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switched back and forth rapidly between the two eyes, typically at 
a rate of around three times per second (Logothetis et al., 1996; 
Lee and Blake, 1999). For particular stimulus configurations under 
those conditions, the rivalrous percept oscillated much more slowly 
than the physical switching of the stimuli, at a rate of around 1 cycle 
every 2 s. That suggested the rivalry was between representations 
of the images divorced or abstracted from the direct monocular 
representations coming from each eye. The second type of experi-
ment involved rivalrous stimuli that were patchworks synthesized 
from two incompatible images. For example, the left eye stimulus 
might be composed of randomly intermixed patches of image A 
and image B. The right eye image would then be a complementary 
patchwork, having a patch of the image B where the other eye 
had a patch of image A. Using those stimuli, the rivalrous percept 
was not of oscillations between the two patchworks. Rather, what 
occurred was rivalry between a coherent image A and a coherent 
image B, showing that the patches had been grouped before rivalry 
(Dörrenhaus, 1975; Kovács et al., 1996; Ngo et al., 2000). Again this 
indicated that rivalry was occurring at a more abstract level of image 
representation than direct monocular signals from the two eyes.

Neurophysiological recordings in monkeys corroborated 
the psychophysical finding that in some situations rivalry could 
involve higher-level image representations. The strongest neuro-
physiological correlate of rivalry was found in inferotemporal cortex 
(Sheinberg and Logothetis, 1997), a high-level, binocularly driven 
visual area involved in object recognition. In contrast early visual 
areas, where large populations of monocular neurons exist, showed 

When incompatible images are presented to the two eyes, the visual 
system is thrown into oscillations. First one image is visible and then 
the other, typically alternating with a period of a couple of seconds. 
This is known as binocular rivalry. A commonly used rivalrous stim-
ulus is a pair of orthogonal gratings, one grating presented to each 
eye. However, non-matching stimuli in general will work, such as a 
face and a house. Seminal psychophysical work on rivalry was done 
by Levelt (1965), who studied how the time course of the oscillations 
depended on the nature of the stimuli. In recent years the study 
of rivalry has expanded from psychophysics to neurophysiology 
and functional MRI (fMRI) brain imaging, as described in various 
reviews (Leopold and Logothetis, 1999; Blake and Logothetis, 2002; 
Lee, 2004; Tong et al., 2006; Sterzer et al., 2009).

Early models portrayed binocular rivalry as involving reciprocal 
inhibition between monocular representations of the two images, 
occurring at an early visual stage prior to binocular mixing (Lehky, 
1988; Blake, 1989). (See Wilson, 2007, for a more recent and elabo-
rate version of this idea.) Low-level monocular representations 
postulated by such models would make the striate cortex or the 
lateral geniculate nucleus likely locations for rivalry.

However, psychophysical experiments found conditions where 
rivalry appeared to occur at a higher, more abstract level of represen-
tation. In those cases, the rivalry was between image representations 
dissociated from eye-of-origin information, rather than directly 
between monocular signals from the two eyes. Evidence for this 
higher-level “image rivalry” came from two types of experiments. 
One involved studies in which two rivalrous images were physically 
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modest rivalry effects. Weak correlates of rivalry were reported for 
single-cell recordings in striate cortex (Leopold and Logothetis, 
1996), and no rivalry related activity was reported for single-cell 
recordings in lateral geniculate nucleus (Lehky and Maunsell, 1996; 
Wilke et al., 2009). FMRI studies, on the other hand produced some-
what different results from single-cell physiology, showing vigorous 
rivalry correlates in striate cortex (Polonsky et al., 2000; Tong and 
Engel, 2001; Lee et al., 2007) and to some extent in lateral geniculate 
nucleus as well (Haynes et al., 2005; Wunderlich et al., 2005).

Overall, examining the psychophysical, neurophysiological, and 
fMRI data, there is evidence for rivalry occurring at a wide range of 
levels within the visual system. Faced with this body of results, a new 
class of “hierarchical” binocular rivalry models was created (Wilson, 
2003; Freeman, 2005). Earlier models had postulated reciprocal 
inhibition between monocular representations of images tied to 
signals from left and right eyes. Hierarchical models augmented that 
with an additional stage (or stages) involving inhibition between 
higher-level, binocular representations of images, where eye-of-
origin was lost. That allowed “eye rivalry” to occur at lower levels 
of the visual system and “image rivalry” to occur at higher levels.

