
HUMAN NEUROSCIENCE

modeled as a interconnected network, can exhibit little to no global 
structure change while at the same time demonstrating regionally 
specific changes in network topology.

A network is composed of components that are represented by a 
collection of nodes linked by edges, which represent their relation-
ships. Network metrics can be calculated at the level of the whole 
network, specific nodes, and at all levels in between. Recently, mean 
whole-brain measurements have been used to analyze networks 
(Stam and Reijneveld, 2007; Bullmore and Sporns, 2009; He and 
Evans, 2010; Rubinov and Sporns, 2010). However, and perhaps not 
surprisingly, whole network averages are not sufficient to determine 
a network’s internal infrastructure as average values may dilute 
regional changes and leave spatial shifts in network structure unde-
tected. Take clustering as an illustrative example. Though average 
whole-brain clustering may be similar under two very different 
conditions, the location in the brain that exhibits the highest clus-
tering may change dramatically. For this reason, it is particularly 
important when comparing brain networks to analyze not only 
the entire system but also to map these networks back into brain 
space and study specific regions within the system. When doing so, 
influential nodes, their connections, and the communities of which 
they are a part can be more readily discovered. Of even more utility 
is inferring the function of these relationships when comparing 
networks across tasks or cognitive states. To date, this sort of analysis 
has been quite limited when applied to the brain. In addition, stud-
ies have presented conflicting results, and the  question of whether 

IntroductIon
Various analytical approaches to the study of functional interac-
tions among human brain regions have been used over the course 
of the last two decades. Of particular note are the methods that 
have now fostered a growing trend toward the study of the brain 
as an integrated system: seed-based correlation (Biswal et al., 1995) 
and component analyses (McKeown et al., 1998). Though research 
using these techniques has revolved around the study of “the  resting 
network” (Colcombe and Kramer, 2003; van de Ven et al., 2004; 
Beckmann et al., 2005; De Luca et al., 2006; Jafri et al., 2008) many 
studies have explored changes in brain organization as a function of 
task (Calhoun et al., 2001, 2002; Hampson et al., 2006; Michael et al., 
2008). Recently, the application of graph theory to functional brain 
data has grown from the spirit of what both seed-based and compo-
nent analyses have offered over traditional subtraction methods: an 
inter-related framework with which to understand functional brain 
processes. The main distinction, however, between these previous 
approaches to functional connectivity and an approach that relies 
on the principles of graph theory is whether or not interactions 
of the entire brain are inherently represented in each parameter 
measure of interest – be they whole-brain or regionally defined. 
Until the recent application of network science to brain data, this 
approach was not feasible. Now, with growing enthusiasm, network 
science is helping research characterize structure–function relation-
ships that are part of fully integrated and complex systems. It is 
our goal in this paper to outline how human functional brain data, 
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or not brain networks, which are defined by the principles of graph 
theory, are dynamic still remains unanswered (Eguiluz et al., 2005; 
Buckner et al., 2009; He and Evans, 2010). Moreover, these studies 
were restricted to limited parameters and only compared degree at 
the regional level. To more accurately address the issue of dynamic 
brain networks, a comprehensive analysis of network parameters 
at multiple resolutions is required.

The work presented in this manuscript provides evidence that 
whole-brain metrics in conjunction with node-based analyses pro-
vide far more relevant and reliable information about network 
dynamics. This is the first study to incorporate a design that evalu-
ates both mean (by computing the mean across all nodes) and 
regional [node-specific and regions of interest (ROI)] network 
properties in the human brain during rest and sensory engage-
ment conditions (visual and multisensory) at a voxel-wise resolu-
tion. The benefit of evaluating networks under task conditions is 
the ability to detect dynamic internal changes despite whole mean 
consistencies. In using this dualistic approach, we have discov-
ered that changes do in fact occur across tasks. In this study, three 
important metric categories shed light on the dynamic behavior 
of functional brain networks: small-world properties, centrality 
metrics, and  community structure.

Small-world properties include clustering coefficient, path length, 
and the associated efficiency metrics. Clustering coefficient is the 
proportion of connections between the neighbors of a node to 
the total number of potential connections (Watts and Strogatz, 
1998). Path length, usually calculated as the shortest path length, 
is the average shortest number of edges needed to travel from 
one node to another node (Newman, 2008). Small-world-ness is 
defined as having a short average path length and a high average 
clustering coefficient (Watts and Strogatz, 1998). Global and local 
efficiency capture similar information to path length and cluster-
ing, respectively (Latora and Marchiori, 2001). However, they are 
considered to be mathematically advantageous as they are scaled 
versions of the aforementioned metrics and can be computed in 
fragmented networks.

Centrality metrics (Freeman, 1979) can be used to determine the 
importance of any given node to the entire network. Degree central-
ity (K) is the most fundamental metric, and defines the number of 
connections linked to a node.

A network’s community structure is defined by the cliques or 
groups of clustered nodes that are more highly interconnected 
with each other than with other nodes in the network (Girvan 
and Newman, 2002). Of particular importance are the nodes hold-
ing neighborhoods together (provincial hubs) and those serving to 
interconnect neighborhoods (connector hubs; Guimera and Nunes 
Amaral, 2005). Therefore, modularity can open the door to study 
communication optimization between different regions in the brain 
and compare subjects across different conditions.

Finally, previous work utilizing seed and component-based 
analyses has shown that functional connectivity networks are 
dynamic. These findings do not, however, imply that networks 
defined by the principles of graph theory are task-dependent. In 
fact, it has been recently shown that global network topology, and 
in particular hub structure, remains stable across both active and 
passive tasks (Buckner et al., 2009). In this study, we set out to test 
whether or not network structure across task condition changes 

using the previously mentioned metrics as measures. We show 
that brain networks are dynamic, noted by task-dependent shifts 
in regional specificity (clustering), global efficiency (path length), 
and neighborhood structure (modularity). These findings were 
based on nodal assessments of brain networks across tasks and not 
whole-brain means. These results call for a shift in focus within 
the field and stress the importance of using both whole-brain and 
regional network calculations in order to observe dynamic shifts 
within brain networks. In addition, this work highlights the fact 
that network science applications in the human brain are highly 
useful for task-based data in addition to the commonly used rest-
ing state data.

MaterIals and Methods
study saMple
Data were collected from 20 young (26.9 ± 5.8-years-old) healthy 
subjects that included 11 females. These participants were part 
of a larger study that was conducted in our laboratory and whose 
results on changes in cerebral perfusion under various sensory 
conditions have been previously reported (Hugenschmidt et al., 
2009). The fMRI scans performed as part of that study are the 
subject of these analyses. After an initial phone screen, participants 
were invited into the laboratory wherein they agreed to participate 
in procedures that were approved by the Wake Forest University 
School of Medicine Institutional Review Board and completed sev-
eral behavioral tests. Briefly, participants were included only after 
fulfilling selection criteria on batteries for cognition, including the 
mini-mental state examination (MMSE; Folstein et al., 1975) and 
the center for epidemiological studies depression scale (CES-D; 
Radloff, 1977) as well as alcoholism (AUDIT; Babor et al., 2001). 
Because of the nature of the tasks in this study, only those sub-
jects with functional color vision (Ishihara, 1917), corrected visual 
acuity, and no more than moderate hearing loss were included in 
these analyses.

IMagIng study desIgn
In a single scanning session, fMRI data were acquired during three 
separate states, each lasting 5.6 minutes in length. These states will 
be referred to hereafter as the rest, visual and multisensory condi-
tions. Throughout each condition, participants were fitted with 
MRI compatible goggles, headphones (Resonance Technology, 
Inc., Northridge, CA, USA)1; and an integrated eye tracker. For 
the eyes open rest condition (Raichle et al., 2001), a gray fixation 
cross was presented throughout the entire duration of the scan. 
In the visual condition, subjects were presented a color movie 
clip from the documentary Of Penguins and Men (2005, Warner 
Bros. Entertainment, Inc.,) without any audio stimulus. A differ-
ent segment of this film that included audio input was used for 
the multisensory condition. These movie clips were edited using 
Ulead VideoStudio software2 and were presented using Presentation 
software (Neurobehavioral Systems, Albany, NY, USA)3. Task order 
for each participant was randomly assigned so as to minimize the 
effect of the presentation sequence.

