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Studies employing event-related potentials have shown that when participants are monitor
ing for a novel target face, the presentation of their own face elicits an enhanced negative
brain potential in posterior channels approximately 250 ms after stimulus onset. Here, we
investigate whether the own face N250 effect generalizes to other highly familiar objects,
specifically, images of the participant's own dog and own car. In our experiments, partici-
pants were asked to monitor for a pre-experimentally unfamiliar target face (Joe), a target
dog (Experiment 1: Joe's Dog) or a target car (Experiment 2: Joe's Car). The target face
and object stimuli were presented with non-target foils that included novel face and object
stimuli, the participant’s own face, their own dog (Experiment 1), and their own car (Exper
iment 2). The consistent findings across the two experiments were the following: (1) the
N250 potential differentiated the target faces and objects from the non-target face and
object foils and (2) despite being non-targets, the own face and own objects produced an
N250 response that was equal in magnitude to the target faces and objects by the end
of the experiment. Thus, as indicated by its response to personally familiar and recently
familiarized faces and objects, the N250 component is a sensitive index of individuated

representations in visual memory.
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INTRODUCTION
Successful face recognition depends on our ability to quickly
and accurately individuate a particular face (e.g., our roommate,
spouse, best friend) from the hundreds of faces that we encounter
every day. The rapid face identification of people at the individual
level is the hallmark of human face recognition processes (Tanaka,
2001). Amongst all the familiar faces that we individuate, perhaps,
no face is as familiar or as relevant to us as our own face. In addition
to its extensive familiarity, the own face is uniquely salient because
it references one’s self-identity (Keenan et al., 2001). However,
personal individuation is not unique to face recognition. A similar
kind of individuation occurs when we reach for our favorite coffee
mug in the kitchen cupboard or try to locate our car in a crowded
parking lot. Whether the perception and identification of these
highly familiar, personal objects recruits similar neural processes
as the recognition of one’s own face is still an open question. Using
event-related potentials (ERPs), we will compare brain activity to
the participant’s own face and other personal objects (i.e., partic-
ipant’s own dog and own car). We will further compare the brain
activity to the participant’s own face and own objects to newly
familiarized faces and objects that are individuated by a name label.
Studies measuring adult ERPs have shown that faces are dif-
ferentiated from non-face objects by a larger negative potential
recorded over posterior electrode locations, approximately 170 ms

(N170) after stimulus onset (Bentin et al., 1996; Rossion et al.,
2003). Traditionally, the N170 has not been found to distinguish
familiar from unfamiliar faces (e.g., celebrities, politicians) or to
be sensitive to memory related factors (Bentin and Deouell, 20005
Eimer, 2000; Schweinberger et al., 2002; Tanaka et al., 2006). How-
ever, recent investigations, incorporating adaptation techniques
or other various individuation tasks have found N170 effects for
repeated or familiar stimuli (Jemel et al., 2005, 2009; Jacques and
Rossion, 2006; Kovacs et al., 2006; Caharel et al., 2009; Keyes et al.,
2010), suggesting that the N170’s sensitivity to face familiarity may
be task dependent.

In addition to being sensitive to the task, the N170 has also been
found to distinguish among other important non-face objects
present in the environment. For example, the N170 is larger in
response to birds relative to dogs in bird experts, and to dogs
relative to birds in dog experts (Tanaka and Curran, 2001). More-
over, training novices with cars or birds leads to increased N170
responses post-training relative to pre-training (Scott et al., 20006,
2008). Combined, these results suggest that the N170, tradition-
ally thought to be part of a system involved in the initial early
coding of face and face-like stimuli, is modulated by familiarity
and experience for both faces and objects.