An unresolved issue in hierarchical models is how can the sepa-
rate identities of the two images be maintained after binocular 
mixing in order for rivalry to be possible at higher levels? We 
suggest that a way for left and right images to retain their separate 
identities after binocular mixing is to simply unmix them. Recently 
a new class of non-linear signal-processing algorithms has been 
developed that has the potential to do that, called blind source 
separation (BSS) algorithms (Choi et al., 2005; Cichocki et al., 
2009; Comon and Jutten, 2010). BSS algorithms separate signal 
mixtures into component “sources.” The algorithms are called 
“blind” because they are given little or no information about the 
nature of the underlying source signals they are trying to recover. 
Because they are blind, they fall into the category of unsupervised 
learning algorithms.

From amongst the various BSS algorithms we focus on one, 
non-negative matrix factorization (NMF; Lee and Seung, 1999). 
The non-negativity constraint in NMF is appealing for applica-
tions in neural processing as firing rates must be non-negative. 
However the ability to do binocular unmixing is not unique to 
NMF, and we shall also demonstrate it using a second, unrelated BSS 
algorithm called independent component analysis (ICA). Matlab 
code for NMF was obtained from Hoyer (2011) and for ICA from 
Hyvarinen (2011). We believe that this is the first suggestion that 
BSS algorithms may be dynamically operating within the brain for 
real-time visual processing.

Results
Two pairs of images were used to test the algorithms (Figure 1), a 
pair of orthogonal sinusoidal gratings and a face/house pair. Both 
stimulus classes are widely used in binocular rivalry studies. Each pair 
was linearly mixed in various proportions to form five mixed images. 
This variable mixing in the algorithm corresponds to physiological 
observations that binocular neurons in striate cortex of macaque 
monkey occur in various ocular dominance mixtures (Hubel and 
Wiesel, 1968). In the words of Hubel and Wiesel (1977), “Just why the 
two eyes should be brought together in this elaborate but incomplete 
way is not yet clear. What the ocular dominance columns appear to 

achieve is a partial mixing of influences from the two eyes, with all 
shades of ocular dominance throughout the entire binocular field 
of vision.” Whatever the reason for this variable binocular mixing, 
it is precisely what is needed for BSS algorithms to work. The algo-
rithms would not work if only a single binocular mixture were avail-
able. fMRI studies also show ocular dominance columns in humans 
(Cheng et al., 2001; Yacoub et al., 2007), suggesting variable binocular 
mixing may be similar in humans and macaque monkeys.

Variable ocular dominance also occurs in extrastriate visual cortex. 
Ocular dominances in extrastriate cortex are more narrowly spread 
than in striate cortex, as indicated by data from inferotemporal 
cortex (Uka et al., 2000) and area MT (Kiorpes et al., 1996). The 
unmixing results reported here were produced using left/right ocular 
dominance mixtures spread over the range 67%/33%–33%/67%, as 
shown in Figure 1. However, similar results were obtained using an 
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Figure 1 | Schematic of image mixing and unmixing process.
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The NMF algorithm was implemented in terms of matrix alge-
bra (Figure 2A). The procedure was to factorize the binocular 
mixture matrix B into two matrices, B = M × A, subject to the 
constraint M and A were non-negative. Each column in the bin-
ocular mixture matrix B corresponded to one mixed image (there 

even narrower spectrum of ocular dominances, going from 55/45 to 
45%/55%, so it does not take a large range to allow the BSS algorithms 
to work. The variability of ocular dominances in extrastriate cortex 
appears sufficient to support the sort of binocular unmixing being 
proposed here.
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Figure 2 | Mechanics of the unmixing algorithm. (Ai) Matrix 
representation of binocular mixing. The binocular mixture matrix B had five 
columns, representing the five mixed images depicted in Figure 1. Each 
column had 40,000 rows, corresponding to 40,000 pixels in each image 
(200 × 200 pixels). Thus each image is “unfolded” from a 2D array to a 1D 
column of pixels. The binocular matrix B was factored into two non-negative 
matrices M and A such that B = M × A. The factorization was done by 
iteratively updating M and A in accord with the NMF algorithm so as to 
gradually reduce error between B and M × A, with error based on entropy 

divergence (Lee and Seung, 1999, 2001). The matrix M had two columns, 
containing left and right source images, and 40,000 rows. The matrix A 
contained mixing coefficients, which combined the two source images in M to 
form different binocular mixtures. Matrix A had five columns and two rows, 
corresponding to five pairs of mixing coefficients to produce five different 
binocular mixtures. (Aii) Matrix representation of binocular unmixing. The 
matrix W of unmixing coefficients is the Moore–Penrose generalized inverse 
of the mixing matrix A. (B) Neural network interpretation of the unmixing 
algorithm. Diagram adapted from Cichocki et al. (2009).
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 algorithm allowed it get stuck in a local error minimum. Details 
of the crosstalk pattern varied from trial to trial as the algorithm 
started from different random states.