1www.mrivideo.com
2www.ulead.com
3www.neurobs.com
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is described by the following equality: S = log(N)/log(K; Watts 
and Strogatz, 1998). This can be written as N = KS, where S is the 
equivalent of the shortest path length, L. The partial Pearson cor-
relation coefficient that satisfied N = KS was used as a lower bound 
when creating binary adjacency matrices. Those voxel pairs that 
met this threshold criterion were given a value of one and defined 
a network edge; all other pairs were given a value of zero. Previous 
research from this lab has shown that similarly sized networks with 
an S between 2.5 and 3.0 show less inter-subject metric variability 
and network fragmentation compared to S values equal to 2.0, 3.5, 
and 4.0 (Hayasaka and Laurienti, 2010). The results presented here 
are from a threshold of S = 2.5.

network MetrIcs
A detailed review of the metrics used in this study has been pre-
viously reported (Rubinov and Sporns, 2010). However, a brief 
synopsis will be discussed here.

Degree, K, which is the number of functional links to a node, 
was calculated for each node i in a network with N total nodes. For 
each subject in each condition, a degree distribution was generated. 
These distributions show the degree of a node plotted against 1 
minus the cumulative distribution (Hayasaka and Laurienti, 2010).

The characteristic path length, L, was calculated using Dijkstra’s 
algorithm (Dijkstra, 1959) in the MatlabBGL package (David 
Gleich; Stanford University, Stanford, CA, USA). This algorithm 
generates a matrix of the geodesic distances between all node pairs. 
However, in the case of isolated nodes and subgraphs this value 
is infinitely distant from the main network. Because of this, the 
harmonic mean of the geodesic distances was used to calculate L:

L
N N

dij
i j

= −

≠∑
( )1

1

where d
ij
 is equal to the harmonic mean of the geodesic distance 

between nodes i and j (Latora and Marchiori, 2001; Newman, 2003a).
The clustering coefficient, C, which was also calculated using 

the MatlabBGL package, was derived from the work of Watts and 
Strogatz in 1998 and is a measure of network segregation. In this 
study, the small-world coefficient sigma, σ, was calculated and sta-
tistically evaluated across tasks. To do this, individual networks 
were compared to their equivalent random network with the same 
degree distribution (Watts and Strogatz, 1998). A random network 
was created by stochastically rewiring the edges between each set 
of nodes in the original network 10 times (Maslov and Sneppen, 
2002). For each individual in each of the tasks, this process was 
repeated 30 times. A final random network was characterized using 
mean C and L values based on these 30 realizations. A sigma (σ) 
for each individual was then calculated using the C and L values 
of both the original and random network; these were compared 
across task using a repeated measures ANOVA.

Global Efficiency, E
glob

, is the reciprocal of the characteristic path 
length in a network (Latora and Marchiori, 2001). A related meas-
ure of L, E

glob
 has added utility in that it is scaled and ranges in value 

from 0 to 1, with the latter representing maximum distributed 
processing. Local Efficiency, E

loc
, for a given node is the average of 

the local subgraph efficiencies of neighboring nodes (Latora and 

The following procedures were performed for each individual 
in each condition. All anatomical and functional image processing 
was done using SPM5 (Wellcome Trust Center for Neuroimaging, 
London, UK). In-house processing scripts that were executed in 
Matlab were used for all network generation and evaluation.

scan detaIls
For each participant, a multi-slice spoiled gradient inversion recov-
ery (3DSPGR-IR) protocol was used to collect high-resolution 
T

1
-weighted images on a 1.5 T GE scanner (GE Medical Systems, 

Milwaukee, WI, USA). A foam padded birdcage head coil was used 
to limit artifacts due to head movement. The protocol parame-
ters were as follows: phase/frequency = 256/192; 124 contiguous 
slices, 1.5 mm thick; in-plane resolution of 0.938 mm × 0.938 mm; 
TE = 1.9 ms; TI = 600 ms. Blood-oxygen-level dependence (BOLD) 
contrast was measured using a whole-brain gradient echo echo-
planar imaging (EPI) sequence with the following parameters: 
phase/frequency = 48/64; 200 volumes with 24 contiguous slices 
per volume; slice thickness = 5.0 mm; in-plane resolution of 
3.75 mm × 3.75 mm; TR/TE = 1700/40 ms.

anatoMIcal IMage processIng
Anatomical images were realigned to the first slice of each scan 
using a “rigid-body” transform. They were then normalized to the 
standard stereotactic MNI (Montreal Neurological Institute) space. 
Data were delineated into gray matter (GM), white matter (WM), 
and cerebral spinal fluid (CSF) segmentations using a combination 
of a priori anatomical information and tissue intensity (Ashburner 
and Friston, 2005). These tissue maps were then thresholded such 
that the cut-off values chosen for (WM; 80%) and (CSF; 80%) 
were higher, and as a result more specific, then those used for (GM; 
20%). Consequently, GM segmentations were more sensitive to 
the inclusion of GM and were more likely to be free of voxels that 
corresponded to WM and CSF.

FunctIonal IMage processIng
Functional data were normalized to an EPI template, re-sliced to 
a 4 mm × 4 mm × 5 mm voxel size and not smoothed in an effort 
to avoid creating local spurious correlations (van den Heuvel et al., 
2008). GM networks were the interest of this study and before 
they were generated two processing steps were applied to the fMRI 
time series of each voxel in a GM segmentation. First, physiological 
noise was accounted for by applying a band-pass filter (0.00765–
0.068 Hz). Second, a full regression analysis was performed with the 
following signals as covariates of no interest: motion parameters, 
global signal, mean WM signal, and mean CSF signal.

generatIng whole-braIn networks
The network space for each participant in each condition was 
defined by his/her GM segmentation map, with each voxel as a 
node. Matrices were generated in which each cell represented the 
partial correlation coefficient between the functional time series of 
each of the possible voxel pairs in the network. In a typical subject, 
there were 14546 voxels with a range of 13794–15398 voxels across 
the study population. These matrices were then made sparse by 
defining the relationship between the number of nodes N and the 
average degree K to be the same across subjects; this relationship 
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Specifically, this mask was composed of bilateral Heschl’s gyri 
and transverse temporal sulci based on the AAL atlas (Tzourio-
Mazoyer et al., 2002) using WFU_pickatlas software (Maldjian 
et al., 2003). The mask was then used to identify individual 
modules with at least 10% of their nodes falling within the 
mask. These modules were then manually inspected to ensure 
inclusion of auditory cortex. This same procedure was used to 
identify visual modules. In this case, however, the mask was 
defined by the bilateral calcarine gyri, lingual gyri, occipital 
(superior; middle; inferior) sulci, and the cuneus using the AAL 
atlas. Consistency of modular organization across subjects was 
evaluated by overlapping the binary modular images identified 
for each sensory modality from all subjects. The values were 
then transformed to percentage of subjects.

QuantIFyIng audItory and vIsual Module network MetrIcs
Auditory and visual ROIs were made in an attempt to quantify 
regional differences in network topology and were explored 
separately. Masks of the auditory and visual ROIs were created 
setting a 25% threshold on the modular overlap of both the 
visual and multisensory conditions. Values of global distrib-
uted processing (E

glob
), local integration (E

loc
), and connectivity 

(K) were then extracted from these ROIs. A repeated measures 
analysis across condition was used to statistically compare for 
a main effect of task on E

glob
, E

loc
, and K within both the audi-

tory and visual ROIs, respectively. If a main effect was found, 
post hoc pairwise comparisons were made to determine which 
tasks induced significant regional network restructuring. It 
has been established that neither whole-brain (Hayasaka and 
Laurienti, 2010) nor modular degree (Joyce et al., 2010) follows 
a normal distribution. The distribution of efficiency, on the 
other hand, has been less explored. However, the within-subject 
design of these statistical analyses avoids both these issues as 
a concern. Given that each mask contained several hundred 
voxels the means of these measures across individuals were 
normally distributed.

Modular hub organIzatIon
Once functional modules within each subject’s network were 
determined for each task, hub locations were identified. A method 
established by (Guimera and Nunes Amaral, 2005) and known 
as functional cartography has become a predominant means of 
identifying and classifying hubs within modules. When character-
izing nodes within a network, functional cartography associates 
two parameters to every node: a within module degree (K) and a 
participation coefficient (pc). Traditionally, for a node i, a within 
module degree, k

i
, with a z-score ≥2.5 is considered a hub. Recently, 

however, it has been shown that within module degree distributions 
more closely resemble exponentially truncated power law distribu-
tions making the use of z scores problematic. To accurately account 
for this, the p-value pk

i
 can be used to represent within module 

degree (Joyce et al., 2010). In this study those nodes with a pk
i
 ≤ 0.01 

were considered hubs. Hubs were then classified further into two 
categories based on their participation coefficients. Those with a 
pc

i
 ≤ 0.3 were characterized as provincial hubs, which are very well 

connected within their own modules. Nodes with a 0.3 < pc
i
 ≤ 0.75 

were characterized as connector nodes, or hubs whose function is 

Marchiori, 2001) and is akin to clustering. It, like E
glob

, is a scaled 
measure ranging in value from 0 to 1. In this case, however, a value 
of 1 represents a node whose connections are entirely local.

