposite thera-
peutic recommendations.

We propose a theory to explain a wide variety of autistic behav-
iors. Based on the well-known difficulty of training autistic people 
(Dawson et al., 2008), we suggest that autistic and typical brains 
are biased toward different learning styles that are better suited to 
learn different tasks, and consequently, follow different develop-
mental paths. Since learning is intimately linked to development, 
processing, and representation, and occurs in all brain regions, at 
all processing levels, and across all stages of life, this learning-style 
theory matches autism’s pervasive nature. The theory also provides 
a potential link to underlying physiological mechanisms, such as 
altered neuronal selectivity and synaptic plasticity.

theory
Like previous autism theories, our theory is qualitative. Since autis-
tic behaviors range from sensory perception and motor control to 
language and social interaction, quantitative simulations would 
require a plausible neural model for each affected system. While 
future research should aim at this formidable goal, we show in this 
paper that qualitative reasoning in a learning framework logically 
explains most autistic behaviors.

There are many computational learning theories and algorithms. 
Our framework does not depend on a specific theory; rather, it 
depends on a tradeoff between two learning styles. For concreteness, 
we consider a generic supervised learning task of mapping input 
x to output y (Figure 1). Both x and y can be multi-dimensional 
although they are only one dimensional in Figure 1 for easy illus-
tration. For instance, x may represent the neuronal control signals 
for various arm muscles and y the resulting hand displacement 
vector. The goal is to learn the input–output mapping from some 
training examples (dots in Figure 1). Each example means that a 
specific x is known to produce a specific y according to experience.

Lookup tabLe (Lut) vs. InterpoLatIon (Int) styLes of LearnIng
Among other things, learning concerns how well to represent train-
ing examples (dots in Figure 1) and how to handle new cases (gaps 
between the dots). Specifically, learning is about fitting training data 
with “proper” functions that generalize “best” to new data drawn 
from the same distribution as the training examples (Poggio and 
Girosi, 1990). Most machine learning theories analyze the tradeoff 

between the complexity of the fitting functions and the generaliza-
tion performance: more complex functions fit training data better 
but require more training examples to generalize properly (Poggio 
and Girosi, 1990; Shawe-Taylor and Cristianini, 2000). We consider 
a somewhat different tradeoff because biological systems do not 
have complete freedom to choose any fitting functions; instead, 
they rely on neurons’ response properties typically characterized 
by their tuning along various dimensions (space, time, orientation, 
motion, disparity, color, shape, face configuration, control signals, 
etc.). Many cells are jointly tuned to multiple dimensions, and their 
tuning is characterized by high-dimensional surfaces. Learning, 
then, involves combining these tuning surfaces to fit training exam-
ples and interpolate across gaps between training examples for 
generalization (curve in Figure 1; Poggio and Girosi, 1990). This 
maybe done in multiple stages, as in multi-layer neural networks. 
We interpret tuning most generally to include the range of stimuli 
that influence a cell’s response in any way (see Discussion).

We now contrast the two learning styles for our autism theory. 
The interpolation (INT) style uses broad tuning functions to fit the 
training examples and interpolate across gaps between examples 
(Figure 1A). It aims not to represent each training example precisely, 
but to find underlying trends or statistical regularities from training 
data in order to generalize. If training data cluster, then using just one 
tuning function for each cluster is sufficient (Poggio and Girosi, 1990), 
enabling regularity extraction with minimum neuronal resources. In 
contrast, the lookup table (LUT) style of learning aims to store each 
training example precisely, but ignores underlying trends for generali-
zation. One way to do so is to assign a narrow tuning function to each 
training example (Figure 1B). The narrow tuning reduces interference 
between nearby inputs, making it easier to represent individual train-
ing examples precisely, but does not generalize well to gaps between 
training examples. Varying the tuning widths produces a continuum 
of learning algorithms from INT to LUT.

Note that even with broad tuning for INT learning, a multi-
layer network with sufficient units can approximate any continuous 
input–output mapping arbitrarily well (Funahashi, 1989; Girosi and 
Poggio, 1990), and thus can fit any finite training data arbitrarily 
well. However, the INT style emphasizes extracting underlying sta-
tistical regularities from training data without aiming to fit the data 
precisely. First, if training data are noisy (which is often the case), 
then fitting them precisely is a pointless waste of neuronal resources. 

Figure 1 | Schematic illustration of two learning styles. (A) Interpolation 
(INT) learning: broad tuning functions (dashed curves) are combined (solid 
curve) to capture the trend of the training data (dots). (B) Lookup table (LUT) 
learning: narrow tuning functions are scaled (solid curves) to match each 
training datum exactly.
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have a larger-than-necessary number of units/connections. The 
large difference between the narrow tuning and over-fitting ver-
sions of LUT learning can be seen by comparing Figures 1B and 3. 
The former hardly generalizes to gaps between training examples 
and shows little interference among training examples whereas the 
opposites are true for the latter.

We feel that the over-fitting version of LUT learning (Figure 3) 
does not match autistic behaviors well because the impact of 
over-fitting on generalization performance can be eliminated by 
using more training examples (the number grows only linearly 
with a capacity measure called VC dimension; Shawe-Taylor and 
Cristianini, 2000). Indeed, Cohen’s (1994) simulations suggest that 
the difference in generalization performances between his networks 
with and without over-fitting is too small to account for the dev-
astating nature of severe autism (also note the small difference 
between Figures 1A and 3). Additionally, the over-fitting scheme 
has interference between new and old training examples, and may 
not be consistent with autism’s strong memorization of random 
facts (Dawson et al., 2008). Finally, if autistic people used functions 
of larger capacity, then with sufficient training examples they would 
eventually learn any complex task better than controls, which does 
not appear to be true.

In the following, the term LUT learning always refers to the 
narrow tuning version unless otherwise specified.

tunIng wIdth, feature-space dImensIonaLIty, and task 
compLexIty
For many real-world problems, input–output mappings are convo-
luted. For example, the raw visual inputs are luminance values on 
a two-dimensional image, and the output may be face recognition 
of the image. Since large input variations (e.g., different views of 
the same person or different lighting conditions) may correspond 
to the same output and small input variations (e.g., same front 
view of different persons) may correspond to different outputs, the 
mapping cannot be fitted by a simple function. A solution is first to 
project the raw input space into an appropriate input feature space 
where even a linear function can solve the problem (Poggio and 
Girosi, 1990; Shawe-Taylor and Cristianini, 2000). Indeed, inter-
mediate layers of multi-layer neural networks represent feature 
spaces. Biological systems appear to work similarly: neurons along 
the visual hierarchy are tuned to various features (space, time, ori-
entation, motion, disparity, color, shape, face configuration, etc.) 
instead of raw luminance values. Thus, in Figures 1–3, the x axes 
really represent relevant input features instead of raw inputs, and 
the relevant feature set depends on the task.

This raises the possibility that autistic and typical brains might 
learn in different feature spaces or with different efficiency of fea-
ture representations (e.g., explicit features vs. their inner products; 
Shawe-Taylor and Cristianini, 2000). While future work should 
examine this issue in detail, here we focus on an implication of the 
tuning-width assumption above, namely that autistic LUT learning 
and typical INT learning favor low- and high-dimensional feature 
spaces, respectively. Specifically, Fisher information, which bounds 
accuracy of unbiased estimators, scales with the tuning width (w) 
according to:

I wd
F α −2 ,  (1)

Second, after fitting a set of training examples precisely, adding new 
examples will compromise that precision because of interferences 
between the new and old examples through broad tuning functions, 
so that all the examples must be re-trained together. Third, if a task 
permits small errors or can use sensory feedback to correct them, 
then it is not necessary to learn the mapping precisely at a great cost.

In Figure 1, we consider learning a continuous input–output 
mapping. The same discussion applies to classification or categori-
zation tasks, in which INT learning reduces to finding continuous 
decision boundaries to divide the input space into separate catego-
ries (Figure 2). The discussion also extends to unsupervised learn-
ing where input data do not have explicit output labels. Here, INT 
learning clusters or compresses input data based on their statistical 
regularities. In both cases, LUT learning aims to store individual 
training examples precisely without much processing.

Our main hypothesis is that typical and autistic brains are biased 
toward INT and LUT styles of learning, respectively.

over-fIttIng cannot expLaIn autIsm
We explained above a LUT learning style with narrow tuning func-
tions. An alternative is to use functions of larger-than-necessary 
capacity or complexity (Shawe-Taylor and Cristianini, 2000) to 
learn a given task. This results in precise, over-fitting of training 
examples (Figure 3), and may also be regarded as LUT learning. 
A related idea is Cohen’s (1994) assumption that autistic brains 

Figure 2 | Schematic illustration of a categorization task. Only two input 
dimensions (x1 and x2) and two categories (cats and dogs) are shown. INT 
learning finds the decision boundary (curve) as a regularity of the training 
examples (filled and open dots). LUT learning stores precisely the examples 
without extracting regularity.

Figure 3 | Schematic illustration of over-fitting using functions of 
larger-than-necessary capacity. This version of LUT learning cannot explain 
autism (see text) and will not be considered further in this paper.
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 regularity for generalization. A perfect task for autistic LUT  learning 
is to memorize a phonebook. The name–number association in 
a phonebook is precise and context independent, and has little 
regularity for generalization: one cannot interpolate persons A and 
C’ numbers to determine person B’s number. Moreover, narrow 
tuning minimizes interferences between new and old numbers.