The N250 component, also recorded over posterior electrode
locations, peaks approximately 250 ms after stimulus onset and,
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unlike the N170, is consistently found to index face familiarity
and repetition (Schweinberger et al., 2002, 2004). For example,
priming experiments have shown that repeated presentations of a
familiar politician or celebrity elicit a larger N250 than repeated
presentations of novel faces (Schweinberger et al., 2002, 2004).
The N250 component is also sensitive to novel faces familiarized
under laboratory training conditions (Tanaka et al., 2006) and to
the presentation of a familiar person across multiple viewpoints
(Kaufmann et al., 2009)!. These results indicate that the N250
component indexes perceptual memory representations for faces
at the level of the individual.

However, the N250 familiarity effect is not specific to faces, but
can be elicited by familiar objects after expertise training (e.g., cars,
birds; Scott et al., 2006, 2008). For example, participants trained
to identify birds or cars at the subordinate-level (e.g., Snowy Owl,
Subaru Outback) exhibit an enhanced N250 to subordinate-level
trained birds or cars relative to individuals trained at the basic level
(e.g., Owl, Sedan). This kind of subordinate-level expertise is also
present when viewing a single, personalized object (Sugiura et al.,
2005; Miyakoshi et al., 2007). For example, Miyakoshi et al. (2007)
asked participants to passively view cups, shoes, hand bags, and
umbrellas that were: (1) personal items belonging to the partici-
pant, (2) generically familiar items that were pre-experimentally
known, but not personal items, or (3) novel items not known to the
participants. The results showed a left-lateralized N250 compo-
nent that distinguished personally familiar and generically familiar
objects from novel and unfamiliar objects, suggesting that items
previously known to participants accessed stored representations
in visual memory.

Previous research suggests that the N250 differentiates objects
of expertise and personally familiar objects from unfamiliar
objects. However, the results do not address whether the N250
differentially modulates highly familiar faces from highly familiar
objects. More specifically, to date no experiments have compared
the N250 in response to the participant’s own face to the N250
in response to other highly familiar objects. Arguably, one’s own
face is the definitive marker of self-identity and has been hypoth-
esized to be our most distinctive physical feature (Tsakiris, 2008).
It has been demonstrated that one’s own face is identified more
quickly in a visual search task (Tong and Nakayama, 1999), shows
greater hemispheric specialization (Keenan et al., 2003) and elic-
its enhanced fusiform gyrus activity (Kircher et al, 2001). It
has also been hypothesized that one’s own face captures atten-
tional resources (Brédart et al., 2006). For example, in a flanker
task when participants were asked to judge whether two flank-
ing digits were both even or odd, performance was significantly
disrupted when the own face was centrally presented as a to-
be-ignored stimulus (Devue and Bredart, 2008). Thus, the own
face is a prepotent stimulus that seems to automatically grab

!t is important to differentiate the present generic use of the word “familiarity”
and its ERP correlates from the sense in which familiarity is often described as
a sub-process of recognition memory that has been associated with the FN400
component (reviewed by, Rugg and Curran, 2007). N250 familiarity effects require
repeated exposure whereas the FN400 is influenced by single exposures in the con-
text of study/test recognition tasks (for further discussion, see Curran and Hancock,
2007).

the observer’s attention (for a revised account see Devue et al.,
2009).

In the current study, we adapted a “Joe/No Joe” task previ-
ously used to test own face recognition, to examine the processing
of highly familiar personal objects (Tanaka et al., 2006). In the
“Joe/No Joe” task, participants are asked to actively monitor for
a target face (“Joe”) that is sequentially presented along with two
types of non-target faces: completely novel faces and the partici-
pant’s own face. It was found that despite its non-target status, the
participant’s own face generated a robust N250 component equiv-
alent to the target Joe face suggesting that the participant’s own face
obligatorily activates a pre-existing representation (Tanaka et al.,
2006). In the current study, participants were asked to monitor
for a target face (Joe) and a target object (Joe’s dog or Joe’s car)
that were shown among other novel faces, novel objects, the par-
ticipant’s own face and a personally familiar object (Experiment
1: the participant’s own dog; Experiment 2: the participant’s own
car). The primary objectives of this study were to test whether per-
sonally familiar objects elicit an obligatory N250 response similar
to the N250 response produced by one’s own face and to compare
the N250 response to the own face and own-object to the N250
response to the recently familiarized and task-relevant face (Joe)
and object (Joe’s Dog, Joe’s Car).