Assortativity, R
jk
 (Newman, 2002, 2003b), was also calculated 

for each task. Assortativity is a measure of a node’s propensity to 
link with other like degree nodes and ranges in value from −1 to 
1. Values closer to 1 characterize assortive networks while those 
closer to −1 represent disassortative networks. In our analyses, 
assortative behavior was characterized based on the similarity of 
degree. The prejudice with which high degree nodes connected with 
other high degree nodes or low degree nodes connected with other 
low degree nodes defines an assortative network. Weather or not 
high- or low-degree nodes drove the assortativity of networks was 
also determined. To do so, first R

jk
 plots showing the distribution 

of connectivity were made. Second, the connection probability of 
the highest 20% degree nodes and the lower 80% were plotted to 
compare their contribution to assortativity.

To capture the general topological features of each network across 
tasks, whole-brain mean values were calculated for the metrics just 
discussed. To do this, nodal values were generated and then averaged 
across the entire network. Though useful in capturing overall network 
structure, whole-brain means are inherently less sensitive to capturing 
network changes at the regional level. To avoid losing this information, 
metric values at the node level were mapped back into brain space and 
evaluated using top overlap images. These images were generated by 
first creating individual subject metric maps. These maps were then 
made binary and represented voxels with values for a particular metric 
that were in the top 15%. For each condition, these binary subject 
images were added together to create group overlap images. Finally, 
these images were converted into percent overlap images.

overall coMMunIty structure
Regional analysis of network topology can prove useful when study-
ing unified brain processes that are the result of the interaction of 
many functional subunits. To assess community structure within 
a network, subsets of nodes whose intra-connections are greater 
than inter-connections with the rest of the network were identified. 
Newman and Girvan (2004) proposed the metric modularity, Q, 
and suggested maximizing this value as an approach to optimizing 
the solution for community structure. Modularity, Q, is defined by:

Q
e

M

a

M
ii i

i

K

= − 















=

∑
2

1

Where: e
ii
 is a measure of intra-modular edges in module i, 

a
i
 is the total degree of module i and M is equal to the degree of 

the entire network. In this study, modularity was optimized using 
a spectral graph partitioning algorithm called QCut (Ruan and 
Zhang, 2008). Each run of QCut assigns each node in a network to 
only one module, which represents a functional sub-unit. In addi-
tion, a Q value that is associated with this collection of modules 
is also generated.

IdentIFyIng audItory and vIsual Modules
The following procedures were performed for each individual 
in each condition. Auditory module(s) were identified using 
a mask, which was defined by the primary auditory cortex. 
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metrics at S = 3.0 are presented to confirm that there were no 
threshold dependant trends for networks with a similar number 
of nodes (Table 1).

For each subject under each task whole-brain network metrics 
were generated for C, L, E

loc
, E

glob
, mean degree (K), modularity 

(Q), and assortativity (R
jk
; Table 2). None of the metrics exhib-

ited statistically significant differences between the rest, visual, or 
multisensory tasks. The ranges of each metric across tasks were: 
C (0.294–0.300), L (4.22–4.25), E

loc
 (0.48–0.49), E

glob
 (0.25–0.25), 

Q (0.65–0.66), K (46.91–47.40), and R
jk
 (0.44–0.48). Therefore, all 

whole-brain mean values exhibited no change across task.
Small-world parameters were also assessed across conditions. 

For each group, sigma, σ, was calculated to determine the small-
world-ness of each network (Condition, σ: rest, 7.72; visual, 7.55; 
multisensory, 7.29; Humphries and Gurney, 2008). All conditions 
were found to have small-world networks (σ > 1) and no significant 
differences were found across tasks (Table 2).

Analyses were performed to assess if the assortativity of a 
network was driven predominantly by high or low degree nodes. 
R

jk
 plots showing the distribution of connectivity  demonstrated 

to connect their own module with other modules in the network. 
Kinless hubs, or hubs with a pc

i
 > 0.75, were those with connections 

almost exclusively outside of their own module and distributed 
amongst the other modules in the network. No kinless nodes were 
identified in this study.

results
whole-braIn Mean network MetrIcs
Evaluating network metrics at several S values showed that mean 
degree was relatively consistent across thresholds S = 2.5–4.0. At 
a threshold of S = 2.0, however, there was a dramatic increase in 
mean degree, which was indicative of a loss of sparsity (Figure 1A). 
There was also a gradual loss of nodes in the largest connected 
component as threshold increased (Figure 1B). At S = 4.0 nearly 
30% of the nodes had been lost from the largest connected compo-
nent. At S = 2.0, 2.5, and 3.0, however, there were more than 85% 
of the nodes contained within the largest connected component. 
Based on these data and prior literature (Hayasaka and Laurienti, 
2010) a threshold set at S = 2.5 was chosen in order to minimize 
network fragmentation and maintain network sparsity. Network 

Figure 1 | Threshold-dependent changes in network connectivity. 
(A) Shows the mean node degree across five thresholds. Mean degree was 
relatively consistent across thresholds 2.5–4.0. However, S = 2.0 there is an 

increase in mean degree indicating a loss of sparsity. (B) Is the number of voxels 
contained in the largest connected component. There is a gradual loss of nodes 
in the largest connected component as S increases.

Table 1 | Mean whole-brain network metrics for S = 3.0.

Metric rest ViS MS F-ratio P

C 0.28 ± 0.03 0.29 ± 0.03 0.28 ± 0.03 2.04 0.14

L 5.30 ± 0.33 5.40 ± 0.42 5.40 ± 0.48 0.36 0.70

Eloc 0.41 ± 0.02 0.42 ± 0.03 0.41 ± 0.03 1.29 0.29

Eglob 0.18 ± 0.02 0.18 ± 0.03 0.18 ± 0.04 0.16 0.85

Q 0.70 ± 0.04 0.69 ± 0.04 0.71 ± 0.04 0.93 0.41

K 25.83 ± 1.07 25.87 ± 1.25 26.13 ± 2.20 0.33 0.72

Rjk 0.49 ± 0.09 0.51 ± 0.08 0.52 ± 0.08 1.31 0.28

Global mean metrics across all tasks were calculated for each subject and 
averaged as group means. These vales were calculated for S = 3.0 to confirm that 
there were no threshold dependant trends for networks with a similar number 
of nodes. While the metric values varied across thresholds, the consistency of 
global network metric values across task is also seen at S = 2.5. R, rest; VIS, 
visual; MS, multisensory; C, clustering coefficient; Eglob, global efficiency; Eloc, 
local efficiency; K, average degree; L, shortest path length; Q, modularity; Rjk, 
assortativity (mean ± SD).

Table 2 | Mean whole-brain network metrics for S = 2.5.