In contrast, the LUT style is poor at learning tasks that are con-
text dependent, noisy, flexible, and do contain inherent structure for 
generalization; these tasks are better handled by the INT learning 
style. The broader tuning functions of the INT style cover larger 
scales and encourage using higher-dimensional feature spaces, lead-
ing to more global and context-dependent processing. The INT 
style focuses on extracting underlying regularities from training 
data, and is thus good at learning tasks with regularities. Once the 
regularities are learned, the system can use them to generalize to 
new cases and gain efficiency. The INT style also handles noisy 
training data well because it does not insist on fitting details, which 
could be noise.

Context dependence is a form of statistical regularity. The con-
tour-saliency example above results from the fact that statistically, 
nearby contour segments belonging to the same object boundary in 
the real world tend to align smoothly (Geisler et al., 2001; Sigman 
et al., 2001). This is another reason that the INT style, which extracts 
regularity, shows more context dependence than the LUT style, 
which does not extract regularity.

ImpaIred socIaL InteractIon
The relationships between social situations and proper responses 
are noisy, flexible, and context dependent, and contain underlying 
(albeit fuzzy) regularities for generalization. For example, general 
“rules” govern how people respond when they meet someone, but 
specifics are never precise and depend on context such as whether 
the new person is a casual acquaintance or a potential employer, 
employe, mate, etc. Likewise, when old friends gather, handshakes, 
hugs, pats, etc., are bound to happen, but exactly, say, how tight a 
hug will be, is variable and context dependent. According to our 
theory, these are the relationships that are difficult for the autistic 
LUT style to learn. The LUT style tries to store each social experi-
ence by rote. However, without extracting complex regularities in 
a high-dimensional feature space, LUT learning cannot effectively 
use the stored information to generalize to new, related situations. 
The best autistic people could do is to follow rigidly the memory 
entry that best matches the current situation as a script. Grandin, 
an autistic author, has written about her handling social situations 
better as she gets older because she accumulates more examples in 
her “visual library” and presumably can find a better match to each 
social situation (Grandin, 2006).

Compared with controls, autistic people look at others’ eyes 
much less frequently (Osterling and Dawson, 1994; Dalton et al., 
2005) and have little task-dependent modulation in the brain’s 
gaze areas such as superior temporal sulcus (Pelphrey et al., 2005). 
Part of the reason, according to our theory, is that the relationship 
between gaze direction and intention is hard for autistic LUT style 
to learn. By looking at a baby, a parent, nearby or across the room, 
may pick her up soon or some time later, may feed her or move her 
to a new spot, or may simply check her safety without further action; 
exactly what will happen is variable and depends on the context 

where d is the dimensionality of the feature space (Zhang and 
Sejnowski, 1999). (Fisher information of a single cell scales with 
w−2 but the number of contributing cells scales with wd, Abbott 
and Dayan, 1999.) This result suggests that to maximize Fisher 
information for learning, representation, and processing, narrow 
and broad tuning functions of the LUT and INT styles favor low- 
and high-dimensional feature spaces, respectively. Intuitively, when 
tuning is narrow, using a higher-dimensional feature space does 
not really increase the number of contributing cells, and the sys-
tem is better off coding each dimension separately than coding all 
dimensions combinatorially.

An equivalent conclusion is that LUT and INT styles are better 
at learning simple and complex tasks, respectively. For simple tasks 
involving a single feature (e.g., first-order orientation discrimina-
tion), d = 1 in Eq. 1, and Fisher information is greater for nar-
rower tuning (Zhang and Sejnowski, 1999) of autistic LUT style. 
For second-order orientation discrimination, however, the brain 
has to represent properties (such as texture and contrast modula-
tion) that define the orientation, in addition to orientation itself. 
For even more complex tasks such as face recognition, a much 
higher-dimensional feature space is required (e.g., sizes and shapes 
of eyes, nose, mouth, contours, and spatial relationships among 
them) so that d  1, and Fisher information is greater for broader 
tuning (Zhang and Sejnowski, 1999) of typical INT style. (Note, 
however, that very broad tuning is not desirable based on energetic 
considerations; Zhang and Sejnowski, 1999.)

expLanatIon of autIstIc behavIors
We hypothesize that autistic and typical brains are biased toward 
LUT and INT learning, respectively. The LUT and INT styles may 
be realized, respectively, by narrow and broad neuronal tuning 
functions, and by a strong and weak emphasis on coding training 
data precisely. We now show that by examining the logical con-
sequences of this hypothesis, we can explain the broad array of 
autistic behaviors listed in the Introduction. For the ease of discus-
sion we often consider the extreme case of LUT learning. However, 
we do not imply that every autistic individual has the same set 
of behavioral characteristics of the same severity (see Spectrum 
Nature of Autism).

ImpLIcatIons of the Lut vs. Int styLes of LearnIng
The LUT style is well suited to learn tasks that are local, precise, 
rigid, and contain little inherent structure or regularity for gener-
alization. Its local preference arises for two related reasons. First, 
LUT learning relies on narrower tuning functions and thus covers 
a smaller scale in each affected dimension. Second, narrower tun-
ing favors using a lower-dimensional feature space (see Theory); 
this makes LUT learning more context-independent (thus more 
local) because contexts are included by adding extra dimensions 
to the feature space. For example, the saliency of a contour seg-
ment depends on how it aligns with nearby segments (Werthermer, 
1938; Li, 2000). This context dependence can be represented by 
adding feature dimensions to represent the nearby segments. The 
LUT style also prefers precise, rigid relationships because it aims 
to store training data precisely. Finally, since LUT learning does 
not generalize, it well matches tasks that contain little inherent 
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representation explains autistic people’s literal (Happe and Frith, 
2006) or “logical” (Robison, 2011) use of words. Because of their 
weak learning of grammar and context as regularities for gener-
alization, yet strong memorization of detailed examples, autistic 
people rely on memorized sentences as scripts, resulting in for-
mulaic speech.

Walenski et al. (2008) propose that words and grammar are 
processed by the declarative and procedural memory systems, 
respectively, and that autistic people have a defective procedural 
memory system, and hence impaired grammar. Comparing their 
and our explanations raises the possibility that in a given brain, 
autistic or not, the declarative memory system, which has to store 
random facts, may be more biased toward the LUT style, whereas 
the procedural memory may be more biased toward the INT style. 
However, the declarative system is not just for random facts but 
also for coherent stories with underlying structures. Walenski et al.’s 
(2008) theory predicts that autistic people tell coherent stories nor-
mally because of their intact declarative system. Our theory, in 
contrast, predicts that autistic people’s LUT bias makes it harder 
for them to learn any complex regularity, including structures of 
coherent stories. Relevant experiments appear to support the lat-
ter prediction (Losh and Capps, 2003; Diehl et al., 2006) although 
further studies are needed.

ImpaIred InformatIon compressIon, IneffIcIency, sensory 
overLoad, and overwheLm
Information processed by the brain is often highly redundant, so a 
common processing strategy is to compress information by reduc-
ing redundancies to improve coding efficiency (Barlow and Foldiak, 
1989; Zhaoping, 2006). A prerequisite of compression, however, is 
to discover underlying statistical structure or regularity in the data 
or task. Indeed, regularity is redundancy. Real data often reside on a 
low-dimensional manifold of a high-dimensional raw input space, 
and learning underlying regularity for data compression amounts 
to finding this manifold by properly interpolating training data 
(Roweis and Saul, 2000; Tenenbaum et al., 2000). Moreover, regu-
larity generalizes to new data (drawn from the same distribution 
as the training data), making their representation, and processing 
more efficient as well. Additionally, coordinates of the manifold 
define useful features for learning other tasks such as classification.

Since autistic LUT style is poor at learning regularity, it cannot 
thoroughly compress input information to remove redundancy and 
define useful features, and is thus inefficient and resource intensive. 
The consequent information overload explains why autistic people 
may easily become overwhelmed in social or public places (Kanner, 
1943; Grandin, 2006; Robison, 2011) where there is a wealth of sen-
sory stimulation. Sensory information is both rich and redundant. 
The raw visual inputs, for example, are luminance values sensed by 
millions of retinal cones. This enormous input space, however, is 
highly structured and redundant at multiple levels. At a low level, 
nearby points in space and time tend to have similar luminance 
values because of surfaces in the world. At a high-level, object 
shapes are invariant to changing lighting conditions and retinal 
positions. The typical visual pathway has mechanisms, from retina 
(e.g., center-surround receptive fields) to inferior temporal cortex 
(e.g., relatively position-invariant tuning), to exploit these regulari-
ties and compress information. Autistic LUT style, being poor at 

such as whether the baby is crying or was fed recently. LUT learning 
attempts to store each instance separately and precisely and fails 
to extract the fuzzy, context-dependent relationship between gaze 
direction and intention. In addition, the broad range of spatial and 
temporal scales involved in this relationship is hard for narrowly 
tuned neurons to represent. Other reasons for autistic people’s gaze 
aversion are that face is a complex, dynamic stimulus that may over-
load the inefficient LUT system and that low-dimensional feature 
spaces of the LUT style may not represent subtle facial emotions 
and cues well (see below).