EXPERIMENT 1

In Experiment 1, participants were asked to monitor for a novel
face and a novel dog target that were serially presented among their
own face and dog and novel face and dog stimuli.

MATERIALS AND METHODS

Participants

Participants included 12 (3 male, 9 female) undergraduate stu-
dents recruited from the University of Victoria, aged 22—40 years
(mean = 27.25). Participants were right-handed and had normal
or corrected-to-normal vision. All participants gave informed con-
sent to participate in this study. Participants were pre-screened to
ensure that they were not familiar with any of the other subjects
in the study.

Each participant completed two sessions on different days.
During the first session, pictures of the participants and their
dogs were taken. During the second session ERPs and behavioral
responses were recorded while participants completed a target-
detection task. Participation in session two took approximately
2 h. Participants were paid $30 for their time.

Stimuli

Stimuli included full color photographs of 12 faces and 12 dogs.
Photographs of faces and dogs were taken with a digital camera
in a well-lit room under similar conditions and were equated for
size, luminance, and contrast using Adobe Photoshop. All images
were cropped to show only the face or dog stimuli and were placed
on a gray background. The assignment of stimuli to each experi-
mental condition (Joe, Own, Other) was counterbalanced across
participants so that each participant was exposed to each face and
dog equally, and each face/dog appeared in each condition. All
stimuli were 270 x 360 pixels and were presented at a visual angle
of 9.03° horizontal and 11.95° vertical. Images were presented on
a computer monitor.
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General procedure

All procedures were approved by the Institutional Review Board at
the University of Victoria and were conducted in accordance with
this approval. After digital photographs of participants’ own dog
and face were taken, they returned on a different day to complete
the Joe/No Joe task while both ERPs and behavioral measures of
accuracy were recorded.

In the Joe/No Joe task (see Figure 1), participants were intro-
duced to a face and dog target (e.g., “Joe”) and then viewed and
responded to face or car stimuli that included pictures of their
own face or dog, the “Joe” target face or dog and novel faces or
dogs. After viewing each stimulus, participants were prompted to
determine whether each face or dog was “Joe” or “not Joe” using
two separate response buttons. Females saw six female “Jane” faces
and males saw six male “Joe” faces including their own face, as
well as the six dogs owned by the corresponding people. Each trial
included the presentation of a fixation cross (500 ms), followed
by the face or dog image (500 ms), followed by a blank screen
for 1000 ms, followed by a response prompt which remained on
the screen until a response was made, up to 3000 ms. Participants
were instructed to respond only when prompted so that exposure
and response were separated by a 1000-ms interval. Each partic-
ipant completed 35 blocks of trials with self-paced rest breaks in
between. Each block contained 24 trials; 2 presentations of each of
the 6 faces and 6 dogs. Fight-hundred forty trials were completed
in total.

Electrophysiological procedure

Scalp voltages were collected with a 41-channel Easy Cap using
Brain Vision Recorder software (Version 1.3, Brain Products,
GmbH, Munich, Germany). Amplified analog voltages (Quick
Amp, Brain Products, GmbH, Munich, Germany; 0.017-67.5 Hz
bandpass, 90dB octave roll off) were digitized at 250 Hz and
collected continuously. Filter cutoffs during recording have cut-
off frequencies defined at —3 dB amplitude reduction. Electrode
impedances were kept below 10k throughout the experiment
and eye movements were measured using electrodes placed on
the left and right canthi and below the right eye. Offline, the

EEG data were filtered at 0.1-40 Hz passband. High and low
cutoff filters reduced amplitude by 3 dB at their cutoff frequen-
cies, corresponding to a half power reduction. EEG data were
re-referenced to combined left and right earlobes (Joyce and
Rossion, 2005; Luck, 2005; similar to Tanaka and Pierce, 2008).
Ocular artifacts were corrected using an algorithm (Gratton et al.,
1983) and an artifact rejection was used to remove trials with
a change in voltage of 35V or greater. 1000 ms segments of
the EEG were extracted around the stimulus presentation (—200
to 800ms) for each trial and participant. ERPs were baseline-
corrected with respect to a 100-ms pre-stimulus interval. Data were
then averaged across conditions (face/dog x Joe/own/other), and
participants.