In addition to NMF, we tried another BSS algorithm, ICA (Bell 
and Sejnowski, 1995; Hyvärinen and Oja, 2000; Stone, 2002). 
Instead of being constrained to finding non-negative factors of 
a matrix, this algorithm was constrained to find a set of unmixed 
images that were as statistically independent as possible from each 
other. FastICA (Hyvärinen and Oja, 2000) was the specific variant 
of the ICA algorithm used. ICA was able to unmix binocular images 
in a manner similar to NMF (compare Figures 3Aii,B). Unlike 
NMF, ICA never converged to produce visible crosstalk between 
unmixed images, although subliminal crosstalk remained. The ICA 
algorithm, on the other hand, did have the disadvantage that in 50% 
of unmixing trials the recovered images were contrast reversed, as 
ICA did not have a non-negativity constraint.

The NMF algorithm was able to unmix gratings with small ori-
entation differences, down to the smallest difference tested of 1°. In 
contrast, the ICA algorithm had an increasing probability of finding 
an incorrect solution to the unmixing problem as the orientation 
difference dropped below 15°.

Although both BSS algorithms were capable of unmixing images, 
they differed in the details of their behavior. Presumably other BSS 
algorithms would each have their own mix of characteristics.

Discussion
Binocular unmixing neatly solves the problem of how two images 
can retain their separate identities after binocular mixing, so that 
rivalry can occur between high-level binocular representations of 
incompatible images. Although unmixed images appear virtually 
identical to the original monocular images (Figure 3), they are 
binocularly driven (Figure 2B).

The ability of two unrelated algorithms, NMF and ICA, to unmix 
binocular signals suggests that there is a whole class of BSS algo-
rithms having similar capabilities. This opens the opportunity for 
combined theoretical and experimental investigations to uncover 
the particular implementation that may be occurring biologically.

The binocular unmixing model does not consider how the 
oscillations of rivalry themselves are produced. The actual oscil-
lations during rivalry would require further interactions between 
the two images after unmixing. Mechanisms to produce oscillations 
have already been extensively modeled (among them Lehky, 1988; 
Lumer, 1998; Laing and Chow, 2002; Wilson, 2003, 2007; Freeman, 
2005; Grossberg et al., 2008; Gigante et al., 2009). Binocular unmix-
ing augments those models of oscillations by creating conditions 
at higher visual levels that allow them to operate.

The binocular mixing model also does not consider mechanisms 
of perceptual grouping that occur under some rivalry conditions 
(Dörrenhaus, 1975; Kovács et al., 1996; Ngo et al., 2000). Grouping 
mechanisms in rivalry have received less theoretical attention than 
oscillatory mechanisms (although see Grossberg et al., 2008). 
Binocular unmixing again serves to create conditions at higher 
visual levels that would allow grouping algorithms to operate.

As signals pass through the unmixing circuitry, eye-of-origin 
labeling is lost in the recovered left and right images. There is no 
way to tell which image originated from the left eye and which 

are five mixed images in this example). Each row corresponded 
to a different image pixel. Starting from random values of M and 
A, the algorithm iteratively updated their values so as to reduce 
error between M × A and B, following standard update rules for 
the algorithm using an error measure based on entropy diver-
gence (Lee and Seung, 1999, 2001). (The error measure used is not 
critical for the algorithm.) Gradually the two images unmixed as 
M × A converged to B. The binocular mixture matrix B was now 
expressed in terms of the multiplication of M, a matrix containing 
the two unmixed monocular images, by A, a matrix containing 
mixing coefficients.

