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affective state, but without losing the understanding that it is the 
other person’s affective state that is the cause of one’s own. Two 
important remarks should be made, however, in light of the current 
experiment. First of all, the focus on the affective response should 
not ignore the importance of sensory processes, as we shall see. 
Secondly, although empathy is certainly not restricted to the shar-
ing of negate affective states, most neuroscientific investigations, 
this one included, have used the observation of pain as a model 
to test the notion of shared representations in empathy. Indeed, it 
has been firmly established that the observation of pain in others 
involves a network of affective brain regions, such as the anterior 
cingulate, paracingulate gyrus, and anterior insular, that are also 
activated during the first-person experience of pain (Ingvar, 1999; 
Rainville, 2002). Furthermore, responses in these regions have been 
found using a wide variety of paradigms, from presenting abstract 
cues of other people in pain (Singer et al., 2004; Jackson et al., 2005; 
Saarela et al., 2007), to pictures of body parts being pinpricked 
(Lamm et al., 2007), and painful facial expressions (Jabbi and 
Keysers, 2008). Empathetic responses in these brain regions have, 
furthermore, been shown to be influenced by social contexts such as 
group membership and perceived fairness (Hein et al., 2010) as well 
as task demands and knowledge about the reality of the stimulus 
(Gu and Han, 2007). Often, but less consistently, primary soma-
tosensory regions are found to be involved, which seems to depend 

IntroductIon
When seeing a football player receive a painful tackle we cringe 
and might even grasp our own knee in affective resonance with the 
victim’s painful state. This phenomenon of vicarious pain experi-
ence is explained in the perception–action account of empathy: 
“The attended perception of the object’s state automatically activates 
the subject’s representation of the state, situation, and object, and the 
activation of these representations automatically primes or generates 
the associated autonomic and somatic responses, unless inhibited” 
(Preston and de Waal, 2002).

The perception–action account of empathy for pain has been 
greatly expanded upon in the last decade, resulting in a nuanced 
neuroscientific framework that integrates knowledge of affective 
and perception–action processes with an understanding of the 
influences of social context, expectation, and attention (for a com-
prehensive review on its evolutionary basis and social expression 
in humans and animals see Preston and de Waal, 2002, and for a 
systematic review on the neuroscience of empathy see Decety and 
Jackson, 2004; de Vignemont and Singer, 2006; Singer, 2006). de 
Vignemont and Singer (2006) offer a precise definition of empathy, 
distinguishing it from cognitive perspective taking on the one hand 
and emotional contagion on the other. They characterize empathy 
as being in an affective state isomorphic to another person’s affective 
state, elicited by observation or imagination of another person’s 
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on the availability of the sensory information about the painful 
stimulus. In their meta-analysis of nine fMRI experiments, Lamm 
et al. (2011) showed that vicarious activation of the somatosensory 
cortex seems only to occur when visual details of the flesh-and-bone 
aspect of the painful situation are observed, not when these are 
inferred from abstract cues. The authors propose, however, that this 
somatosensory activation reflects unspecific co-activation elicited 
by the visual display of body parts rather than a specific matching 
of the other’s somatosensory and nociceptive state. This is in line 
with their aforementioned characterization of empathy as, first and 
foremost, an affective state. Other authors, however, have argued 
for the functional importance of primary sensory cortices as part 
of the empathetic (pain) response, subserving pain intensity, and 
location coding (Keysers et al., 2010). Interestingly, in this respect 
individual propensities differ greatly, as shown by Osborn and 
Derbyshire (2010). They reported that those people that respond 
to painful images by experiencing a “real” sensation of pain, show 
activation of somatosensory cortices, while these regions are not 
activated in those that do not have such first-person experiences. 
Further evidence for the involvement of sensory cortices in pain 
observation comes from electroencephalography (EEG) studies. 
Bufalari et al. (2007) recorded a reduction of early sensory-evoked 
potentials after medial nerve stimulation when subjects were watch-
ing movies of limbs in painful situations. Pain systems are also 
tightly linked to action systems (Ingvar, 1999; Saitoh et al., 1999; 
Juottonen et al., 2002; Farina et al., 2003; Wager et al., 2004), and 
it has been repeatedly shown that observation of painful movies 
strongly inhibits corticospinal excitability specific for the muscle 
that was observed being pinpricked (Avenanti et al., 2005, 2006, 
2009). These findings together suggest that primary sensorimotor 
regions are indeed involved in the empathetic response in ways that 
entails more than aspecific increases in arousal.