Metric rest ViS MS F-ratio P

C 0.30 ± 0.03 0.30 ± 0.03 0.29 ± 0.03 0.82 0.45

L 4.22 ± 0.33 4.25 ± 0.42 4.23 ± 0.48 0.05 0.95

Eloc 0.48 ± 0.02 0.49 ± 0.03 0.48 ± 0.03 1.55 0.23

Eglob 0.25 ± 0.02 0.25 ± 0.03 0.24 ± 0.04 0.05 0.95

Q 0.66 ± 0.04 0.65 ± 0.04 0.66 ± 0.04 0.78 0.47

K 46.91 ± 1.07 47.08 ± 1.25 47.40 ± 2.20 0.89 0.42

Rjk 0.44 ± 0.09 0.47 ± 0.08 0.48 ± 0.08 1.78 0.18

σ 7.72 ± 2.70 7.55 ± 3.48 7.28 ± 4.50 0.16 0.86

Global mean metrics across all tasks were calculated for each subject and 
averaged as group means. R, rest; VIS, visual; MS, multisensory; C, clustering 
coefficient; Eglob, global efficiency; Eloc, local efficiency; K, average degree; 
L, shortest path length; Q, modularity; Rjk, assortativity; and σ, small-world 
coefficient (mean ± SD).
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Degree distributions were plotted and exhibited exponentially 
truncated power law distributions across task (Figure 4). These 
data show that hubs exist despite the majority of nodes in the net-
work having low degree. However, no obvious differences in these 
distributions across task were found.

nodal network MetrIcs
To investigate whether regional changes occurred despite con-
sistency in whole-brain network means, the spatial distribu-
tion of network metrics was evaluated. Figures 5–7 show the 
top overlap maps of degree (K), local efficiency (E

loc
), and global 

efficiency (E
glob

), respectively. These maps exhibit the location 
and consistency across subjects of the individual nodes that 
are in the top 15% of all nodes for each individual metric. For 

Figure 2 | Assortativity of a representative subject. Assortativity (Rjk) for a 
single subject across all three conditions (rest, visual, and multisensory). The 
matrix depicts the degree of all connected nodes, generated by plotting the 
degree of each node on either end of each network edge. The warm region in the 
upper left corner of the plots denotes that the majority of network nodes have a 
low degree and are connected with other low degree nodes. The assortativity 
plots for the rest (REST), visual (VIS), and multisensory (MS) tasks all show a 
positive assortativity, in which nodes with similar degree are connected.

Figure 3 | Assortativity sorted by degree. Above are the connection 
probabilities of the 80% lowest degree nodes and the top 20% highest degree 
nodes. For all three conditions rest (REST), visual (VIS), and multisensory (MS), 
the positive network assortativity was heavily weighted by low degree nodes. 
In each case, low degree nodes were connected with low degree nodes, 
peaking at nodes with a degree of around 25. On the other hand, high degree 
nodes’ connections were dispersed with a broad range of other degree nodes.

that regardless of condition all networks were assortative 
(Figure 2). It was also found that the assortativity of the net-
works were heavily driven by the lower degree nodes across the 
conditions (Figure 3).
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visual cortex during the visual task (Figure 5, VIS) and in both 
the visual and auditory cortices during the multisensory task 
(Figure 5, MS).

To determine if these changes occurred both for local inter-
connections (E

loc
) as well as for long-distance communication 

(E
glob

), efficiency maps were compared between tasks. Similar to 
the results found with degree, regional changes occurred across 
conditions for local efficiency (Figure 6). Local efficiency (cluster-
ing), during the resting state (Figure 6, REST) was greatest in 
the precuneus/PCC, a known region of the DMN related with 
information integration. Additionally, high clustering was found 

 example, the degree maps show the consistency of the top 15% 
of nodes with the largest number of connections. These results 
show that regional changes did occur across conditions. At rest, 
areas of the default mode network (DMN) exhibited the highest 
degree (Figure 5, REST). However, the prominence of the DMN 
decreased in the remaining tasks, with the greatest shifts observed 
in the multisensory condition. Note specifically that during the 
multisensory condition the precuneus/posterior cingulate cortex 
(PCC) was no longer among the most connected brain regions. 
The shifts exhibited task-driven changes that were consistent 
with the stimulus conditions. Connectivity (K) increased in the 

Figure 4 | Whole-brain degree distributions. The degree of each node in a 
network was plotted against one minus the cumulative distribution. This was 
done for each individual in all three tasks: rest (REST), visual (VIS), and 
multisensory (MS). In all three cases, the degree distribution followed an 
exponentially truncated power law. No obvious differences between the tasks 
were observed.

Figure 5 | Degree overlay maps during rest, visual, and multisensory 
tasks. In each subject the voxels with degree values in the top 15% were 
identified. These maps represent the overlap of these voxels across subjects 
in each of the three tasks. The consistency of overlap between across 
subjects is indicated by the threshold color bar that which represents the 
percentage of individuals for which each voxel was among the top 15%. 
Degree maps show that at rest (REST) the parietal cortex has the greatest 
connectivity while the visual cortex has lower degree. There is a regional shift 
in degree during the visual task (VIS) to the visual cortex and to both the visual 
and auditory cortex during the multisensory task (MS).
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As shown with the other metrics this prominence is reduced in 
both the visual and multisensory tasks. Concurrently, there were 
increases in E

glob
 within the visual cortex during the visual task 

and in the visual and auditory cortices during the multisensory 
task.

Modular structure oF the audItory cortex
The overlap of each module containing the primary auditory 
cortex (bilateral Heschl’s gyri and the transverse temporal sulci) 
in all 20 individuals across all three tasks is shown in Figure 8. 
Of particular note is the spatial extent of these auditory modules 

in the visual cortex, likely due to the visual fixation component 
of the rest task. During the visual task (Figure 6, VIS) there was a 
dynamic shift in clustering with greater local connectivity in the 
visual cortex and a decrease in the DMN regions. This trend was 
repeated in the multisensory condition, with a pronounced local 
connectivity increase in the visual cortex as well as in the auditory 
cortex (Figure 6, MS).

The changes for global efficiency within the sensory cortices 
were less dramatic than those found for both degree and local 
efficiency. However, there was still a notable decrease in global 
efficiency within the PCC across tasks (Figure 7). These results 
show that the parietal lobe has the greatest global efficiency, which 
is equivalent to the shortest path length, in the rest condition. 

Figure 6 | Local efficiency overlay maps during rest, visual, and 
multisensory tasks. In each subject the voxels with local efficiency values in 
the top 15% were identified. These maps represent the overlap of these 
voxels across subjects in each of the three tasks. The consistency of overlap 
across subjects is indicated by the threshold color bar that represents the 
percentage of individuals. Eloc maps show that at rest (REST) the visual and 
parietal cortices have the greatest clustering. Regions of high clustering shift 
during the visual task (VIS) to the visual cortex and to both the visual and 
auditory cortex during the multisensory task (MS). A progressive decrease in 
the local efficiency in the parietal cortex was observed across the three tasks.

Figure 7 | global efficiency overlay maps, during rest, visual, and 
multisensory tasks. In each subject the voxels with global efficiency values in 
the top 15% were identified. These maps represent the overlap of these voxels 
across subjects in each of the three tasks. The consistency of overlap across 
subjects is indicated by the threshold color bar that represents the percentage 
of individuals. Eglob maps show that at rest (REST) the visual and parietal regions 
have the greatest across-network communication. There is a primary regional 
shift in global efficiency during the visual task (VIS) to the visual cortex and to 
both the visual and auditory cortices during the multisensory task (MS). In 
addition to this, there is a decrease in global efficiency within the parietal cortex 
across the three tasks. Note however, the relative change in the spatial location 
of high Eglob nodes was limited compared to K and Eloc.
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Modular structure oF the vIsual cortex
The overlap of modules containing visual cortices (bilateral calcarine 
gyri, lingual gyri, occipital [(superior; middle; inferior) sulci and the 
cuneus] is shown for all three task conditions in Figure 9. In each condi-
tion, the spatial extent is restricted to visual areas. Although quite consist-
ent across conditions, the group overlap in the visual cortex was notably 
greater in the visual and multisensory conditions as compared to rest.

changes In the network topology oF audItory and vIsual roIs
Quantitative regional differences in measures of efficiency and 
degree were found across task in both the auditory and visual ROIs 
(Table 3). Of particular interest, no main effect of condition was 

across condition. In all three conditions, there is clear overlap 
in both the primary and secondary auditory cortices. However, 
auditory modules in the rest and visual conditions display much 
less specificity to the auditory cortex and also include brain 
regions not traditionally associated with audition, most nota-
ble the somatosensory cortices. When, however, the task begins 
to explicitly incorporate sound, as it does in the multisensory 
condition, the spatial extent of the auditory modules becomes 
more restricted to the auditory cortices. Interestingly, the extent 
of overlap across subjects also changes as a consequence of task 
with modest increases demonstrated in the visual condition but 
dramatic increases in the multisensory.