On the other hand, the LUT style can readily learn simple asso-
ciations or correlations, such as those between a tone and an air 
puff to the eye (Sears et al., 1994), and between visual and auditory 
inputs created by clapping hands (Klin et al., 2009), because these 
relationships are precise, reliable, and local in space and time in 
the cited experiments.

Thus, our theory explains why autistic babies attend more to 
visuo-audial synchronies (such as clapping hands) than to socially 
relevant stimuli (such as eyes, faces, and biological motion). The 
standard interpretation is that this early preference of non-social 
to social stimuli places autistic people on a different developmental 
path, and leads to full blown autism (Klin et al., 2009). Our theory 
further suggests that the reason for autistic preference of non-social 
to social stimuli is that most socially relevant relationships hap-
pen to be hard for the LUT style to learn. If a baby cannot learn 
the information in the gaze, then he/she will be less interested in 
looking at eyes, which further reduces his chance of learning the 
information in the gaze.

ImpaIred Language and communIcatIon
It is long recognized that lexical processing of individual words is 
relatively spared in autism (Walesski et al., 2006). Using less fre-
quently used words in a picture naming task, Walenski et al. (2008) 
recently showed that autistic word processing is not only spared 
but also superior to controls. However, autistic people have great 
difficulty learning grammatical rules and context-dependent use 
of words (Happe and Frith, 2006; Walesski et al., 2006). Our theory 
explains these findings. The definitions of individual words are 
largely random associations between words and other words or 
objects in the world. In Walenski et al.’s (2008) experiment, the 
association was between words and pictures. Autistic LUT style can 
learn these associations well because they are fixed and involve little 
generalization. Even for words with multiple meanings, their long 
definitions are not context dependent; their usage in a sentence is.

In contrast, flexible and competent language production and 
understanding require using words in a grammatically correct and 
context sensitive way. The autistic LUT style is poor at extracting 
grammatical rules and context dependence, which are regularities 
hidden in the training examples (e.g., utterances from parents). 
Moreover, low-dimensional feature spaces of the LUT style impair 
context-dependent processing (see above).A recent airline adver-
tisement, “Flights, hotels, wheels and more,” illustrates the point. 
In this context, “wheels” means “cars.” However, a system with LUT 
learning, which stores all the definitions of “wheels” without using 
additional feature dimensions to represent context, would hardly 
be able to pick “cars” as the unique answer. Indeed, cultural, social, 
and situational contexts are all important for language. Poor context 
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their processing by the brain and they appear hard. The incorrect-
ness of common intuition is testified by the fact that off-the-shelf 
software solves math problems better than overwhelming majority 
of people while no state-of-the-art robot remotely approaches visuo-
motor capabilities of an average 3-year old. Second, modern tasks are 
usually more precise and rigid than primal tasks, and in this aspect, 
well match autistic LUT learning. (However, some modern tasks such 
as mathematics involve complex regularities and generalization that 
are beyond precise-rule-based computation. Although people with 
autistic traits of precision and focus have advantages, those with 
severe autism must have difficulty with such tasks.)

over traInIng on noIsy data
Autistic LUT learning aims to store training data precisely. This is 
advantageous when the task is to memorize a phonebook; a single 
digit error will render a phone number useless. However, most 
relationships in sensorimotor processing and social interaction are 
noisy. For example, the same motor command does not produce 
exactly the same movement. The LUT style considers any fluc-
tuations in an input–output mapping as errors to eliminate, in 
a constant, futile effort to chase noise. This leads to over training 
on a limited set of behavioral repertoires (see above), making it 
hard to break the learned habits. For memories stored in recurrent 
networks (Hopfield, 1982), over training produces strong attractor 
states (deep wells on energy landscapes) or state sequences, in which 
the system may be trapped for a long time (repetitive behaviors).

Cohen (1994) first used over training to explain autism, but in 
a neural network with a larger-than-necessary number of units/
connections to overfit data. As noted in the Section “Theory,” the 
over-capacity and over-fitting assumption does not seem to match 
autism well. In our theory, over training is a consequence of the 
LUT style’s insistence on storing fluctuating data precisely with 
narrow tuning functions instead of over-fitting with a network of 
larger-than-necessary capacity.

atypIcaL LearnIng
Autistic people are hard to train in typical social behaviors; yet, 
they spontaneously learn things that typical people consider hard, 
such as memorizing license-plate numbers of parked cars or phone-
books (Dawson et al., 2008). Our theory explains such observations 
 trivially because as noted above, autistic LUT, and typical INT styles 
are better suited to learn different tasks.

Our theory suggests that autistic people’s difficulty of learning 
social behavior is similar to typical people’s difficulty of memoriz-
ing random factual details, such as phone numbers; both arise from 
a mismatch between learning style and task. Intensive, brute force 
training would surely make typical people remember a phonebook 
better but they will never do quite as well as autistic people. In 
particular, although broad tuning functions of the INT style are 
good for learning complex regularities in high-dimensional feature 
spaces, they cause interference between new and old numbers, and 
the old numbers will have to be re-trained constantly. Likewise, 
intensive, brute force training would help autistic people by sup-
plying more examples to match a given situation but they will never 
have the flexibility and efficiency afforded by intricate regularities 
learned by typical people. In Section “Therapeutic Implications,” 
we suggest some alternative training strategies.

learning regularities, must fail to develop some of the mechanisms 
fully, and likely be overwhelmed by sensory overload. Higher-level 
mechanisms may be more affected because cascaded processing 
along a hierarchy may compound and amplify the deficit of LUT 
learning at higher levels.

Moreover, poor compression and inefficient coding must affect 
complex stimuli more than simple ones because complex stimuli 
are information rich. For example, faces, with their many dynamic 
parts, contain more information than oriented bars or gratings. 
Motion stimuli contain more information than static ones. This 
may contribute to autistic people’s difficulty with face and motion 
processing, and indeed with complex stimuli in general. A typi-
cal brain might use dozens of relevant features to compress and 
represent retinal images efficiently whereas an autistic brain might 
extract only a few simple features which cannot capture regularity 
and remove redundancy well, and might have to store images in 
relatively raw forms. Autistic people’s looking away from faces and 
biological motion may be a strategy of reducing information over-
load by using lower-resolution periphery vision. Another reason 
is that the LUT style is poor at learning socially relevant signals in 
these stimuli (see Impaired Social Interaction above).

restrIcted Interest, repetItIve behavIor, resIstance to 
change, and taLents
Although we focused on sensory processing above, the argument 
applies to other brain functions. Language, for example, is redun-
dant at multiple levels from phonology to syntax (Darian, 1979). 
Learning these regularities is far more efficient than memorizing 
a great number of example sentences. In motor control, the rela-
tionship between muscle forces and movements are determined 
by Newtonian mechanics. Learning to approximate this relation-
ship is far more efficient than to storea huge number of example 
movements. By spending too much resource on highly redundant 
information, the LUT style can learn only a limited set of behavioral 
repertoires, leading to restricted interests, limited language abil-
ity, repetitive behaviors, and resistance to change. Autistic people’s 
insistence on repeating the same rituals may be partly a strategy 
of reducing information overload by avoiding new information. 
(Their social anxiety, another consequence of LUT learning (see 
below), must also contribute to this behavior.) The inefficiency 
of the LUT style could further force autistic brains to use low-
dimensional feature spaces for learning and processing.

The above argument does not contradict observations that autistic 
people can memorize random facts, such as phone numbers, and a 
small fraction of them even has special talents in tasks such as calcu-
lating calendar or solving Rubik’s cube (Baron-Cohen et al., 2009). 
First, the information content and computational complexity (and 
thus neuronal resource requirement) for these “modern” tasks are far 
dwarfed by those for relatively “primal” tasks (sensorimotor process-
ing, language, and social interaction). Minsky (1985) summarized 
this counter-intuitive fact as “easy things are hard.” Because primal 
tasks are essential for survival over the long evolutionary history, 
the brain has sophisticated machineries to handle them and they 
appear easy. In contrast, modern tasks (chess, mathematics, physics, 
engineering, programming, drawing as well as calendar calculation 
and Rubik’s cube) impact survival only after the dawn of civilization. 
Consequently, evolution must not have had enough time to perfect 
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90°, autistic subjects produced stronger lateral force than controls. 
This may result from two factors. First, since the 90° test angle was 
identical to that used for training, autistic LUT style better memo-
rizes the required lateral force for this angle. Second, the original 
force field used in training was not applied during testing; instead, 
a force channel clamped movements on a straightline to target, 
regardless of subjects’ lateral force. Since controls could learn the 
new rule (no need to produce a lateral force) better than autistic 
subjects, they produced weaker lateral forces.

Haswell et al. (2009) explained their findings by assuming that 
autistic subjects have a defective internal model that relies more 
on proprioception than vision. Their and our explanations are not 
mutually exclusive. In fact, internal models are a regularity that 
typical people learn to predict sensory consequences of their move-
ments. Autistic subjects are poor at learning regularities and must 
have defective internal models.

context Independence and superIor performance on LocaL 
tasks
As explained above, autistic LUT learning is relatively local and 
context-independent compared with typical INT learning. Thus, 
our theory agrees with the well-known Weak Central Coherence 
theory (Frith and Happe, 1994; Happe and Frith, 2006) and what 
it explains, such as autistic people’s superior performance on local 
tasks due to reduced contextual interference. Indeed, narrow tuning 
of the LUT style may be a physiological cause for autism’s weak cen-
tral coherence. However, our theory contrasts INT learning’s strong 
ability and LUT learning’s weak ability to extract complex regulari-
ties for generalization, and as the rest of this paper shows, explains 
autism’s poor predictive ability, surprises and over-reaction, weak 
adaptation and habituation, sensory overwhelm, impaired selection 
of one among many voices, absolute pitch, etc.; it is not immedi-
ately clear how local focus alone could account for these behaviors.