Questions of when empathetic responses occur have been inves-
tigated using EEG scalp recordings. Fan and Han (2008) found 
larger early (140–380 ms) frontal event-related potentials (ERPs) 
amplitudes in response to pictures of limbs in painful situations 
compared to those in control situations. These early empathic 
responses were influenced by contextual reality (real pictures ver-
sus cartoons). Later (380–500 ms) central–parietal effects of pain 
that were prominent in a pain judgment task, were greatly reduced 
when subjects only had to count the number of limbs. This shows 
that the empathetic response can be modulated at different times, 
due to different task contexts, in line with a model of empathy that 
permits modulation of an automatic perception–action response at 
multiple stages (de Vignemont and Singer, 2006). Frequency analy-
sis of EEG and magnetoencephalography (MEG) recordings has 
also been a particularly successful tool in studying the involvement 
of the sensorimotor system in action, touch, and pain observation. 
Alpha (∼10 Hz) and beta (∼20 Hz) oscillations originating from the 
sensorimotor cortex (Hari and Salmelin, 1997) have been impli-
cated in action observation (Hari et al., 1998; Cochin et al., 1999; 
Jarvelainen et al., 2001; Rossi et al., 2002; Muthukumaraswamy 
and Johnson, 2004; Muthukumaraswamy et al., 2004; Nakamura 
et al., 2004; Pineda, 2005; Kilner et al., 2006; Caetano et al., 2007; 
Oberman et al., 2007; Holz et al., 2008; Koelewijn et al., 2008; van 
Elk et al., 2008) recognizing point-light biological motion (Ulloa 
and Pineda, 2007), as well as in understanding  communicative 

 gestures (Nakamura et al., 2004). Muthukumaraswamy and Johnson 
(2004) were the first reporting a reduction of the beta rebound after 
medial nerve stimulation when subjects concurrently observed a 
hand being brushed or pricked, but not when only movement was 
observed. Cheng et al. (2008) also observed reduced alpha rebound 
after medial nerve stimulation while people watched static pictures 
of limbs in painful situations. Although these studies point to a 
modulation of the somatosensory cortex, they do not show how 
somatosensory oscillations respond to the observation of pain in 
the absence of actual somatosensory stimulation. To investigate 
such a visual-to-somatosensory process, three EEG studies inves-
tigated effects on ongoing alpha oscillations after observing images 
of painful situations versus control images, without a contingent 
transcranial or median nerve stimulation. Two of these studies 
showed more sensorimotor alpha suppression in response to pain 
than in response to control images (Yang et al., 2009; Perry et al., 
2010), while a third study showed reduced alpha suppression (Mu 
et al., 2008). One reason for these contradictory outcomes might 
have been the fact that volume conduction makes it difficult to 
separate sensorimotor alpha (or mu-rhythm) from posterior alpha 
sources in EEG scalp recordings (Hari and Salmelin, 1997). Since 
the strongest modulation of alpha power typically involves alpha-
blocking in response to visual stimulation (Pfurtscheller et al., 
1996), this activity might have confounded the interpretation of 
alpha activity from central sources that was found by Mu et al. 
(2008). Indeed, Perry et al. (2010) only found increased suppres-
sion by pain observation on fronto-central but not on posterior 
sensors, while Yang et al. (2009) only found increased central alpha 
suppression. Although these findings strongly suggest alpha sup-
pression in response to the observation of pain in others, they suffer 
from a lack of spatial resolution needed to univocally establish a 
sensorimotor origin. These studies also suffered from underspeci-
fied or confounded time windows of interest. In Perry et al. (2010) 
alpha suppression was calculated over the full 2 s post-stimulus, 
from stimulus-onset to stimulus offset, while in Yang et al. (2009) 
the first 1.3 s directly after stimulus-onset were used. In both cases 
stimulus-onset evoked responses were therefore included, making 
it ambiguous to what degree their observations can be interpreted 
exclusively as a modulation of ongoing alpha activity and to what 
degree evoked responses contributed (Steriade et al., 1990; Lopes 
da Silva, 1991; Pfurtscheller and Lopes da Silva, 1999; Mazaheri and 
Jensen, 2010). Mu et al. (2008) did perform an analysis on separate 
time windows and reported modulation of the alpha suppression 
only between 200 and 400 ms after stimulus-onset. They also tried 
to minimize the effect of phase-locked activity on the power esti-
mate by subtracting average ERP in response to stimulus-onset. 
Since images were presented for only 200 ms, the power estima-
tion might have still been confounded by transients in response 
to stimulus offset. Finally, the evaluation of every stimulus in Mu 
et al. (2008) might have resulted in motor-preparation which pre-
viously has been shown to interact with sensorimotor oscillations 
in response to pain (Babiloni et al., 2008).