Statistical analyses

Accuracy in each condition was at ceiling and thus no analyses
were conducted using measures of accuracy. Reaction times were
recorded but were not considered informative due to the delayed
nature of the paradigm in which participants were instructed not
to respond until the prompt.

Electrophysiological analyses of each component of interest
(N170;N250) were analyzed separately. The channels were selected
by identifying the electrode locations in the right and left hemi-
sphere with the largest N170 and N250 across all conditions
(channels P07 and P08). For the N170 peak amplitude was deter-
mined by finding the latency of the maximum peak within a
window of 110-190 ms. In order to minimize selection bias, peak
times and channels were determined from ERPs that were aver-
aged across all conditions. Mean amplitude was then calculated
in a window £ 1 SD from average peak latency: 142-183 ms. For
each participant, maximum (negative) peak amplitude and peak
latency were calculated within the window of interest for the N170.
Average latency values for peak amplitude were in turn used to
determine the time window for the N170 mean amplitude cal-
culation. Mean amplitude was calculated within the window of
interest for the N250 based on visual inspection and previous
research (235-335 ms; Scott et al., 2006, 2008; Tanaka et al., 2006),
rather than the peak latency approach used for the N170, because

E

500 ms

Joe?

1000 ms

3000 ms

were presented subsequent to a fixation.

FIGURE 1 | Stimuli presentation; images presented for 500 ms followed by a “Joe?/Joe’s Dog?” forced choice response (duration 3000 ms). All images

‘
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1 2
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N250 peaks are difficult to reliably measure in individual subjects?.
Statistical analyses were conducted on these mean amplitudes.
Average amplitudes were submitted to a 2 Stimulus Type (face,
car) x 3 Condition (Joe, own, other) x 2 Experimental half (first
half, second half) x 2 Hemisphere (left, right) repeated mea-
sures ANOVA. Bonferroni corrected paired ¢-tests were conducted
to follow-up significant effects, however uncorrected values are
also shown below in order to elucidate some of the significant
interactions.

RESULTS AND DISCUSSION

Electrophysiological results

N170. Repeated measures ANOVA analyses revealed a main
effect of stimulus type, due to a greater mean amplitude N170
to faces relative to dogs [F(1, 11) =9.35, p < 0.05]. No other sig-
nificant main effects were found (Figures 2A,B, 4, and 5). There
was a significant interaction between stimulus type and hemi-
sphere [F(1,11) =10.71, p < 0.01], and a significant experimental
half by hemisphere interaction [F(1, 11) =5.94, p < 0.05], which
were qualified by a significant interaction between stimulus type,
experimental half, and hemisphere [F(1, 11) =4.66, p=0.05].
This three-way interaction was due to the fact that the difference
between faces and dogs occurred within the right hemisphere only,
with greater amplitude N170s for faces relative to dogs (p < 0.01).
While N170 amplitude for dogs was equal across hemispheres over
time, from the first to the second half (p > 0.05), there was a mar-
ginal trend for faces to show greater N170 amplitude in the left

2Inspection of grand average differences waves suggested that own face 250 differ-
ences peaked earlier than for own dog (Experiment 1) or own car (Experiment 2).
Unfortunately, we were not able to quantify these differences because individual
subject data were too noisy to estimate peak latency of these differences.

hemisphere as compared to the right hemisphere, in the second
half only (p =0.10).

A repeated measures ANOVA conducted on latency values with
the factors stimulus type (face, dog), condition (own, Joe, other),
and half (first, second) showed that the latencies were significantly
longer for dogs (MN =162.6 ms) than faces (MN = 149.1 ms),
[F(1,11) =39.93, p < 0.001].