In our framework, autistic local scale results from narrow, 
 context-independent tuning for the features under consideration, 
and does not always mean spatial scale. For example, for face per-
ception, the scale is not so much determined by sizes of, or distances 
between, face images but by tuning “distances” in a face or facial-
feature space. Thus, our theory predicts that simply reducing spatial 
dimensions of complex stimuli like faces will not alleviate autistic 
people’s difficulty with such stimuli.

Although autistic people’s focus on details affords them supe-
rior performances on local tasks and even helps them extract 
“if p, then q” type of precise, deterministic associations (Baron-
Cohen, 2002), it is disadvantageous in other situations. In vision, 
for example, local information is often ambiguous in specifying 
the world, and context provides the necessary constraints in light 
of the statistical regularities of the world. When an experiment is 
designed in such a way that context interferes with a local task, 
autistic people show an advantage because of their weak context 
dependence. However, under natural conditions, context depend-
ence is essential for statistically sound information processing and 
inference. Irrational fear (e.g., hearing a friend’s accident produces 
fear of imminent danger to oneself; Robison, 2011) may also be 
context ignorance. Indeed, we view many of autism’s such “logical” 
behaviors as failure to take larger, and often complex, statistical 
contexts into account.

poor generaLIzatIon of word-LIst, perceptuaL, and motor 
LearnIng, and some superIor performances
Our theory also trivially explains autistic people’s poor generaliza-
tion of learning to new situations because the LUT style does not 
interpolate training data to generalize (Figure 1B). As discussed 
above, this inability of regularity learning and generalization con-
tributes to many autistic behaviors. Here we explain findings from 
a few learning studies, including superior performances, as reduced 
generalization.

Beversdorf et al. (2000) asked subjects to remember a list of 
words read to them, e.g., thread, pin, eye, sewing, sharp, point, prick, 
thimble, etc. They then read subjects another list, e.g., thread, pie, 
needle etc., and subjects had to report whether each word was on 
the first list. The target words on the second list were those that were 
not on, but semantically related to, the first list (e.g., needle). They 
found that autistic subjects had fewer false reports than controls on 
the target words. Our theory explains this superior performance as 
reduced generalization in the semantic space. Typical INT learn-
ing clusters words of related meanings in the semantic space; this 
form of regularity extraction and generalization facilitates common 
use of language but leads to false reports in this particular task. In 
contrast, autistic LUT learning does not generalize and thus shows 
less interaction among related words.

Plaisted et al. (1998) trained subjects to discriminate a pair of 
visual patterns (trained pair). Both autistic and control subjects 
improved their performances with training sessions. They then 
tested subjects’ discriminability on two new pairs of patterns (test 
pairs). The first test pair was similar to the trained pair, and the 
second test pair was more different. For control subjects, learn-
ing the trained pair transferred positively and negatively to the 
first and second test pairs, respectively, whereas for autistic sub-
jects, neither positive nor negative generalization occurred, as 
predicted by our theory. Plaisted et al. (1998) emphasized that 
autistic subjects performed better than controls for the second 
test pair. We explain this superior performance as reduced nega-
tive generalization.

As an aside, we note that the controls’ specific pattern of trans-
fer is explained by Teich and Qian’s (2003) perceptual-learning 
model with typical tuning widths (see their Figure 7B). Although 
that model concerns orientation, the idea is generally applicable: 
learning changes neuronal tuning by shifting resources toward the 
trained pair to improve their discrimination. When the tuning func-
tions are broad, this resource shift affects similar stimuli positively 
and more different stimuli negatively. However, if the tuning is very 
narrow, as we assume for autistic LUT style, then learning is local 
in the feature space with neither positive nor negative transfer to 
other stimuli.

Haswell et al. (2009) studied motor learning in a force field 
perpendicular to movement direction. Both autistic and control 
subjects learned to produce a lateral force to counter the force field, 
in the left workspace. The angle between the movement direction 
and the forearm orientation (movement-to-forearm angle) was 90° 
during training. Subjects were then tested in the right workspace. 
When the movement-to-forearm angle was 135°, autistic subjects 
produced little lateral force compared with the controls. We explain 
this finding as autistic subjects’ poor generalization to the new 
configuration. However, when the movement-to-forearm angle was 
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The impairment from poor prediction is not limited to the time 
dimension. Failure to extract regularities of faces and to use efficient 
predictive face coding, for example, means that autistic people have 
difficulty with face processing. This argument applies to any tasks 
and stimuli that benefit from prediction.

Kanner (1943) described two autistic children who showed 
signs of poor predictive ability. For one, he wrote: “The mother 
recalled that he was never observed to assume an anticipatory 
posture when she prepared to pick him up.” For the other, he 
wrote: “The mother, in comparing her two children, recalled that 
while her younger [typical] child showed an active anticipatory 
reaction to being picked up, Richard had not shown any physi-
ognomic or postural sign of preparedness.” Social disinterest 
or anxiety may also contribute to these observations. However, 
according to our theory, autism’s social difficulty itself derives 
from the LUT style’s poor ability to learn, predict, and generalize 
in social situations.

Weak predictive ability might also contribute to autistic chil-
dren’s sometimes dangerous behaviors; perhaps they could not fully 
anticipate serious consequences of certain actions, such as running 
their heads into walls or wandering off alone. Poor prediction of 
bodily movements and sensory consequences of such movements 
might even contribute to their weak sense of body boundary and 
ownership (Kanner, 1943).

Another function of prediction is to fill in missing informa-
tion. For example, when a saccade target disappears before the 
saccade, predictive reverberating activities of parietal neurons keep 
the target location in memory and guide the saccade to it (Gnadt 
and Andersen, 1988; Colby and Goldberg, 1999). Thus, autistic 
people’s impaired predictive ability means impaired filling-in of 
missing information for perception and action.

hyper- and hypo-sensItIvIty, surprIses, anxIety, and weak 
habItuatIon and normaLIzatIon
At one moment, a touch or noise may make autistic people 
scream or jump; at another moment, they may not respond to 
calling of their names, and act as if the rest of the world did 
not exist (Kanner, 1943; Volkmar et al., 1986; Oneill and Jones, 
1997). Such unusual reactions to sensory stimuli that are neither 
exceedingly strong nor weak have been referred to as hyper- and 
hypo-sensitivity. Hence the term “sensitivity” can be misleading 
because psychophysically, sensitivity refers to either the detection 
of weak stimuli (detection threshold) or the discrimination of 
very similar, but not weak, stimuli (discrimination threshold). 
Importantly, autistic hyper- and hypo-sensitivity, at least as origi-
nally described by (Kanner, 1943), concern neither detection of 
weak stimuli nor discrimination of similar stimuli; rather, they 
are about over and under reactions to stimuli that are typically 
super-detection-threshold and not subjected to fine discrimina-
tion. Therefore, although comparing detection or discrimination 
thresholds between autistic and typical populations is interest-
ing in its own right (see Superior and Inferior Performance on 
Simple and Complex Tasks), finding differences does not fully 
explain hyper- or hypo-sensitivity. Indeed, standard perceptual-
learning paradigms greatly reduce these thresholds in typical 
subjects (Gilbert, 1994; Matthews et al., 1999) without mak-
ing them clinically hyper-sensitive. For example, when typical 

ImpaIred attentIonaL seLectIon and swItchIng
Voluntary, top-down attentional selection of a stimulus, and switch-
ing among different stimuli, are important mechanisms that direct 
neural resources to the most relevant information while filtering 
out irrelevant one. The best known example is the cocktail party 
effect: typical people can engage in one conversation while ignor-
ing the rest, and switch conversations when desired. Autistic peo-
ple have difficulty with such attentional selection and switching 
(Courchesne et al., 1994; Grandin, 2006).

Our theory explains this impairment. A prerequisite of atten-
tional selection and switching is to separate different sources of 
stimulation (e.g., voices of different people) according to their 
distinct statistical regularities (e.g., by maximizing independence 
between separated components; Bell and Sejnowski, 1995). Autistic 
people’s LUT style cannot extract regularities, and consequently 
cannot separate different sources of stimulation. They have to either 
listen to all voices as an incomprehensive jumble or suppress them 
all. Their hyper-focus on a single task may help them suppress 
incomprehensible stimuli (Robison, 2011).

Poly-sensory cells in the brain receive inputs from different 
sensory modalities (Andersen et al., 1997). If high-level attention 
mechanisms rely on these cells but the mechanisms in autism can-
not separate spiking inputs from different modalities based on their 
different firing statistics, then autistic people may also have dif-
ficulties with attentional selection and switching among different 
modalities. Moreover, sensory overload in one modality may impair 
attentional processing in another modality.