Concerns about the mixing of central and posterior sources, 
evoked activity and motor-preparation aside, the differences in 
the direction of alpha modulation might also point to the interest-
ing possibility that different functional processes were involved. 
Historically, alpha activity has been interpreted as reflecting a 
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task that required no evaluation or motor responses to the stimuli. 
To reduce concerns of mixing sources from different regions we 
recorded brain activity using MEG and applied a beamformer tech-
nique for source estimation. We did a time–frequency analysis over 
the whole post-stimulus interval, but restricted our statistical analy-
sis on the non-evoked period (>400 ms). We hypothesized greater 
sensorimotor alpha suppression in response to painful images than 
in response to the observation of control images.

MaterIals and Methods
PartIcIPants
Twenty-one healthy participants (15 female, mean age 26.6 years, 
range: 20–49) enrolled after providing written informed consent 
and were paid in accordance with guidelines of the local ethics com-
mittee (CMO Committee on Research Involving Humans subjects, 
region Arnhem-Nijmegen, the Netherlands). Two participants were 
excluded from the analysis due to excessive eye or movement arti-
facts. One subject fell asleep during the experiment and was excluded 
as well. The experiment was in compliance with national legislation 
as well as the code of ethical principles (declaration of Helsinki).

stIMulI
A series of 128 digital color pictures showing right hands and right 
feet in painful and non-painful situations were used. These stimuli 
were previously used and validated in behavioral and fMRI studies 
(Jackson et al., 2005, 2006) and one MEG study (Cheng et al., 2008). 
All pictures depicted familiar events that can happen in everyday 
life involving mechanical, thermal, and pressure pain. The neutral 
pictures involved the same settings without any painful component. 
All pictures were edited to the same size (600 × 450 pixels).

subjectIve eMPathy Index
Within 2 weeks before the experiment commenced subjects filled 
in the Interpersonal Reactivity Index, a self-report questionnaire 
measuring different factors related to empathy (Davis, 1983).

exPerIMent
While seated in the MEG system, the stimuli were projected on a 
screen about 80 cm in front of the subject. These were all presented 
in random order for 1.5 s per trial, interleaved with gray fixations 
screens of 1.5 s (Figure 1). The procedure was repeated over three 

non-functional “cortical idling” state (Pfurtscheller et al., 1996). 
This view has recently been challenged, and a more functional 
interpretation of alpha has been formulated that describes a mech-
anisms of gating-through-inhibition (Klimesch, 1999; Neuper 
and Pfurtscheller, 2001; Schack and Klimesch, 2002; Jensen and 
Mazaheri, 2010). According to this view, task-irrelevant regions 
are inhibited through an increase of alpha oscillations, routing 
information to task-relevant regions. For instance, it has been 
demonstrated that alpha activity over visual areas increases in 
motor tasks and vice versa (Pfurtscheller et al., 1996). A similar 
mechanism seems to function when attention is directed within 
the visual or somatosensory domain. For instance, when cov-
ert attention is directed to one hemifield (e.g., the left), alpha 
decreases in the contralateral (right) hemisphere but increases 
in the ipsilateral (left) hemisphere (Worden et al., 2000; Thut 
et al., 2006; Rihs et al., 2007; Kelly et al., 2009; van Gerven and 
Jensen, 2009; Handel et al., 2010). Alpha activity was also shown 
to decrease in the primary sensorimotor cortex contralateral to 
the engaged hand while it increased in the ipsilateral hemisphere 
during a somatosensory working memory task. In line with such a 
view, we propose that the findings of Yang et al. (2009) and Perry 
et al. (2010) show how observation of pain in others induces 
a disinhibition of the somatosensory cortex through alpha sup-
pression. This would create the optimal cortical context in which 
somatosensory processes such as location and intensity coding of 
the observed pain (Keysers et al., 2010) can be performed. Such 
an account might also tentatively explain the increase in alpha 
reported by Mu et al. (2008). The short (200 ms) presentation of 
images, together with the task of evaluating these on their painful 
content, could have resulted in an increase of functional inhibi-
tion of the somatosensory cortices for the purpose of reducing 
interference during the evaluation of the somatosensory (pain) 
representation. Similar processes have indeed been shown dur-
ing the retention interval in a visual long term memory task 
(Meeuwissen et al., in press) as well as during as somatosensory 
working memory task (Haegens et al., 2011) where distraction in 
the visual or somatosensory modality was inhibited.