Figure 8 | Change in spatial distribution of auditory module across task. 
The auditory module for each individual was selected using a mask that was 
defined by the primary auditory cortex, specifically bilateral Heschl’s gyri and 
transverse temporal sulci. After identification of the modules that encompassed 
auditory cortex in each individual, overlay images were generated for each task. 
Overlay images represent the summation of individual participant maps. The 

degree of overlay between these maps is indicated by the threshold color bar, 
which represents the percentage of participants. The spatial extent of the 
auditory module across tasks is shown to become more specific to both primary 
and secondary auditory cortices in the multisensory condition (MS). These 
modules, on the other hand, show less specificity to the auditory cortices in the 
conditions that do not have auditory stimulation: rest (REST) and visual (VIS).
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modular differences already outlined, there were main effects of task 
in E

loc
 in both the auditory and visual ROIs and K in the auditory 

ROI. There was a trend for a main effect of condition on K in the 
visual ROI, however, this did not reach a statistical significance at 

found in E
glob

, which is a network measure designed to capture 
global processing, in either region. This is similar to our previ-
ously stated findings that show generally consistent global network 
structure across different tasks. However, along with the regional 

Figure 9 | Change in spatial distribution of visual module across task. The 
same steps for generating auditory overlay maps were followed in order to 
create visual overlay maps. However, brain areas that composed the mask 
included: bilateral calcarine gyri, lingual gyri, occipital (superior; middle; inferior) 

sulci, and the cuneus. The spatial extent of the visual module across task is 
shown to remain relatively the same in all three conditions: rest (REST), visual 
(VIS), and multisensory (MS). Group overlap or consistency, on the other hand, 
exhibits an increase in both the visual and multisensory conditions.
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Modular FunctIonal cartography across task
Proportion of hub types
Significant differences in the proportion of provincial hubs (rest; 
visual; multisensory: 66; 80; 91%) and connector hubs (rest; visual; 
multisensory: 34; 20; 9%) within the auditory module across task 
were observed (Figure 11A). In this module, there was a main 
effect of task on the proportion of provincial hubs [yellow; task ×  
node function: F(1, 19) = 6.6; p < 0.05] as well as the propor-
tion of connectors [magenta; task × node function: F(1, 19) = 6.2; 
p < 0.05]. There was, however, no effect of task on the proportion of 
non-hubs (blue). These findings demonstrate that despite observed 
changes in the size of the auditory module across task (Figure 8); 
there exist real shifts in node function as a result of task demand. 
Furthermore, outside of non-hubs, it was found that there were 
predominately more connector hubs during the rest task (rest and 

p = 0.05. Regardless, it should be noted that these metrics capture 
more localized network structure and seem to be the most influ-
enced by change in condition.

whole-braIn FunctIonal cartography across task
Spatial distribution of provincial hubs
Established methods of functional cartography (Guimera and 
Nunes Amaral, 2005; Joyce et al., 2010) were used to evaluate the 
spatial consistency of provincial and connector hubs. Provincial 
hubs, which have a pc

i
 ≤ 0.3, are high degree nodes that have the 

majority of their connections within their neighborhood and are 
thought to hold neighborhoods together. Connector hubs, which 
have a 0.3 < pc

i
 ≤ 0.75, are high degree nodes that have a substan-

tial number of connections to other neighborhood and serve to 
interconnect neighborhoods. This analysis revealed that provin-
cial hubs shifted spatial location across tasks (Figure 10). During 
the rest condition, the precuneus was the predominant provincial 
hub with high spatial overlap across subjects. A decrease in the 
provincial hub status of the precuneus during the visual condition 
was associated with an increase in the provincial hubs in the lateral 
visual cortices. Also, an even greater decrease in provincial hub 
status in the multisensory condition was observed in conjunction 
with provincial hubs in both the secondary visual and auditory 
cortices. Of particular note, these visual and multisensory-specific 
provincial hubs were absent in the rest condition. These data show 
that during the low level sensory input of the rest condition, the 
precuneus a predominant provincial hub. Moreover, they dem-
onstrate that provincial hub status changes in accordance with 
task demand. Together, they suggest that brain networks, and in 
particular the role of individual nodes in maintaining modular 
organization, are dynamic in nature and can respond to external 
events in a task-dependent manner.

Table 3 | Auditory and visual rOi metric assessment.

regional network metrics

State rest Visual MS F-ratio P

AuDiTOry rOi

Eglob 0.23 (±0.02) 0.23 (±0.02) 0.23 (±0.03) 0.04 0.96

Eloc 0.45 (±0.04)* 0.47 (±0.03)* 0.49 (±0.04)* 11.97 <0.01

K 48.72 (±15.88) 52.48 (±15.14) 61.38 (±17.15)† 7.11 <0.01

ViSuAL rOi

Eglob 0.23 (±0.02) 0.23 (±0.02) 0.22 (±0.03) 0.09 0.92

Eloc 0.48 (±0.06) 0.39 (±0.07)‡ 0.50 (±0.06) 18.73 <0.01

K 51.17 (±17.66) 60.45 (±17.84)# 53.53 (±20.30) 2.87 0.07

*Post hoc pairwise comparisons reveal that all three states differ from each 
other, p < 0.05.
†Post hoc pairwise comparisons show the MS state to differ from both rest and 
visual states, p < 0.05.
‡Post hoc pairwise comparisons show the visual state to differ from both the 
rest and MS states, p < 0.05.
#Post hoc pairwise comparisons show the visual state to differ from rest state, 
p < 0.05.
A repeated measures analysis across condition was used to statistically 
compare for a main effect of task on average global efficiency (Eglob), average 
local efficiency (Eloc) and average connectivity (K) within both the auditory and 
visual ROIs, respectively (mean ± SD).

Figure 10 | Change in spatial distribution of provincial hubs across tasks. 
Individual participant provincial hub (pki ≤ 0.01 and pci ≤ 0.3) maps were 
summated within each task to create an overlay image of spatial distribution 
within brain space. Note that the consistency of the provincial hubs is generally 
lower than the overlap presented in the preceding figures. However, there is a 
clear change in provincial node location across tasks. The rest (REST) condition 
shows with the greatest number and overlap of provincial hubs between 
participants in the precuneus, a brain region known to be part of the DMN. The 
number and overlap of provincial hubs in the visual and auditory cortices 
increases during the visual (VIS) and multisensory (MS) tasks. In addition, the 
precuneus loses provincial hubs during the sensory stimulation conditions.
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 information into components, or sub-networks, that are inde-
pendent from each other. Consequently, these calculations show 
which areas in a brain are most strongly connected to other brain 
regions. Unfortunately, they do not give the researcher a sense 
of how many functional connections exist between different 
regions in a brain or between the different regions of one of 
its sub-networks.

Studies have unequivocally shown that functional connectivity 
is vulnerable to change when analyzed using either seed or com-
ponent-based techniques (Jiang et al., 2004; Ma et al., 2011). These 
studies, however, do not explore whole-brain functional connectiv-
ity and whether or not it is changed by task or changes in cognitive 
state. In particular, because of the limitations discussed above, their 
results do not imply whatsoever that the functional connectivity 
of the entire brain is vulnerable to change. Interestingly, recent 
application of graph theory and network science to functional con-
nectivity has shown that network topology, and in particular hub 
structure, is consistent regardless of task (Buckner et al., 2009). 
Though hub location may not be altered by changes in task, this 
study does not explore whether or not overall functional connectiv-
ity has been affected. For example, Buckner et al. (2009) showed 
the posterior cingulate to be an important hub during both passive 
and active task states. This finding, however, does not address if 
the brain regions functionally connected to the posterior cingulate 

visual: p = 0.05; rest and multisensory: p = 0.02) and more provin-
cial hubs during the multisensory task (rest and visual: p = 0.04; rest 
and multisensory: p = 0.02). Contrary to the shift in node function 
within the auditory modules across task, no significant changes in 
the proportion of hubs or non-hubs in the visual cortex modules 
were observed (Figure 11B).

dIscussIon
There is an evergrowing movement toward framing questions 
of functional activity as questions that relate to interdependent 
systems. To do this in the brain, a model should capture quali-
ties like distributive processing and localized specialization. In 
particular, information about the entire brain is necessary to 
best capture these properties. In the field of functional neuro-
imaging this has not been possible until the recent application 
of graph theory and the adoption of network science. Before 
this, attempts to model data as a system either involved seed or 
component-based analyses. In seed-based analyses a ROI acts as 
the starting point, or seed, from which a network is generated. 
As a consequence of focusing on one seed at a time informa-
tion about the remaining portions of the brain and how they 
relate to the network in question is lost. Component-based 
analyses, on the other hand, are closer to capturing the informa-
tion of the entire brain. These techniques separate  functional 

Figure 11 | Change in hub proportions across task. Hubs are defined as 
having a pki ≤ 0.01. Provincial (yellow; pci ≤ 0.3) and connector (magenta; 
0.3 < pci ≤ 0.75) hubs as well as non-hubs (blue; pki > 0.01) are plotted across 
task condition. In both auditory and visual modules, there was no change in the 
proportion of non-hubs across task. In the auditory module (A), a main effect of 

task was found for the proportion of hubs across condition. Connectors 
significantly decreased across task, with multisensory (MS) having the lowest 
proportion. In contrast, the proportion of provincial hubs increased across task, 
with rest (REST) having the lowest proportion. In the occipital module (B), no 
main effect of condition was found on the proportion of either hub type.
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data, although average E
glob

 and E
loc

 remained consistent, the brain 
regions within the network with greatest regional specificity and 
distributive properties changed to brain regions involved with the 
given task (Figures 6 and 7).