Another contributor to autistic people’s attention deficit is their 
poor predictive ability (see below) because prediction is a mecha-
nism for attention (Colby and Goldberg, 1999; Rao, 2005).

poor predIctIve abILIty
Prediction is regularity-based generalization. For example, after 
observing enough moving objects, one understands momentum 
and can extrapolate to predict the position of a moving target in 
the near future. Similarly, after seeing enough human faces, one can 
generalize (and predict) that human faces all have similar parts in a 
nearly fixed spatial layout. Prediction not only affords quicker and 
more accurate reaction but also more efficient neural coding. For 
example, after learning the common face structure, the brain can 
store an average face and encode individual faces only as deviations 
from the average (Leopold et al., 2001, 2006). This is more efficient 
than encoding individual faces fully.

Autistic LUT style is poor at learning regularities, and there-
fore has poor predictive ability. In particular, narrow tempo-
ral tuning means that LUT learning operates over a short time 
scale, and cannot extrapolate well to predict the near future. 
It is better at learning correlations of events that happen at 
nearly the same time such as visuo-audial synchrony of clap-
ping hands (Klin et al., 2009). Thus, our theory explains why 
autistic people fail to anticipate the timing of the air puff to their 
eyes (they blink too soon; Sears et al., 1994), and why they fail 
to anticipate future positions of moving objects (Sinha, 2011). 
A related possibility is that autistic brains may rely more on 
correlational Hebbian learning than predictive spike-timing-
dependent plasticity (Dan and Poo, 2004) as the latter is better 
at learning temporal structures.
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people adapt or habituate to such stimuli because INT learning 
predicts their persistence and discount them. This discounting 
dynamically adjusts detection thresholds to reduce or mask unim-
portant background stimulations. In contrast, autistic LUT style’s 
short time scale and poor regularity learning mean weak predictive 
normalization of sensitivity, and consequently, weak adaptation or 
habituation to constant stimulations.

Our theory suggests that anxiety and fear are consequences of 
autistic LUT learning, rather than causes of autism. This may help 
resolve conflicting reports on amygdala response to faces (Baron-
Cohen et al., 1999; Dalton et al., 2005). On the one hand, autistic 
people’s poor prediction of social situations produces anxiety and 
fear when viewing faces, and thus increased amygdala activation. 
One the other hand, their poor recognition and categorization of 
complex stimuli such as facial emotions predicts reduced amyg-
dala activation. The balance of these two factors may lead to either 
hyperactivity (Dalton et al., 2005) or hypoactivity (Baron-Cohen 
et al., 1999) of amygdala.

poor predIctIve code and abnormaL braIn actIvItIes
The notion of predictive coding, which is related to redundancy 
reduction discussed above, posits that if a system predicts a stim-
ulus based on statistical structure of natural world or recent 
experience, it only needs to encode the deviation of the actual 
stimuli from the prediction (Mumford, 1992; Rao and Ballard, 
1999). Both low- and high-level brain areas appear to use pre-
dictive coding (Barlow and Foldiak, 1989; Leopold et al., 2006; 
Zhaoping, 2006). Good prediction is a form of normalization 
that reduces the required dynamic range of coding and conse-
quently, the range of neuronal responses (Albrecht and Geisler, 
1991; Heeger, 1992). Thus, our theory predicts that compared 
with typical brains, autistic brains respond more strongly to 
stimuli because their poor predictive ability fails to normalize 
neural responses. On the other hand, in perceptual filling-in 
phenomena, our theory predicts that cells tuned to the location 
of the missing inputs are more active in typical brains than in 
autistic brains because the former predict and fill in missing 
inputs whereas the latter do not.

The Imbalanced Excitation–Inhibition theory proposes that 
autistic brains have excess excitation, which lowers sensory detec-
tion thresholds and amplifies sensory responses (Hussman, 2001; 
Rubenstein and Merzenich, 2003). The theory is partly motivated 
by the fact that a fraction of autistic people has epilepsy and an 
even higher fraction has abnormal EEGs, although the causal link 
between epilepsy and autism is weak (Tuchman and Rapin, 2002; 
Levisohn, 2007).This theory and our theory differ in that we attrib-
ute abnormal brain activities to poor predictive coding of autistic 
LUT learning, which may lead to both increased and decreased 
neural activities.

preference of objects to peopLe
Since autistic LUT style prefers precise input–output mappings, 
this emphasis on precision, combined with the uncertainty inflicted 
by their poor prediction, suggests that autistic people favor rela-
tively predictable and precise events and tasks. Consequently, they 
like to play with objects, which are more predictable, instead of 
with people, which are less predictable particularly for autistic 

subjects are trained to reduce their orientation discrimination 
thresholds drastically, they do not become over-reactive to the 
trained orientations.

Our explanation of autistic hyper-sensitivity relies on the 
simple fact that everyone can be startled by, and overreact to, 
unexpected noise, touch, etc. For typical people, unexpected 
stimulation is relatively infrequent and brief because their INT 
learning extracts regularities from sensory, motor, and social 
experiences, and uses these regularities to predict and anticipate 
roughly what will happen over various time scales. For example, 
they expect loud noise when seeing a hammer, but not a pillow, 
failing. They anticipate a hug when a friend is approaching with 
open arms. Even when they did not notice someone by the door, 
the first knock may startle them but the subsequent knocks do 
not because they anticipate more than one knocks. The onset of 
a vacuum cleaner may surprise them but they quickly predict that 
the noise will persist for a while and adapt to it. If it is not raining 
now, they do not expect rain soon. Thus, for typical people the 
world is reasonably predictable particularly in the near future, 
punctuated only by brief surprises.

In contrast, autistic LUT learning is poor at extracting regu-
larities and thus poor at prediction and anticipation. To autistic 
people, then, a friendly hug may feel like a surprising squeeze, and 
noise from routine events may be largely unexpected and scary. 
Consequently, they are frequently frightened by stimuli from the 
world and overreact. This explains hyper-sensitivity.

This reasoning extends to most daily events. For example, typical 
people use prior speaking experiences to anticipate new presenta-
tions; otherwise, every presentation would be as nerve racking as 
the first. Thus, autistic people’s weak predictive ability must make 
many daily events more frightening to them than to typical people. 
This may contribute to their high level of social anxiety or fear 
(Kanner, 1943; Gillott et al., 2001).

We speculate that as a defense against constant surprises from 
the world, as well as against overwhelming sensory stimulation and 
inability of attentional selection and filtering (see above), autis-
tic people may suppress stimuli for long periods of time, possibly 
explaining their hypo-sensitivity.

Some anecdotes appear to support our notion that hyper-sensi-
tivity primarily arises from poor prediction. Kanner (1943) wrote 
about an autistic child: “Another intrusion comes from loud noises 
and moving objects, which are therefore reacted to with horror… 
Yet it is not the noise or motion itself that is dreaded… The child 
himself can happily make as great a noise as any that he dreads and 
move objects about to his heart’s desire.” For another autistic child, 
he wrote: “He does not want me to touch him…but he will come 
and touch me.” Our interpretation is that self-generated noise and 
self-initiated touch are relatively more predictable and thus less 
surprising. Grandin (2006) wrote that she hates hugs from people, 
yet, she craves touch so much that she built a machine to squeeze 
herself with pressure precisely controlled by herself. Again, our 
interpretation is that self-controlled squeeze is relatively predictable 
and thus no longer frightening.

Our theory further suggests that poor adaptive adjustment 
(normalization) of detection thresholds contributes to autistic 
hyper-sensitivity to constant stimuli, such as background noise in 
an airplane and skin pressure from clothes (Robison, 2011). Typical 
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if LUT learning wastes resources to encode individual faces  fully, 
rather than deviations from an average face, then fewer resources 
will be available to represent differences among faces or subtle, 
complex changes in a face.

Our theory predicts that autistic LUT learning prefers 
 low-dimensional feature space because its narrow tuning func-
tions do not benefit from high-dimensional combinatorial cod-
ing. Although formal tests are needed, an anecdote supports this 
prediction. Grandin (2006) wrote that she initially used size to 
classify cats and dogs, but after her neighbor got a small dog, 
she switched to using nose shape. The dimensionality of her 
feature space for this task appears to be one. (Her description 
also suggests that high-functioning autistic people can learn 
and generalize simple rules in a low-dimensional feature space.) 
Obviously, complex tasks require multiple features simulta-
neously (Shawe-Taylor and Cristianini, 2000). In Figure 2, 
each feature alone cannot classify the data as well as the two 
features combined.

Many socially relevant signals are subtle and best represented by 
a combination of many features. For example, a frown in a face is 
not a size change of a facial part but a coordinated change of many 
facial parts and their relative relationships. Thus, autistic people’s 
preference of low-dimensional feature spaces must contribute to 
their difficulty to pick up subtle social cues.

Autistic people’s superior and inferior performances on sim-
ple and complex tasks pose a challenge to many other autism 
theories. For example, the Imbalanced Excitation–Inhibition 
theory posits that excess excitation adds noise to the brain 
(Rubenstein and Merzenich, 2003); this predicts impaired 
performances for all tasks that use supra-detection-threshold 
stimuli (so that stochastic resonance is irrelevant (Gong et al., 
2002)). On the other hand, if excess excitation boosted neuronal 
responses without changing tuning functions or Fano factors, 
then autistic people would have superior performance on all 
tasks because the ratio of mean response to noise SD increases 
with the mean response. In contrast to the notion of excess exci-
tation, Bertone et al. (2005) argue that an excess recurrent inhi-
bition in autism sharpens orientation tuning, which improves 
orientation discriminability (Regan and Beverley, 1985; Teich 
and Qian, 2003). However, this sharpening in one-dimensional 
orientation space alone cannot explain why autistic people per-
form worse on  complex tasks.

concreteness
Various case reports suggest that autistic people think concretely 
instead of abstractly. Grandin (2006) wrote that whenever she hears 
the word “cat,” she always has a vivid, detailed image of her first pet 
cat, and then the second pet cat, etc.; typical people are more likely 
to have an image of a generic or conceptual cat without much detail. 
Kanner (1943) wrote about an autistic child who “can set the table 
for a number of people if the names are given her or enumerated in 
any way, but she cannot set the table ‘for three.’” For another autistic 
child, he wrote: “When asked to subtract 4 from 10, he answered 
‘I will draw a hexagon.’”