In the current experiment all of the previous concerns were dealt 
with for the purpose of unequivocally identifying sensorimotor 
alpha suppression in the observation of pain in others. Subjects 
viewed images of limbs in pain and no-pain situations in a passive 

1.5s

+

+

1.5s

FiGurE 1 | The experimental paradigm. Subjects were presented with pictures depicting limbs painful and non-painful situation, interleaved with gray fixation 
screens. 10% of the pictures showed a small rotation in the center of the picture (red highlight), the total number of which they had to internally count and report 
back after each session.
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values were  calculated as the sum of the horizontal and vertical 
component of the estimated planar gradient after subtracting the 
mean amplitude from the entire time interval. The planar gradi-
ent power estimates were subsequently averaged over trials for 
the pain and control condition. To investigate the event-related 
changes in activity we calculated the change of power in response 
to stimulus presentation relative to the average power during the 
200-ms before stimulus-onset.

For the time window surrounding the stimulus (−0.4 to 1.5 s), 
event-related fields (ERFs) were calculated. The data were then 
low-pass filtered at 40 Hz using a butterworth filter (order of six), 
and averaged separately for every condition. Similarly as with the 
frequency analysis, averaging was done on the planar gradients 
after which they were summed.

statIstIcal analysIs on the sensor level
To avoid “double dipping” (Kriegeskorte et al., 2009) we restricted 
our statistical comparison to those sensors where we have previ-
ously shown the central mu-rhythm to be maximally modulated 
in a somatosensory task (Haegens et al., 2011: MLC24, MLC25, 
MLC31, MLC32, MLP35, MLC42, MLP23, MRC24, MRC25, 
MRC31, MRC32, MRP35, MRC42, MRP23, see highlighted sen-
sors in Figure 3A); We compared the mean log transformed alpha 
(7–14 Hz) and beta (15–25 Hz) band power over 1 s post-stimulus 
period, starting at 400 ms to exclude the contribution of evoked 
components. Although no differences in the beta-band activity were 
expected, a clear beta suppression in response to both pain and 
non-painful stimuli prompted an ad hoc testing for differences 
between conditions.

source reconstructIon
Source reconstruction was performed using a frequency-domain 
beamformer approach (Dynamic Imaging of Coherent Sources) 
which uses adaptive spatial filters to localize power in the entire 
brain (Gross et al., 2001; Liljestrom et al., 2005). The brain vol-
ume of each individual subject was discretized to a grid with a 
0.8-cm resolution. For every grid point a spatial filter was con-
structed from the cross-spectral density matrix and the lead field. 
The lead fields were calculated from a subject specific realistic 
single-shell model of the brain (Nolte, 2003), based on the indi-
vidual anatomical MRIs. We calculated the cross-spectral density 
matrix based upon both the post-stimulus (200–1400 ms) as well 
as pre-stimulus (1400–200 ms pre-stimulus) interval to obtain 
the most accurate estimation of the alpha source. Furthermore, 
both conditions were combined for the purpose of calculating 
the spatial filter, after which the power at each grid point was 
estimated for both conditions separately in every subject. Sources 
were estimated using a multitaper approach to accomplish accu-
rate frequency smoothing for the alpha band (10 ± 2 Hz by using 
three Slepian tapers). Prior to averaging, the source estimates of 
the individual subjects’ functional data were spatially normalized 
using SPM2 to the International Consortium for Brain Mapping 
template (Montreal Neurological Institute, MNI, Montreal, QC, 
Canada2).

blocks resulting in a total experimental time of ∼45 min. Subjects 
were instructed to remain relaxed and not move their limbs, their 
compliance observed by the experimenter using infrared camera. 
To make sure subjects paid attention to the stimuli, 10 percent 
of presentations showed a short twisted movement, created by 
shortly (∼500 ms) presenting, within one stimulation, the same 
picture modified with a twirl filter (Photoshop, Adobe Systems 
Inc.). Subjects were required to internally count the number of 
these occurrences and report them to the experimenter after each 
block. Target stimuli were discarded from further analysis. The 
experiment was programmed and ran using the software package 
Presentation1.