N250. A significant main effect of condition [F(2, 22) =19.12,
p <0.001] was found due to a greater (more negative) ampli-
tude N250 to own stimuli and target stimuli relative to other
stimuli (p <0.01; Figures 3A,B, 4, and 5). There were signifi-
cant interactions between condition and experimental half [F(2,
22)=4.87, p<0.05], and between condition and hemisphere
[F(2,22) =5.78, p < 0.05]. Greater N250 amplitude was seen to
both own and target stimuli when compared to other stimuli in
the first and second halves of the experiment (all p < 0.01). N250
amplitude to own stimuli was equivalent to target stimuli across
experimental halves. While N250 amplitude was equivalent for
both own and target stimuli across hemispheres, greater N250
amplitude was observed for other stimuli in the left hemisphere
when compared to the right (p < 0.01; see topographic maps in
Figures 6 and 7).

Although the stimulus type x condition x half interaction was
not significant, pair-wise comparisons indicate different patterns
of results for faces and dogs (Figures 3A,B for significance of
pair-wise comparisons). Starting with the dogs, we found that
both the own and target dogs elicited a more negative N250 than
the other dogs in both the first and second halves of the experi-
ment (p < 0.05 first half, p < 0.01 second half, uncorrected), with
no differences between the own and target conditions (p > 0.10).
Faces showed a similar pattern with own face eliciting a more
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FIGURE 2 | Comparison of mean amplitude of the N170 to Own, Target,
and Other conditions across the first and second experimental halves for
(A) Experiment 1 faces, (B) Experiment 1 dogs, (C) Experiment 2 faces,
and (D) Experiment 2 cars. Error bars represent 95% confidence intervals.
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Experiment 1 electrode sites: average P07, PO8; Experiment 2 electrode sites:
Mean of electrodes in the left hemisphere (58, 59, 64, 65, and 70) and right
(92, 97 91, 96, 90, and 95) hemispheres, corresponding to regions between
standard locations and O1/02 and T5/T6.
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Experiment 1 electrode sites: average P07, P08; Experiment 2 electrode sites:
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FIGURE 4 | Comparison of ERP waveforms from stimulus onset to Own, Target, and Other conditions for Experiment 1 faces (A) first half left
hemisphere, (B) second half left hemisphere, (C) first half right hemisphere, and (D) second half right hemisphere. Left hemisphere electrode: P07; Right
hemisphere electrode: P08.

negative N250 than other face (p <0.001), a marginally signif-
icant difference between own and target faces (p < 0.07), and a
significant difference between target and other faces (p < 0.01)

in the first half. By the second half, own face and the target
face were similar (p > 0.10), and both were more negative than
other face (p <0.001). By itself, this single marginal difference
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Experiment 1: Dogs

hemisphere electrode: P08.
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FIGURE 5 | Comparison of ERP waveforms from stimulus onset to Own, Target, and Other conditions for Experiment 1 dogs (A) first half left
hemisphere, (B) second half left hemisphere, (C) first half right hemisphere, and (D) second half right hemisphere. Left hemisphere electrode: PO7; Right
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FIGURE 6 | Topographical maps for Experiment 1 faces showing the difference in amplitude between Own and Joe, Joe and Other, and Own and
Other conditions during the first and second half of the experiment. Time points were selected as the average latency where differences across conditions
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does not constitute much of a distinction between faces and dogs,
but we point it out here because it was significantly replicated in
Experiment 2.

Experiment 1 was designed to test the N250 familiarity effect
shown in previous studies (e.g., Tanaka et al., 2006) both by repli-
cating effects seen to own and experimentally familiarized faces,

and investigating whether this process generalizes to own and
experimentally familiarized non-face objects (i.e., dogs). With
respect to the earlier N170 component, a face N170 effect was
observed in which the N170 to faces was faster and greater than
the N170 to dogs (e.g., Carmel and Bentin, 2002). Other differ-
ences were found between the N170 to faces and dogs. The N170
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FIGURE 7 | Topographical maps for Experiment 1 dogs showing the difference in amplitude between Own and Joe, Joe and Other, and Own and
Other conditions during the first and second half of the experiment. Time points were selected as the average latency where differences across conditions
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to faces was greatest over the right hemisphere whereas no hemi-
sphere differences were observed for dogs. Both the face and dog
N170 was not sensitive to familiarity to the extent that no within-
category differences were observed between the own, Joe and other
conditions for dogs or faces.