Our theory explains this concreteness. Recall that autistic LUT 
learning stores individual examples precisely without extracting 
underlying regularities. For example, autistic people may store the 

people (see above). Moreover, because of the sensory overload 
caused by inefficient coding and poor attentional selection (see 
above), they must prefer objects of relatively simple and predict-
able configurations. On the other hand, every person, autistic or 
not, seeks interesting stimuli which are usually complex. Objects 
such as trains, bridges, and spinning wheels that autistic people 
are attracted to may represent interesting stimuli that their LUT-
biased system can manage.

In this aspect, our theory is closely related to the Deficient Arousal 
Modulation theory of Dawson and Lewy (1989), who propose that 
autistic people have a lower tolerance to aversion induced by unpre-
dictability and complexity. They argue that objects are predictable 
and simple whereas people are not, and therefore autistic people 
gravitate toward objects. Our theory further suggests that autistic 
people’s aversion of unpredictability and complexity is attributable 
to LUT learning’s insistence on precision, poor predictive ability, 
and inefficient coding.

superIor and InferIor performance on sImpLe and compLex 
tasks
Compared with controls, autistic people show superior and inferior 
performances on simple and complex tasks, respectively (Minshew 
and Goldstein, 1998; Mottron et al., 2006). For example, their dis-
crimination of first- and second-order orientations is better and 
worse than controls, respectively (Bertone et al., 2005). Similarly, 
their processing of first-order motion may be intact, but they show 
deficits in processing second-order motion and biological motion 
(Kaiser and Shiffrar, 2009). They also have impaired recognition 
of facial emotions and face identity (Weeks and Hobson, 1987; 
Boucher and Lewis, 1992). It has been proposed that autism is 
a disorder in complex information processing (Minshew and 
Goldstein, 1998; Mottron et al., 2006), but the underlying mecha-
nism is unclear. Our theory provides a mechanism. As we explained 
following Eq. 1 in the Section “Theory,” narrow and broad tuning 
functions for autistic LUT and typical INT learning favor simple 
and complex tasks that require low- and high-dimensional feature 
spaces, respectively.

Intuitively, for a given cell, narrower tuning better specifies 
stimuli but covers a smaller stimulus range whereas broader tun-
ing is less specific but covers a larger stimulus range. Equivalently, 
for a population of narrowly tuned cells, only a small number 
of them respond to a given stimulus but each cell carries a large 
amount of information, whereas for a population of broadly 
tuned cells, a large number of them respond to a given stimulus 
but each cell carries a small amount of information. The weight-
ing of these factors depends on the dimensionality of the feature 
space in which the tuning functions are considered (Abbott and 
Dayan, 1999; Zhang and Sejnowski, 1999). When a d-dimensional 
tuning function is narrowed by a factor k in every dimension, 
the volume of the feature space it covers decreases by a factor kd, 
and so does the number of cells contributing to a given stimulus. 
Consequently, for complex tasks or stimuli that require a high-
dimensional feature space, the narrow tuning of autistic LUT 
style is disadvantageous.

Another factor is that as noted above, autistic LUT learning does 
not compress highly redundant input information, an inefficiency 
that affects complex stimuli more than simple ones. For example, 
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absoLute pItch and absoLute vs. reLatIve judgments
We are much better at making relative judgments (e.g., point A 
is closer than point B) than absolute judgments (e.g., point A is 
5.12 m away). The reason may be that relative relationships better 
reflect useful regularities of the world. For example, the absolute 
distance of an object varies greatly with the observer’s locomo-
tion whereas the relative depth orders between parts of an object 
are more invariant and define the object shape. Similarly, absolute 
pitch, pace, and loudness of a person’s speech does not carry as 
much information as modulations relative to the means (prosody), 
which convey emotion, emphasis, sarcasm, etc. Thus, typical brains 
must devote more resources to encode relative than absolute quan-
tities. It is also more efficient to encode small, relative values than 
to encode large, absolute values (analogous to the earlier discussion 
of predictive face coding).

Autistic LUT style is poor at learning regularities, and thus 
may not emphasize relative over absolute coding as much as typi-
cal INT style. Consequently, autistic people must have a stronger 
tendency to code absolute quantities, which explains their better 
absolute pitch ability (Heaton et al., 1998). Also note that pitch 
is a simple feature and narrow tuning of autistic LUT style may 
have an advantage in coding it precisely (see above). As for rela-
tive judgments, autistic people should do better than controls 
for simple stimuli by comparing precise absolute estimations, 
but worse for complex stimuli which overload their inefficient 
system and are not well represented by their low-dimensional 
feature spaces.

In the limit of very narrow tuning, cells act as labeled lines for 
the narrow range of stimulation they respond to. Therefore, acti-
vation of a specific set of cells directly reports the absolute value 
of stimulation. Broad tuning functions can also make absolute 
estimations. However, with broad tuning, a stimulus activates a 
response distribution in many cells and additional steps (such as 
Bayesian inference or maximum likelihood estimation) are needed 
to compute absolute values. Thus, absolute judgments may be easier 
with narrow than with broad tuning.

experImentaL tests of our theory
The theory’s most direct prediction is that autistic and typical 
brains are biased toward LUT and INT styles of learning, respec-
tively. This can be tested by training subjects on random (but 
fixed) association tasks and tasks with hidden, underlying rules. We 
predict that compared with age- and IQ-matched controls, autistic 
people do better on the former tasks but worse on the latter tasks 
particularly when the rules are complex or noisy. Importantly, 
this prediction does not depend on whether or not the tasks have 
social relevance. In fact, it is best to use non-social tasks (e.g., learn-
ing visual categorization of shapes) to avoid potential confounds 
from autistic and typical subjects’ different developmental and 
intervention histories.

Another test concerns coding efficiency. After learning complex 
hidden rules for a task, controls can apply the rules rather than 
memorize individual examples. Autistic people, however, cannot 
learn complex rules well and try to store specific examples. We 
thus predict that increasing the number of examples will not affect 
controls (after they have learned the rules) but will increasingly 
burden autistic subjects and slow their learning.

details of specific animals they encounter together with labels “cat,” 
“dog,” etc., but they are poor at learning regularities that define cats, 
dogs, etc. as categories, which are regularity-based abstractions of 
large numbers of individual examples (Figure 2). Likewise, num-
bers are abstractions of real-world counting examples. Since the 
LUT style cannot learn regularities that enable abstraction, autistic 
people must resort to specific, concrete examples.

In contrast, typical INT learning extracts regularities from 
specific examples, and these regularities define abstractions such 
as categories and numbers. Since coding regularities/abstractions 
are far more efficient than coding a large number of individual 
examples, INT learning deemphasizes coding details of individual 
examples unless there is a need to do so.

Language facilitates abstract thinking and communication. 
Even “concrete” words such as “exhausted” are really abstractions 
of many related instances. Autistic people’s poor ability of abstrac-
tion may contribute to their language problems and their preference 
of “thinking in pictures” to thinking in language (Grandin, 2006).

weak face-IdentIty aftereffect after face adaptatIon
Compared with controls, autistic people show a much weaker 
face-identity aftereffect after face adaptation (Pellicano et al., 
2007). Our theory offers a few related explanations. First, adapta-
tion to a stimulus provides a temporal context for subsequent test 
stimuli, and in this sense, aftereffects are contextual effects. The 
LUT style’s narrow temporal tuning limits temporal context and 
weakens aftereffects. Second, for controls the largest aftereffects 
usually occur for stimuli somewhat different from the adaptor. 
For example, orientation tilt aftereffect is largest for test orien-
tations about 15° away from the adapting orientation (Mitchell 
and Muir, 1976), which can be explained by typical orientation 
tuning widths (Teich and Qian, 2003).When the tuning is nar-
rower, however, the largest aftereffects will be not only closer to the 
adapting stimulus, but also smaller in magnitude because narrow 
tuning limits peak shifts of neuronal population responses, which 
are responsible for aftereffects. Therefore, narrow face tuning of 
autistic LUT learning may contribute to the small face-identity 
aftereffect.

Third, as mentioned before, face processing requires a high-
dimensional feature space. Consequently, normal face-identity 
aftereffect may result from adaptation in multiple dimensions of 
feature space. Since narrow tuning of autistic LUT learning favors 
a low-dimensional feature space (see Theory), fewer dimen-
sions contribute to autistic face-identity adaptation and hence a 
smaller aftereffect.

It has been shown that there are both local and holistic compo-
nents in face representation (Xu et al., 2008). The former concerns 
individual face parts whereas the latter involves non-linear com-
binations of the parts. The finding of autistic people’s impaired 
holistic face processing (Joseph and Tanaka, 2003) suggests that 
they may indeed use a very low-dimensional feature space that 
focuses on one or two face parts. This predicts that adaptation to 
relevant face parts should account for most of their face adapta-
tion aftereffect.