data acquIsItIon
Continuous MEG was recorded using a 275 sensor axial gradi-
ometer system (CTF MEG TM Systems Inc., Port Coquitlam, BC, 
Canada) placed in a magnetically shielded room. The ongoing 
MEG signals were low-pass filtered at 300 Hz, digitized at 1200 Hz, 
and stored for off-line analysis. The subjects’ head position was 
continuously recorded relative to the gradiometer array using 
coils positioned at the subject’s nasion and at the left and right 
ear canals. High-resolution anatomical images (1 mm isomet-
ric voxel size) were acquired using a 1.5-T Siemens Magnetom 
Sonata system (Erlangen, Germany). The same earplugs, using 
vitamin E instead of the coils, were used for coregistration with 
the MEG data.

data analysIs
Magnetoencephalography data was analyzed using the Matlab-
based Fieldtrip toolbox, developed at the Donders Institute for 
Brain, Cognition and Behavior (Oostenveld et al., 2011). Trials con-
taining movement,  muscle, and superconducting quantum inter-
ference device (SQUID) jumps were discarded by visual inspection. 
Independent component analysis (ICA) was used to remove eye 
and heart artifacts. For the sensor-level analysis, planar gradients of 
the MEG field distribution were calculated using a nearest-neigh-
bor method comparable with the method described by Bastiaansen 
and Knosche (2000) and also applied by, e.g., Jokisch and Jensen 
(2007), Nieuwenhuis et al. (2008), Mazaheri et al. (2009), Haegens 
et al. (2010), and Haegens et al. (2011). The horizontal and vertical 
components of the estimated planar gradients approximate the 
signal measured by planar gradiometers while making the sensor-
level data easier to interpret as the maximal activity is typically 
located above the source (Hamalainen et al., 1993). For source 
reconstruction, however, we used the original data from the axial 
sensors.

tIMe–frequency and erf analysIs on the sensor level
For the time window surrounding the stimulus (−0.4 to 1.5 s), 
time–frequency representations (TFRs) of power were calcu-
lated using a Hanning taper approach applied to short sliding 
time windows (Percival and Walden, 1993) using an adaptive 
time window of four cycles length (∆t = 4/f). The data in each 
time window were multiplied with a Hanning taper. The power 

1http://nbs/neurobs.com 2http://www.bic.mni.mcgill.ca/brainweb
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SEM = 0.63%, p = 0.019, one-sided) demonstrating that the painful 
stimuli resulted in stronger sensorimotor alpha suppression than 
pictures showing non-painful situations. Difference in beta power 
only showed a trend toward increased suppression (mean differ-
ence 1.41%, SEM = 1.07%, p = 0.062, one-sided). Source analysis 
confirmed that the origin of the alpha difference was located along 
the central sulcus (Figure 3D).

no dIfference In the erf between PaInful and control 
PIctures
We also calculated the ERFs to investigate if pain observation could 
be observed in neuronal activity time-locked to the stimulus. Early 
visual evoked components (<400 ms) were clearly reflected in the 
ERFs, while during the interval in which we found sustained alpha 
suppression (>400 ms) the ERF deflection returned toward baseline. 
A cluster-based randomization test based upon every timepoint 
found no difference between conditions for neither occipital nor 
central sensors (depicted in the boxes of Figure 2A), nor for the 
central sensors selected for our frequency analysis (Figure 3C). Our 
findings of increased alpha suppression therefore seem unrelated 
to differences in evoked responses.

no correlatIons wIth subjectIve eMPathy rePorts
We also tested for correlations between the magnitude of the mod-
ulation of the neuronal response by the pain effect and subjective 
reports of empathetic distress in daily life. Individual scores on 
the Interpersonal Reactivity Index (Davis, 1983) did not correlate 
reliably with the magnitude of the alpha modulation  (perspective 

results
Subjects were presented with static images depicting limbs in pain-
ful and non-painful situations from a first-person perspective. We 
investigated the role of sensorimotor rhythms in processing the 
painful content.

wIde-sPread ModulatIon of alPha- and beta-band actIvIty 
followIng vIsual stIMulI
First, we investigated the responses to combined painful and non-
painful stimuli. As shown in Figure 2A, these resulted in marked 
reductions in occipital alpha (mean 49.9% of baseline, SEM 5.3%), 
extending to central sensors power (mean 74% of baseline, SEM 
4.3%). At central sensors separate alpha and beta components could 
readily be distinguished (Figures 2B,C). This demonstrates wide-
spread modulation in the alpha and beta frequencies including 
both occipital and central regions.