What we really want to solve, however, is the inverse problem 
to that described above. Rather than find the matrix A of mixing 
coefficients used to combine monocular images into binocular 
mixtures (Figure 2Ai), we want an unmixing matrix W that can 
decompose the binocular mixtures into component monocular 
images: B × W = M (Figure 2Aii). Fortunately there is a simple 
relationship between the mixing and unmixing matrices: they are 
inverses of each other: W = A+. (In this case, because the mixing and 
unmixing matrices are not square, the Moore–Penrose generalized 
inverse A+ must be used rather than the regular matrix inverse A−1). 
Although we applied the algorithm directly to image pixel values, 
the principle remains the same whether the numbers in matrices 
M and B represent pixel values or neural firing rates derived by 
convolving receptive fields with the image.

The unmixing algorithm can be given a more physiological 
interpretation by formulating it in terms of a neural network 
rather than matrix algebra (Figure 2B). The iterative nature of 
the algorithm is indicated by the feedback loop originating from 
the outputs. The gradual unmixing of the binocular signal as it 
cycles through the feedback loop may have a perceptual correlate 
in binocular rivalry. When orthogonal gratings are briefly flashed 
to the two eyes for less than 150 ms they appear mixed, in a check-
erboard pattern (Wolfe, 1983). It is only after longer exposure that 
the mixture disappears and the image from one eye or the other 
starts to predominate.

Feedback was mathematically implemented here as dis-
crete time updates on a set of matrices. It could equivalently 
be expressed within a network as a non-linear dynamical sys-
tem operating in continuous time, expressed as a set of cou-
pled differential equations. As the dynamical system evolves 
to a stable point (unmixed images at the output), it is not only 
neural activities that must change dynamically, but also the 
strengths of synaptic interactions. There is indeed evidence for 
rapid dynamic modulation of neural connectivity in a network 
(Vaadia et al., 1995), and rapid synaptic plasticity as a mecha-
nism for implementing neural computations has been reviewed 
by Abbott and Regehr (2004).

Unmixing produced by the NMF algorithm was not perfect. 
There was residual crosstalk within the two unmixed images. This 
was apparent when an unmixed image was subtracted from the 
original source image (Figure 3). The crosstalk was small enough, 
however, that in most trials it was not apparent upon inspection 
of the unmixed images. However, in some trials (around 25% for 
the face/house pair), the NMF algorithm converged to a situa-
tion with visible crosstalk, possibly because lack of noise in the 
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level of crosstalk immediately following the initial presentation of 
rivalrous stimuli, with the crosstalk smoothly decaying over time 
to some non-zero value before the oscillations started. Subliminal 
crosstalk would remain during the oscillatory period.

Non-negative matrix factorization was introduced as a possible 
mechanism for parsing objects into parts for object recognition (Lee 
and Seung, 1999). We see that it may also be involved in binocular 
rivalry. At the single neuron level, neurophysiological correlates of 
binocular rivalry are strongest in inferotemporal cortex (Sheinberg 
and Logothetis, 1997), a ventral visual area associated with object 
recognition, and weaker in striate cortex (Leopold and Logothetis, 
1996) or in the dorsal visual pathway (Logothetis and Schall, 1989). 
Although as a binocular phenomenon rivalry tends to be most 
associated with stereopsis, we suggest at higher levels it may also 
have connections with mechanisms of shape representation during 
object recognition.

originated from the right eye. This lose of eye-of-origin informa-
tion is consistent with the psychophysical data outlined earlier, 
and is in fact a defining characteristic of high-level “image rivalry.” 
The situation is different for stereopsis, where the preservation of 
disparity sign (near/far) indicates that eye-of-origin information 
is implicitly retained within the population of binocular cells. That 
was emphasized by Assee and Qian (2007) in a model of da Vinci 
stereopsis that extracted eye-of-origin information for occluded 
monocular regions using binocular cells. While the BSS algorithms 
used here lose eye-of-origin information, in the future it might be 
possible to devise binocular unmixing models that do retain such 
information, for applications other than rivalry.

We found a low level of crosstalk in the unmixed left and right 
images (Figure 3). Binocular crosstalk has not been a prediction 
of previous binocular models. In experimental observations under 
conditions of high-level “image rivalry,” we would expect a strong 
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Besides binocular rivalry in inferotemporal cortex, another 
example that might use binocular unmixing involves area MT, a 
cortical area believed to represent visual motion. There is evidence 
that area MT can support comparisons between velocities in left 
and right images for computation of 3D motion (Rokers et al., 
2009, 2011), despite being binocularly driven. In this case, MT 
appears to be performing visual processing as if it had access to 
the original unmixed images.
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