To further support dynamic network interactions across task 
conditions, the community structure analyses presented here show 
that the visual and auditory modules exhibit greater spatial consist-
ency and overlap during the visual and auditory tasks, respectively 
(Figures 8 and 9). For example, during the multisensory condition 
(Figure 8) the spatial extent of the auditory module across all indi-
viduals is primarily confined to the primary and secondary auditory 
cortices. To the contrary, in both the rest and visual conditions the 
auditory module also contains brain areas outside those tradition-
ally known for audition. Interestingly, there is also an observed 
shift in the proportion of provincial and connector hubs within 
the auditory module across task, with the highest proportion of 
provincials exhibited in the multisensory condition (Figure 11A, 
MS) and the highest proportion of connectors in the rest condition 
(Figure 11A, REST). The enlarged auditory modules during rest, 
which include brain regions outside the auditory cortices as well 
as a large proportion of connector hubs, may help the person sur-
vey the environment for relevant information, and ready the brain 
in the event of an external demand. These findings suggest that 
when a cortical region is actively processing external information 
it becomes more inwardly focused and connections to other brain 
regions are shut down. Such changes in connectivity may provide 
mechanisms for task-tailored information processing.

These changes in modular consistency were accompanied by 
changes in local efficiency and degree (Table 3). It is of particular 
note to mention that E

loc
 captures localized topological changes in 

networks and is the metric most reliably changed by condition. 
This finding supports the notion that a more rigorous assessment 
of change between networks should include metrics that capture 
not only the distributed properties of brain structure but also its 
regionally segregated features.

The modular organization of the auditory cortex was highly 
focused and consistent across subjects during the multisensory 
task. The auditory modules were localized and confined to the 
primary and secondary auditory cortices (Figure 8, MS) and con-
tained a greater proportion of provincial hubs than connector hubs 
(Figure 11A, MS). Together, these changes show that the auditory 
module has become more spatially specific in its information pro-
cessing during multisensory feedback. Also, the functional role of 
connectors during this task, though still integrative in nature, may 
now be more directed so as to successfully process both visual and 
auditory information. Interestingly, a combination of the elements 
of modular organization seen in both the rest and multisensory 
tasks is nicely represented by that which is exhibited in the visual 
task (Figure 8, VIS). During this task, the auditory module is not 
as regionally descript as it is in the multisensory task and instead 
looks more similar to the auditory modules of the rest condition 
(Figure 8, REST). However, the provincial and connector hub 
proportions as well as the spatial overlap across subjects are more 
similar to that seen in the auditory modules of the multisensory 
task (Figure 8, MS). In the absence of a stimulus-relevant auditory 
signal, functional connectivity was organized in a way that could 
best synthesize the available input. To do this, auditory modules 

have changed as a result of task. In our paper, we show that despite 
general consistency in network structure both qualitative and quan-
titative differences in regional network topology and functional 
connectivity arise as a consequence of task.

The application of graph theory to functional magnetic reso-
nance imaging data has primarily focused on characterizing the 
brain using whole mean calculations (Bullmore and Sporns, 2009; 
He and Evans, 2010). In addition to this, the majority of these 
studies have been conducted with participants at rest (van den 
Heuvel et al., 2008). In the last few years a trend toward explaining 
networks throughout task performance has grown (Bassett et al., 
2008; Feng et al., 2011; Xue et al., 2011; Yu et al., 2011). The resolu-
tion of nodes in these studies, however, is predominately based on 
90-node atlas templates, which have been shown to be vulnerable 
to threshold effects that cause greater inter-subject variability and 
network fragmentation (Hayasaka and Laurienti, 2010). To the best 
of our knowledge, studies of functional connectivity that use both 
the principles of graph theory and a voxel-based approach during a 
complex task are extremely limited (Eguiluz et al., 2005). In this par-
ticular case, cause and effect trends were not readily interpretable 
because of the complexity of the task. Moreover, characterizations 
of regional shifts across tasks were limited in scope as the analyses 
focused primarily on node degree.

We show that when the principles of graph theory are applied to 
voxel-sized functional imaging data during rest and simple sensory 
conditions that regional network topology changes despite gener-
ally consistent overall network structure. In partial agreement with 
current literature (Buckner et al., 2009), we present results show-
ing little change in whole-brain mean metric values across tasks 
(Table 2). However, contrary to prior results, in conducting a more 
comprehensive assessment of network structure we demonstrate 
that a full-scale analysis, which involves regional considerations, 
is necessary to understand the dynamic nature of functional con-
nectivity throughout various conditions and/or cognitive states. 
The results presented herein demonstrate the utility of assessing 
the regional specificity of several metrics. These findings empha-
size the dynamic nature of networks across task and are the first 
to show that voxel-based functional brain networks are dynamic 
and task-driven.

During rest, each metric identified the DMN, specifically the 
precuneus, as an important brain area. However, during the visual 
and multisensory tasks each metric exhibited shifts away from this 
important DMN region. Due to the consistency of the global values, 
the increases in connectivity, efficiency, and modularity within the 
visual and auditory cortices imply a decrease elsewhere within the 
network. Collectively, Figures 5–10 show this to be the case, with 
the precuneus connectivity decreasing with the addition of sensory 
stimuli. Therefore, regional metric shifts in brain networks can shed 
light on the functionality of brain areas during and across tasks.

One advantage of using network science to study the brain is 
the ability to model patterns of regional specificity and distribu-
tive properties with metrics such as Eloc

, and E
glob

. For example, an 
increased E

loc
 represents an increase in clustering and is indica-

tive of brain regions with greater regional specificity. Because E
glob

 
is the reciprocal of the characteristic path length, an increase in 
E

glob
 represents a shorter path length and therefore greater dis-

tributive properties or efficiency in information transfer. In these 
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random graph modeling approaches (Simpson et al., 2011) have 
moved the field toward more systematic ways of quantifying network 
differences between groups of individuals. The qualitative differences 
exhibited in Figures 5–10, however, are quite suggestive of quanti-
tative differences in network structure as a result of condition. The 
dilemma researchers are then left with is how to best capture this 
change using an already firmly established statistical framework. To 
do so, these analyses focused on the differences among the means 
of network metrics within a region of interest across task condition. 
In the future, statistical approaches that are better tailored to the 
nature of network metric distributions will need to be used to more 
accurately address not only regional differences but also whole-brain.

The absence of an isolated auditory condition was a limitation 
of this study. This shortcoming was due to the lack of multisensory 
stimuli that can be broken down into both a visual and an auditory 
component, while still maintain meaning. Many studies have used the 
combination of visual and auditory stimuli such as a flashing checker-
board along with a tone to assess multisensory processing. However, 
while this combination cues both visual and auditory cortices it does 
not have a dualistic component that tests higher level multisensory 
processing. Therefore, this study chose to use a more complex stimulus 
to address a true multisensory state. Unfortunately, there was not an 
auditory clip long enough in the movie that could be used for an 
auditory-only condition. If segments of the movie were concatenated 
so that there was a 5.6 minutes long auditory clip, we felt it would 
have lost contextual relevance. As a consequence, these analyses do not 
explore changes in network structure as result of audition and, thus, 
do not directly address its potential influence on networks observed 
in the multisensory condition. Future studies characterizing the effect 
of audition on network structure are needed, particularly for those 
research questions that are related to multisensory integration.

A high-resolution correlation matrix will increase network 
specificity. Unfortunately, higher resolution matrices come at the 
cost of a lower signal to noise ratio. To strike a balance between 
networks that are overly dense and likely to mask regional shifts 
in network metrics and those that are too sparse and insensitive to 
regional shifts, a threshold needs to be applied to network data. This 
threshold is ultimately arbitrary in nature; however, research with 
brain networks has offered some direction (Hayasaka and Laurienti, 
2010). Though the analyses presented here were not threshold-
dependent, it would be of great benefit to the field if a systematic 
means of thresholding networks were developed.