Finally, prediction is a mechanism for adaptation (Grzywacz 
and de Juan, 2003). Thus, autistic people’s poor predictive ability 
implies reduced adaptation and habituation (see above).
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than a lack of social interest, per se. Because of their poor  regularity 
learning and generalization, but good memorization of specific 
examples, autistic people rely on recalling the memory entry that 
best matches the current situation, resulting in rigid social behavior 
and formulaic language (Kanner, 1943). Similarly, without learning 
regularities that define categories and concepts abstractly, autistic 
people rely on specific examples and appear concrete (Kanner, 1943; 
Grandin, 2006). Reduced generalization also explains their perfor-
mances, including some superior ones, in word-list (Beversdorf 
et al., 2000), perceptual (Plaisted et al., 1998), and motor learning 
tasks (Haswell et al., 2009).

Context dependence in sensorimotor processing, language, 
and social interaction arises from statistical regularities in these 
domains. Thus, autistic people’s poor regularity learning impairs 
their context dependence. Their narrow tuning and consequent 
low-dimensional feature space further limit their ability to cover 
large scales or use extra dimensions to represent context. Context 
independence leads to stereotyped social behavior, literal interpre-
tation of language, and poor sensory processing and motor con-
trol. It also leads to superior performance of local tasks because of 
reduced contextual interference (Frith and Happe, 1994; Happe and 
Frith, 2006). Autistic LUT learning’s low-dimensional feature spaces 
also explain their poor performances on complex stimuli and tasks 
that require more feature dimensions (Minshew and Goldstein, 
1998; Mottron et al., 2006).

By ignoring regularities in training examples, LUT learning 
stores information in relatively raw forms without adequate com-
pression to remove redundancy, and is thus inefficient, resource 
intensive, and easily overwhelmed by information overload 
(Kanner, 1943; Grandin, 2006; Robison, 2011). Consequently, 
given fixed neuronal resources, the algorithm can only learn a 
restricted set of behavioral repertoires. Moreover, the algorithm 
insists on learning noisy mappings precisely, and this over train-
ing on a limited set of behaviors makes the system harder to break 
acquired habits to learn new ones. Additionally, a system with 
LUT learning cannot easily select one among many sources of 
stimulation (Courchesne et al., 1994; Grandin, 2006) because 
a prerequisite of such attentional selection is to separate dif-
ferent sources according to their distinct statistical regularities. 
Furthermore, since prediction is regularity-based generalization, 
LUT learning implies poor predictive ability, resulting in surprises, 
over-reaction (hyper-sensitivity), anxiety, and fear (Kanner, 1943; 
Volkmar et al., 1986; Oneill and Jones, 1997; Gillott et al., 2001). As 
a defense against surprises, as well as against sensory overwhelm 
and impaired attentional selection, autistic people may suppress 
stimulation (hypo-sensitivity) and prefer relatively predictable 
situations (Dawson and Lewy, 1989).

The spectrum nature of autism can be explained by different 
degrees of LUT learning among different individuals and in differ-
ent dimensions of the same individual. High-functioning autistic 
people must be able to learn and generalize relatively precise, low-
dimensional regularities using limited INT learning.

reLatIonshIps between our theory and prevIous theorIes
Our theory is related to, but distinct from, previous theories. 
For example, LUT learning’s local focus is related to the Weak 
Central Coherence theory (Frith and Happe, 1994; Happe and 

Our theory hypothesizes that autistic LUT learning has a stronger 
emphasis on storing training data precisely than does typical INT 
learning. This can be tested in the random association tasks above 
by asking subjects to reproduce the training examples, and examine 
whether autistic subjects are more precise than controls.

Our theory predicts that typical INT and autistic LUT learn-
ing lead to strong and weak adaptation aftereffects, respectively. 
Pellicano et al.’s (2007) face experiment already supports this pre-
diction but the result should hold for other stimuli instead of face 
specific. A related prediction is that autistic people show weak adap-
tive normalization of detection thresholds as a function of back-
ground stimulation because of their impaired predictive coding.

spectrum nature of autIsm
Our theory is consistent with the spectrum nature of autism because 
the degree of LUT learning may vary among different individuals 
and among different modalities/systems/tasks for the same indi-
vidual. We mentioned that different systems of the brain, autistic 
or not, may have different biases toward INT and LUT learning 
depending on what kind of tasks the system does. This natural 
variation of learning styles among different systems suggests that 
autism may affect different systems to varying degrees. Although we 
often contrast typical vs. autistic populations for ease of description, 
our theory suggests a continuum. In particular, high-functioning 
autistic people must be able to extract certain regularities from 
experience by using INT learning to some extent [e.g., Robison 
(2011) can attend to sound of a particular instrument in a concert].
Typical people may also have a few autistic traits without meet-
ing diagnostic criteria and some of those traits (e.g., strong focus, 
attention to detail) are advantageous.

dIscussIon
summary of our theory and expLanatIons
Unlike previous efforts that focus on small subsets of autistic behav-
iors, we propose a theory that appears to account for a wide range 
of autistic behaviors. We hypothesize that autistic brains are biased 
toward LUT learning, which aims to store training examples pre-
cisely without extracting their underlying statistical structure or 
regularities, whereas typical brains are biased toward INT learning, 
which does not insist on representing training examples precisely 
but focuses instead on discovering their underlying regularities 
for generalization. These learning styles may be implemented by 
relatively narrow and broad tuning functions and strong and weak 
emphasis on eliminating small errors during learning, respectively. 
The narrow and broad tuning functions also imply that LUT and 
INT learning favor low- and high-dimensional feature spaces, 
respectively.

The LUT style is good for learning relationships that are local, 
precise, rigid, and do not contain inherent regularities for generali-
zation, such as name–number association in a phonebook. However, 
it is poor at learning relationships that are context dependent, noisy, 
flexible, and do contain regularities for generalization. Since most 
relationships in social interaction, language/communication, and 
sensorimotor processing are of the latter type, our theory explains 
autism’s broad range of behaviors. In particular, autistic people’s 
preference of non-social to social stimuli (Osterling and Dawson, 
1994; Klin et al., 2009) reflects what they are able to learn, rather 
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Feature Map theory (or other theories). Consequently, our theory 
explains many autistic behaviors differently and accounts for 
more behaviors. For example, our theory implies that typical 
people can learn complex regularities in high-dimensional fea-
ture spaces whereas autistic people prefer simple, precise rules 
in low-dimensional feature spaces. This explains, among other 
things, autistic people’s superior and inferior discriminability for 
simple and complex stimuli, respectively, compared with typical 
people. The Inadequate Cortical Feature Map theory does not 
make this argument but appears to suggest that smaller cortical 
columns lead to both generally superior feature discriminability 
and impaired feature extraction. Our theory explains autism’s 
strong rote memorization as reduced interference between new 
and old memories due to LUT learning’s narrow  tuning func-
tions. In contrast, The Inadequate Cortical Feature Map theory 
argues that impaired feature extraction forces rote memory. We 
attribute autism’s sensory overwhelm and restricted interests 
to LUT learning’s weak information compression. Instead, the 
Inadequate Cortical Feature Map theory suggests that an “autis-
tic individual might choose narrow interests simply because he 
would not have the capacity to deal with several interests in the 
same consuming manner.” We explain autistic people’s overreac-
tion and reduced adaptation to sensory stimuli as a consequence 
of LUT learning’s poor predictive ability, and their impaired 
attentional selection and switching as resulting from LUT learn-
ing’s inability to separate multiple sources of stimulation. It is not 
clear how the Inadequate Cortical Feature Map theory explains 
these behaviors.

The second theory is the Intense World theory (Markram and 
Markram, 2010) which, like our theory, aims at a unified account 
of autism. Based on an animal model, the Intense World theory 
posits that autistic “neuropathology is hyper-functioning of local 
neural microcircuits, best characterized by hyper-reactivity and 
hyper-plasticity.” It is then believed that this leads to “dominance 
of the earliest features” and “avoidance of processing of other fea-
tures.” However, the theory further argues that “the lack of social 
interaction in autism may therefore not be because of deficits 
in the ability to process social and emotional cues, but because 
a subset of cues are overly intense[…]”. In contrast, our theory 
suggests that autistic LUT learning is poor at extracting subtle, 
complex social cues. The Intense World theory also argues that 
hyper-plastic systems could “become autonomous and memory 
trapped.” However, computationally, hyper-plasticity implies gen-
erally fast learning, fast forgetting, and weak convergence, and 
thus highly fluid, instead of trapped, systems. Trapping could 
occur under other conditions, e.g., when impaired synaptic nor-
malization or homeostasis fails to rescue saturated synapses, and 
hyper-plasticity may accelerate the process to saturation. However, 
once synapses are stuck in saturation, they are no longer plastic, 
let alone hyper-plastic, and if synapses are hyper-plastic, they 
cannot be stuck. Therefore, it is not clear to us how the Intense 
World theory explains many of the autistic behaviors that our 
theory accounts for coherently.