greater sensorIMotor alPha suPPressIon In resPonse to 
PaInful PIctures
We then tested if these oscillatory responses were different in 
response to painful compared to non-painful stimuli. As pre-
dicted, the strongest modulation was observed at central regions 
over the head (Figure 3A), showing consistency in topography 
with a previous investigation of attention-related alpha modula-
tion using the same MEG system and comparable spectral analysis 
(Haegens et al., 2011). A t-test comparing the average (log trans-
formed) power between pain and control pictures on these sensors 
(Figure 3B) yielded a significant difference (mean difference 2.19%, 

FiGurE 2 | Oscillatory responses to visual stimuli. (A) The topographic representation of alpha (7–14 Hz) suppression in response to visual stimuli (0.5–1.35 s). (B) 
Time–frequency representations of central and (C) occipital sensors, respectively, as identified by the boxes in (A). Time–frequency window of interest (0.4–1.35 s; 
7–14 Hz) outlined in black.
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demands (Klimesch, 1999; Neuper and Pfurtscheller, 2001; Schack 
and Klimesch, 2002; Jensen and Mazaheri, 2010). Increased alpha 
suppression in the observation of pain is also in accordance with 
previous reports of oscillatory involvement in the subjective percep-
tion of (first-person) pain intensity (Babiloni et al., 2006) and in the 
anticipation of pain (Babiloni et al., 2008) and fits well within the 
general understanding that sensorimotor alpha oscillations provide 
a dynamically modulated cortical context for somatosensory pro-
cessing (Lopes da Silva, 1991; Pfurtscheller and Lopes da Silva, 1999; 
Haegens et al., 2010, 2011). What sensorimotor alpha suppression 
might represent in terms of underlying empathetic mechanisms 
remains under debate, however. While activation of sensorimotor 
regions in fMRI studies can be interpreted in terms of perception–
action coupling (Keysers et al., 2010), or of unspecific co-activation 
(Lamm et al., 2011), our results taken together with the emerging 
understanding of the functional relevance of alpha oscillations 
(Lopes da Silva, 1991; Klimesch, 1999; Jensen and Mazaheri, 2010), 
however strongly suggest a disinhibition of the sensorimotor corti-
ces in response to the observation of pain in others. It is in no way 
suggested, however, that sensorimotor alpha suppression is by itself 
sufficient for empathy. As has been argued convincingly at length 
elsewhere (de Vignemont and Singer, 2006; Keysers et al., 2010; 

taking: p = 0.494, empathetic concern: p = 0.862; fantasy: p = 0.433; 
personal distress: p = 0.248; total: p = 0.522), nor with the magni-
tude of the beta modulation (perspective taking: p = 0.667, empa-
thetic concern: p = 0.910; fantasy: p = 0.829; personal distress: 
p = 0.486; total: p = 0.960).

dIscussIon
We used MEG to investigate neural oscillations in vicarious pain 
perception. We found wide-spread alpha- and beta-band depres-
sion in response to visual stimuli, predominantly at posterior sen-
sors. In contrast to these wide-spread visual responses, observing 
pain depressed alpha power selectively more at central sensors. By 
applying source modeling we identified the sources of this differ-
ence along the central sulcus, implicating sensorimotor regions 
in the observation of pain. Strikingly, central and posterior ERFs 
did not show differences between conditions, suggesting a unique 
role for induced activity in the brain’s response to observing other 
people in pain. These results provide support for the involvement 
of sensorimotor oscillations in empathetic responses.

Alpha oscillations might be providing a graded level of excitabil-
ity and inhibition in task relevant and irrelevant regions, stream-
lining information flow dependent on moment-by-moment task 

FiGurE 3 | Sensorimotor alpha suppression in response to pain. (A) The 
topographical representation of the difference in sensorimotor alpha power 
(7–14 Hz) calculated by subtracting average alpha power (0.4–1.35 s; log 
transformed) of the no-pain stimuli from the painful stimuli. Highlighted sensors 
are taken from Haegens et al. (2011). (B) Time–frequency representation of the 

pain minus no-pain condition of the highlighted sensors in (A). Box depicts 
time–frequency window of interest (p = 0.019). (C) Evoked responses and SD 
for pain and no-pain averaged over highlighted sensors from (A). (D) Source 
reconstructions of alpha difference obtained using beamformer, showing 
sources along the central sulcus.
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