Taken together our findings support one overarching theme: 
networks are dynamic and undoubtedly influenced by the nature of 
stimuli presentation. Despite stability in whole-brain metric values 
across condition, we have found that a more comprehensive analysis 
of network structure is essential in understanding the dynamics of 
functional connectivity networks. More importantly, this assess-
ment must include a regional survey of the spatial distribution of 
network parameters.
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included other somatosensory cortices (Figure 8, VIS) and main-
tained a modest level of connector hubs (Figure 11A, VIS), which 
could sample information available in the rest of the network.

Neither the spatial extent nor the proportion of provincial and 
connector hubs in the visual module significantly changed across task 
(Figure 9). A likely explanation for this consistency lies in a combina-
tion of module choice and the nature of the visual tasks. In particular, 
despite there often being more than one visual module in a network, 
those modules with at least 10% of their nodes falling within the 
defined mask often represented primary visual cortices. Also, though 
sensory demand did change across task, with fixation being less visu-
ally demanding than watching a movie clip, primary visual process-
ing, and the associated functional module is likely to be involved in 
all tasks. The spatial overlap across subjects did increase in both the 
visual and multisensory tasks possibly associated with the increased 
stimulus complexity. Ultimately, what is clear from this data is that with 
increases in sensory demand and stimulus complexity a greater num-
ber of individuals exhibit spatial coherence within the visual module 
and, therefore, also exhibit dynamic and responsive brain networks.

In the whole-brain functional cartography analyses of Figure 10, 
as sensory complexity increased from the rest to the multisensory 
condition, nodes within the precuneus, which is a commonly impli-
cated DMN brain region, lost their provincial status. That is, they 
become increasingly less connected with other nodes in their modules. 
Interestingly, with this decrease in provincial node function within the 
precuneus there was a concurrent increase in provincial node function 
in those areas that are most likely to facilitate sensory processing in 
the visual and multisensory conditions: visual and auditory cortices. 
Again, as with the aforementioned findings, these results support that 
with task demand there is an associated change in network structure 
that likely facilitates overall information integration.

Collectively, these findings support the notion that brain networks 
have task-dependent dynamics. Moreover, they demonstrate how 
regional changes in network parameters may exist despite overall 
global consistency across conditions. Overall, our analyses in com-
munity structure underscore a common theme in these data: within 
various sensory conditions there are unique underlying networks that 
are dependent on the sensory load of the task. When we assess the 
nodes within these communities, or more specifically the modules 
within individual networks, a similar theme emerges. That is, a node’s 
function within modules changes depending on condition type.

Comparing networks across subjects and tasks is an obstacle 
with inherent limitations. In the current state of research, the easiest 
and most widely used method of evaluating and comparing net-
works has been through the use of mean whole-brain metric values 
that are statistically compared across subjects to test for change. 
There are two inherent problems with this approach. First, the 
choice of metrics may potentially influence the observed findings. 
That is, the metrics of any one study may not be sufficiently sensi-
tive to capture change. Second, and as this paper demonstrates, the 
resolution used to study networks will also undoubtedly bias results. 
In light of these limitations, this study compared networks on an 
extensive list of network parameters and did so at two resolutions: 
the whole-brain and nodal level.

It should be noted that the methodology behind quantifying 
regional differences in networks that are generated under the princi-
ples of graph theory is far from being well established. Recently, edge-
based statistical techniques (Fornito et al., 2011) and  exponential 

Moussa et al. Task-induced changes in functional brain networks

Frontiers in Human Neuroscience www.frontiersin.org August 2011 | Volume 5 | Article 83 | 14

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


connectivity: uses and interpretations. 
Neuroimage 52, 1059–1069.

Simpson, S. L., Hayasaka, S., and Laurienti, 
P. J. (2011). Exponential random graph 
modeling for complex brain networks. 
PLoS ONE 6, e20039. doi: 10.1371/
journal.pone.0020039

Stam, C. J., and Reijneveld, J. C. (2007). 
Graph theoretical analysis of com-
plex networks in the brain. Nonlinear 
Biomed. Phys. 1, 3.

Tzourio-Mazoyer, N., Landeau, B., 
Papathanassiou, D., Crivello, F., Etard, 
O., Delcroix, N., Mazoyer, B., and Joliot, 
M. (2002). Automated anatomical 
labeling of activations in SPM using a 
macroscopic anatomical parcellation 
of the MNI MRI single-subject brain. 
Neuroimage 15, 273–289.

van de Ven, V. G., Formisano, E., Prvulovic, D., 
Roeder, C. H., and Linden, D. E. (2004). 
Functional connectivity as revealed by 
spatial independent component analy-
sis of fMRI measurements during rest. 
Hum. Brain Mapp. 22, 165–178.

van den Heuvel, M. P., Stam, C. J., Boersma, 
M., and Hulshoff Pol, H. E. (2008). 
Small-world and scale-free organiza-
tion of voxel-based resting-state func-
tional connectivity in the human brain. 
Neuroimage 43, 528–539.

Watts, D. J., and Strogatz, S. H. (1998). 
Collective dynamics of ‘small-world’ 
networks. Nature 393, 440–442.

Xue, S., Tang, Y. Y., and Posner, M. I. (2011). 
Short-term meditation increases net-
work efficiency of the anterior cingu-
late cortex. Neuroreport. 22, 570–574.

Yu, Q., Sui, J., Rachakonda, S., He, H., 
Pearlson, G., and Calhoun, V. D. 
(2011). Altered small-world brain net-
works in temporal lobe in patients with 
schizophrenia performing an auditory 
oddball task. Front. Syst. Neurosci. 5:7. 
doi: 10.3389/fnsys.2011.00007

Conflict of Interest Statement: The 
authors declare that the research was con-
ducted in the absence of any commercial 
or financial relationships that could be 
construed as a potential conflict of interest.

Received: 21 March 2011; accepted: 28 July 
2011; published online: 22 August 2011.
Citation: Moussa MN, Vechlekar CD, 
Burdette JH, Steen MR, Hugenschmidt CE 
and Laurienti PJ (2011) Changes in cog-
nitive state alter human functional brain 
networks. Front. Hum. Neurosci. 5:83. doi: 
10.3389/fnhum.2011.00083
Copyright © 2011 Moussa, Vechlekar, 
Burdette, Steen, Hugenschmidt and 
Laurienti. This is an open-access article sub-
ject to a non-exclusive license between the 
authors and Frontiers Media SA, which per-
mits use, distribution and reproduction in 
other forums, provided the original authors 
and source are credited and other Frontiers 
conditions are complied with.

PLoS ONE 5, e12200. doi: 10.1371/
journal.pone.0012200

Latora, V., and Marchiori, M. (2001). 
Efficient behavior of small-world 
networks. Phys. Rev. Lett. 87, 198701.

Ma, L., Steinberg, J. L., Hasan, K. M., Narayana, 
P. A., Kramer, L. A., and Moeller, F. G. 
(2011). Working memory load modu-
lation of parieto-frontal connections: 
evidence from dynamic causal mod-
eling. Hum. Brain Mapp. doi: 10.1002/
hbm.21329. [Epub ahead of print].

Maldjian, J. A., Laurienti, P. J., Kraft, R. A., 
and Burdette, J. H. (2003). An auto-
mated method for neuroanatomic and 
cytoarchitectonic atlas-based interro-
gation of fMRI data sets. Neuroimage 
19, 1233–1239.

Maslov, S., and Sneppen, K. (2002). 
Specificity and stability in topology of 
protein networks. Science 286, 910–913.

McKeown, M. J., Makeig, S., Brown, G. G., 
Jung, T. P., Kindermann, S. S., Bell, A. 
J., and Sejnowski, T. J. (1998). Analysis 
of fMRI data by blind separation into 
independent spatial components. 
Hum. Brain Mapp. 6, 160–188.

Michael, A. M., Calhoun, V. D., 
Andreasen, N. C., and Baum, S. A. 
(2008). A method to classify schizo-
phrenia using inter-task spatial cor-
relations of functional brain images. 
Conf. Proc. IEEE Eng. Med. Biol. Soc. 
2008, 5510–5513.

Newman, M. E. (2002). Assortative mixing 
in networks. Phys. Rev. Lett. 89, 208701.

Newman, M. E. (2003a). The structure 
and function of complex networks. 
SIAM Rev. 45, 167–256.

Newman, M. E. (2003b). Mixing patterns 
in networks. Phys. Rev. E Stat. Nonlin. 
Soft Matter Phys. 67, 026126.