The third theory is the well-known Extreme Male Brain theory 
(Baron-Cohen, 2002) which posits that female and male brains pre-
fer empathizing and systemizing, respectively, and that autism is an 
extreme form of the male brain (hyper-systemizing). Here, “system-

Frith, 2006). LUT learning’s impaired predictive ability is related 
to the Deficient Arousal Modulation theory (Dawson and Lewy, 
1989). LUT learning’s poor attentional selection is related to the 
Attention Deficit theory (Courchesne et al., 1994). LUT learn-
ing’s superior and inferior performance on simple and com-
plex tasks is related to the Complex Information Processing 
Disorder theory (Minshew and Goldstein, 1998; Mottron et al., 
2006). And LUT learning’s insistence on precision is related to 
the Over-Fitting theory (Cohen, 1994). Importantly, our theory 
suggests an underlying framework that unifies and encompasses 
many existing theories (including, but not limited to, the ones 
mentioned above) by combining the strengths of those theo-
ries without concatenating their different assumptions. Rather, 
those theories, and other implications, are logical consequences 
of our root assumption of different learning styles for autistic 
and typical populations. Therefore, our theory explains more 
autistic behaviors without making more assumptions. Although 
each of the phenomena listed in the Introduction has probably 
been explained before, to our knowledge, they have not been 
explained together coherently by a single theory. Additionally, 
our explanations of some autistic behaviors (e.g., sensory over-
whelm, hyper-sensitivity, restricted interests, atypical learning, 
impaired attentional selection, concreteness, weak adaptation, 
absolute pitch, and inferior performance on complex tasks) dif-
fer from previous theories. Finally, our testable predictions on 
learning style and efficiency of autistic and typical subjects (see 
above) are not made by previous theories.

One may argue that some autistic behaviors we discussed can 
be alternatively explained by autism’s social disinterest and anxi-
ety. For example, high-functional autistic people can use size to 
(inadequately) classify cats and dogs (Grandin, 2006) and use 
numbers 1, 2, and 3 to name three sisters (Robison, 2011) but fail 
to pick up social cues. According to our theory, this is because 
their limited INT learning allows them to extract simple, pre-
cise rules for generalization (in low-dimensional feature spaces) 
but has trouble with complex, context-dependent regularities 
(in high-dimensional feature spaces) that are typically found in 
social situations. The alternative argument is that autism only has 
a generalization problem in social settings but generalizes fine 
otherwise. However, this alternative does not address the issue of 
why autism has social difficulty in the first place. Our theory avoids 
this chicken-and-egg problem as we explain all autistic behav-
iors, including social difficulty, with the assumption that autistic 
brains’ LUT bias reduces their ability to extract complex regulari-
ties for generalization and prediction, and enhances their ability to 
memorize examples. Possible physiological and anatomical basis 
for the LUT style is discussed below. Also note that our and the 
alternative explanations can be distinguished by using non-social 
learning tasks with complex, noisy rules (see Experimental Tests 
of Our Theory).

We compare our theory with three additional theories. The 
first is the Inadequate Cortical Feature Map theory (Gustafsson, 
1997) which assumes that autism involves excessive lateral inhi-
bition, leading to smaller cortical columns and defective feature 
maps. Our theory similarly predicts that autistic people have diffi-
culty extracting complex features. However, our root assumption 
of LUT vs. INT learning is not part of the Inadequate Cortical 
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on experienced  statistical regularities (Mumford, 1992; Rao and 
Ballard, 1999). Since functionally, autistic LUT learning shows a 
strong local focus but poor context dependence and prediction, 
a possible physiological mechanism for LUT learning is dimin-
ished surround, ECRF influences on strong, local CRF responses 
(Ken Miller, personal communication). Anatomically, this implies 
reduced long-range connections within an area, or reduced feed-
back connections from higher areas, or both, to weaken ECRF, 
and enhanced short-range connections among neighboring cells, 
or enhanced feedforward connections from lower areas, or both, 
to strengthen CRF. Thus, this possibility might relate our theory 
to the Under Connectivity theory (Casanova et al., 2002; Just 
et al., 2004; Courchesne and Pierce, 2005; Tommerdahl et al., 
2008) although that theory does not distinguish feedback and 
feedforward connections between areas. The proposed anatomi-
cal changes also suggest enhanced stimulus selectivity within 
CRF and reduced stimulus range in ECRF that modulates CRF 
responses, consistent with the assumed narrow tuning of the LUT 
style (Figure 1).

The above scenario of relatively isolated local cell groups raises 
a closely related possibility for implementing the LUT style. If 
an autistic brain recruits a small group of cells to store each 
training example and if there is little overlap or connectivity 
among different cell groups, then there will be little interference 
among stored examples and little interpolation across examples 
for regularity extraction, as required by LUT learning. Moreover, 
the number of cells in each group has to be small and the num-
ber of groups has to be large in order for the system to store a 
large number of examples. This then implies a low-dimensional 
feature space (again as required by LUT learning) since a joint, 
combinatorial representation of many features would require 
a large number of cells in each group. This possibility appears 
to be broadly consistent with the Inadequate Cortical Feature 
Map theory (Gustafsson, 1997) and anatomical and physiologi-
cal evidence for smaller and more numerous mini-columns in 
autism (Casanova et al., 2002; Tommerdahl et al., 2008). Both 
proposed implementations above assume that the LUT vs. INT 
learning styles are realized at the level of local cell assemblies 
without excluding cellular-level mechanisms (e.g., different syn-
aptic plasticity rules).

Although the above discussion suggests potential links between 
our theory and the Under Connectivity theory, it does not make 
these theories identical. First, our core assumption of LUT vs. INT 
learning, which is responsible for the explanatory power of our 
theory, is not included in any previous theories. Second, the Under 
Connectivity theory is consistent with, but does not logically imply, 
narrow tuning or LUT learning. In fact, reducing or increasing 
any connections could either broaden or sharpen tuning, or make 
little difference, depending on the nature of the connections. For 
example, reducing well-aligned connections from LGN to V1 can 
broaden orientation tuning whereas reducing mis-aligned connec-
tions can sharpen the tuning; either effect becomes negligible if V1 
cells form a recurrent attractor network (Teich and Qian, 2006). 
Even when previous studies mention narrow tuning, the discussions 
were never about LUT learning. Third, whether the circuits out-
lined above could really implement LUT learning or whether there 
are other implementations are open questions that require further 

izing” means extracting “if p, then q” type of rules from “systems” 
defined by such rules. The social world is not a “system” according to 
this theory and is deemed understandable only through empathiz-
ing. This dichotomy between systems and non-systems may roughly 
correspond to our contrast between rigid, precise relationships and 
noisy, flexible relationships which are better learned by the LUT 
and INT styles, respectively. However, we do not directly use the 
concept of empathizing; instead, we believe that the social world 
also has underlying (albeit fuzzy and context dependent) rules that 
can be extracted from experiences via typical INT learning and that 
empathy may be viewed as a mental switch of context. Autism’s 
apparent lack of empathy (Baron-Cohen et al., 1985; Baron-Cohen, 
2002) may thus be attributable to LUT learning’s context deficit. 
Moreover, we posit that autistic LUT bias is poor at extracting and 
generalizing complex rules in high-dimensional feature spaces but 
can readily store “if p, then q” type of simple, precise rules as an 
 association. Hyper-systemizing may then correspond to  autistic 
people’s application of simple, precise rules that they manage to 
learn [e.g., Robison’s (2011) naming of his wife and her sisters as 
units 1, 2, and 3]. Finally, we view autism’s repetitive behaviors as 
a consequence of over training on limited behavioral repertoires 
constrained by the inefficient LUT style whereas the Extreme Male 
Brain theory views repetitions as systemizing efforts.

Many brain areas (amygdala, hippocampus/limbic system, fron-
tal/prefrontal cortex, parietal cortex, cerebellum, basal ganglion, 
fusiform face area, superior temporal sulcus, mirror neuron system, 
locus coeruleus, etc.) have been implicated in autism theories and 
experiments, suggesting that no single area dictates the disorder. 
We speculate that abnormalities found in an area reflect mutual 
interactions between abnormal learning/development and abnor-
mal structure/physiology in that area.

assumptIons and possIbLe neuraL mechanIsms
Our key assumption is the LUT and INT learning styles for autistic 
and typical brains, respectively. We argued that different tuning 
widths help realize these different learning styles (Figure 1) and 
also lead to different dimensionalities of the feature space for learn-
ing (Eq. 1). Thus, the tuning-width assumption parsimoniously 
combines learning style and feature-space dimensionality, which 
are essential for the explanatory power of our theory. The tuning-
width assumption also provides a possible converging point for the 
actions of diverse autism genes and perhaps multiple anatomical/
physiological substrates.

Our framework is at the functional or computational level 
(Marr, 1982). Physiologically, we interpret tuning generally to 
include contributions from both classical receptive field (CRF) 
and extra-classical receptive field (ECRF or surround) which 
modulates CRF responses (Allman et al., 1985). The CRF arises 
from feedforward connections from lower areas and short-range 
interactions among neighboring cells, and encodes local stim-
ulus features (Hubel and Wiesel, 1962). The ECRF arise from 
both long-range horizontal connections within an area (Gilbert 
and Wiesel, 1990) and feedback connections from higher areas 
(Angelucci and Bressloff, 2006), and is important in interpreting 
local features in each CRF according to the context provided by 
both the bottom-up stimulations over a large area (Gilbert and 
Wiesel, 1990; Zhaoping, 2006) and top-down predictions based 
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