Newman, M. E., and Girvan, M. (2004). 
Finding and evaluating community 
structure in networks. Phys. Rev. E Stat. 
Nonlin. Soft Matter Phys. 69, 026113.

Newman, M. E. J. (2008) “Mathematics 
of networks,” in The New Palgrave 
Dictionary of Economics, 2nd Edn, 
Eds. N. S. Durlauf and L. E. Blume. 
Basingstoke: Palgrave Macmillan. 
Available at: http://www.dictionaryo-
feconomics.com/article?id=pde2008_
M000361 [August 03, 2011].

Radloff, L. S. (1977). The CES-D scale: 
a self-reported depression scale for 
research in the general population. 
Appl. Phychol. Meas. 1, 385–401.

Raichle, M. E., MacLeod, A. M., Snyder, A. 
Z., Powers, W. J., Gusnard, D. A., and 
Shulman, G. L. (2001). A default mode 
of brain function. Proc. Natl. Acad. Sci. 
U.S.A. 98, 676–682.

Ruan, J., and Zhang, W. (2008). Identifying 
network communities with a high 
resolution. Phys. Rev. E Stat. Nonlin. 
Soft Matter Phys. 77, 016104.

Rubinov, M., and Sporns, O. (2010). 
Complex network measures of brain 

Feng, Y., Bai, L., Ren, Y., Wang, H., Liu, 
Z., Zhang, W., and Tian, J. (2011). 
Investigation of the large-scale functional 
brain networks modulated by acupunc-
ture. Magn. Reson. Imaging 34, 31–42.

Folstein, M. F., Folstein, S. E., and 
McHugh, P. R. (1975). “Mini-mental 
state.” A practical method for grading 
the cognitive state of patients for the 
clinician. J. Psychiatr. Res. 12, 189–198.

Fornito, A., Yoon, J., Zalesky, A., Bullmore, 
E. T., and Carter, C. S. (2011). General 
and specific functional connectivity 
disturbances in first-episode schizo-
phrenia during cognitive control per-
formance. Biol. Psychiatry 70, 64–72.

Freeman, L. C. (1979). Centrality in social 
networks: conceptual clarification. 
Soc. Networks 1, 215–239.

Girvan, M., and Newman, M. E. (2002). 
Community structure in social and 
biological networks. Proc. Natl. Acad. 
Sci. U.S.A. 99, 7821–7826.

Guimera, R., and Nunes Amaral, L. A. 
(2005). Functional cartography of 
complex metabolic networks. Nature 
433, 895–900.

Hampson, M., Tokoglu, F., Sun, Z., Schafer, 
R. J., Skudlarski, P., Gore, J. C., and 
Constable, R. T. (2006). Connectivity-
behavior analysis reveals that func-
tional connectivity between left BA39 
and Broca’s area varies with reading 
ability. Neuroimage 31, 513–519.

Hayasaka, S., and Laurienti, P. J. (2010). 
Comparison of  characteristics 
between region-and voxel-based net-
work analyses in resting-state fMRI 
data. Neuroimage 50, 499–508.

He, Y., and Evans, A. (2010). Graph theo-
retical modeling of brain connectivity. 
Curr. Opin. Neurol. 23, 341–350.

Hugenschmidt, C. E., Mozolic, J. L., Tan, H., 
Kraft, R. A., and Laurienti, P. J. (2009). 
Age-related increase in cross-sensory 
noise in resting and steady-state cerebral 
perfusion. Brain Topogr. 21, 241–251.

Humphries, M. D., and Gurney, K. 
(2008). Network “small-world-ness”: 
a quantitative method for determining 
canonical network equivalence. PLoS 
ONE 3, e0002051. doi: 10.1371/jour-
nal.pone.0002051

Ishihara, S. (1917). Test for Color-Blindness. 
Tokyo: Hongo Harukicho.

Jafri, M. J., Pearlson, G. D., Stevens, M., 
and Calhoun, V. D. (2008). A method 
for functional network connectivity 
among spatially independent resting-
state components in schizophrenia. 
Neuroimage 39, 1666–1681.

Jiang, T., He, Y., Zang, Y., and Weng, X. 
(2004). Modulation of functional 
connectivity during the resting state 
and the motor task. Hum. Brain Mapp. 
22, 63–71.

Joyce, K. E., Laurienti, P. J., Burdette, J. H., 
and Hayasaka, S. (2010). A new meas-
ure of centrality for brain networks. 

reFerences
Ashburner, J., and Friston, K. J. (2005). 

Unified segmentation. Neuroimage 
26, 839–851.

Babor, T. F., Higgins-Biddle, J. C., 
Saunders, J. B., and Monteiro, M. 
G. (2001). AUDIT: The Alcohol 
Use Disorders Identification Test: 
Guidelines for Use in Primary Care. 
2nd Edn. World Health Organization, 
Geneva.

Bassett, D. S., Bullmore, E., Verchinski, 
B. A., Mattay, V. S., Weinberger, D. R., 
and Meyer-Lindenberg, A. (2008). 
Hierarchical organization of human 
cortical networks in health and schizo-
phrenia. J. Neurosci. 28, 9239–9248.

Beckmann, C. F., DeLuca, M., Devlin, J. T., 
and Smith, S. M. (2005). Investigations 
into resting-state connectivity using 
independent component analysis. 
Philos. Trans. R. Soc. Lond. B Biol. Sci. 
360, 1001–1013.

Biswal, B., Yetkin, F. Z., Haughton, V. M., 
and Hyde, J. S. (1995). Functional con-
nectivity in the motor cortex of resting 
human brain using echo-planar MRI. 
Magn. Reson. Med. 34, 537–541.

Buckner, R. L., Sepulcre, J., Talukdar, T., 
Krienen, F. M., Liu, H., Hedden, T., 
Andrews-Hanna, J. R., Sperling, R. 
A., and Johnson, K. A. (2009). Cortical 
hubs revealed by intrinsic functional 
connectivity: mapping, assessment of 
stability, and relation to Alzheimer’s 
disease. J. Neurosci. 29, 1860–1873.

Bullmore, E., and Sporns, O. (2009). 
Complex brain networks: graph theoret-
ical analysis of structural and functional 
systems. Nat. Rev. Neurosci. 10, 186–198.

Calhoun, V. D., Adali, T., Pearlson, G. D., 
and Pekar, J. J. (2001). Spatial and tem-
poral independent component analy-
sis of functional MRI data containing 
a pair of task-related waveforms. Hum. 
Brain Mapp. 13, 43–53.

Calhoun, V. D., Pekar, J. J., McGinty, V. B., 
Adali, T., Watson, T. D., and Pearlson, 
G. D. (2002). Different activation 
dynamics in multiple neural systems 
during simulated driving. Hum. Brain 
Mapp. 16, 158–167.

Colcombe, S., and Kramer, A. F. (2003). 
Fitness effects on the cognitive func-
tion of older adults: a meta-analytic 
study. Psychol. Sci. 14, 125–130.

De Luca, M., Beckmann, C. F., De Stefano, 
N., Matthews, P. M., and Smith, S. M. 
(2006). fMRI resting state networks 
define distinct modes of long-distance 
interactions in the human brain. 
Neuroimage 29, 1359–1367.

Dijkstra, E. W. (1959). A note on two 
problems in connexion with graphs. 
Numer. Math. 1, 269–271.

Eguiluz, V. M., Chialvo, D. R., Cecchi, 
G. A., Baliki, M., and Apkarian, A. V. 
(2005). Scale-free brain functional 
networks. Phys. Rev. Lett. 94, 018102.

Moussa et al. Task-induced changes in functional brain networks

Frontiers in Human Neuroscience www.frontiersin.org August 2011 | Volume 5 | Article 83 | 15

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

	Changes in cognitive state alter human functional 
brain networks
	Introduction
	Materials and Methods
	Study sample
	Imaging study design
	Scan details
	Anatomical image processing
	Functional image processing
	Generating whole-brain networks
	Network metrics
	Overall community structure
	Identifying auditory and visual modules
	Quantifying auditory and visual module network metrics
	Modular hub organization

	Results
	Whole-brain mean network metrics
	Nodal network metrics
	Modular structure of the auditory cortex
	Modular structure of the visual cortex
	Changes in the network topology of auditory and visual ROIs
	Whole-brain functional cartography across task
	Spatial distribution of provincial hubs

	Modular functional cartography across task
	Proportion of hub types


	Discussion
	Acknowledgments
	References