In contrast to the N170, the N250 showed sensitivity to familiar-
ity, demonstrated by differences between the own, target, and other
conditions. Both faces and dogs showed more negative N250s in
response to the own and target conditions relative to the other
condition. These results are similar to those previously reported
by Tanaka et al. (2006), except that the previous experiment indi-
cated that differences between the target and other conditions
did not emerge until the second half — suggesting that learning
the target face over the course of the experiment made the target
familiarity effect slower to emerge than the immediate familiarity
effect observed for the own face. However, consistent with Tanaka
et al. (2006), the present experiment indicated a trend toward
differences between the own and target faces in the first half of
the experiment. Conversely, the own and target dog conditions
showed absolutely no differences. Thus, the temporal dynamics of
the own versus target familiarity effects may differ between dogs
and faces, for reasons that will be examined in the General Discus-
sion. Overall, these results suggest that increased N250 amplitude
to familiar stimuli is not limited to human faces, as similar results
were observed for both dogs and faces. Despite monitoring for the
other target face and object stimuli, participants demonstrated a
robust N250 to their own face and the face of their own dog. Exper-
iment 2 was designed to determine whether this result is specific
to living objects, such as human and animal faces or whether a
self-relevance bias generalizes to non-living objects, such as one’s
own car.

EXPERIMENT 2

In Experiment 2, participants were asked to monitor for novel face
and car targets that were presented serially among images of their
own face, their own car and other novel car and face stimuli.

MATERIALS AND METHODS

Participants

Participantsincluded 30 right-handed (15 male, 15 female), under-
graduates recruited from the University of Colorado at Boulder.
Participants had normal or corrected-to-normal vision. All par-
ticipants gave informed consent to participate in this study. Data
from six participants were excluded from analysis. One participant
who had his picture taken was excluded for failure to return
for the EEG session. Five others were excluded because excessive
alpha activity obscured their ERPs. The final sample included 24
participants (12 females).

Each participant completed two sessions on different days. Dur-
ing the first session, pictures of the participants and their cars were
taken. Participants were paid $5.00 for session 1. During the second
session ERPs and behavioral responses were recorded while partic-
ipants completed a target-detection task. Participation in session
two took approximately 2h and participants were paid $15 per
hour.

Stimuli

Stimuli included full color photographs of 30 faces and 30 cars.
Photographs of faces were taken with a digital camera in a well-lit
room, and photographs of cars were taken with the same digital
camera outside. All images were equated for size, luminance, and
contrast using Adobe Photoshop. All images were cropped to show
only the face or car and were placed on a gray background. For
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stimulus counterbalancing purposes each participant was assigned
to one of five different cohorts of six subjects. The assignment of
stimuli to each experimental condition (Target, Own, Other) was
counterbalanced across participants within each cohort so that
each participant was exposed to each of the six faces and cars
within the cohort 70 times, and each face/car appeared in each
condition. Stimuli were displayed on a 15” Mitsubishi flat-panel
monitor. Each stimulus was approximately 3 cm wide and 4 cm
high subtending a visual angle of approximately 1.9° and 2.4° in
the horizontal and vertical dimensions respectively.

Procedure

All procedures were approved by the Institutional Review Board
at the University of Colorado and were conducted in accordance
with this approval. After digital photographs of participants’ own
car and face were taken, they returned on a different day to com-
plete the Joe/No Joe task while both ERPs and behavioral measures
of accuracy and reaction time were recorded.

Similar to Experiment 1, in the Joe/No Joe task, participants
were introduced to a face and car target (e.g., “Joe”) and then
viewed and responded to face or car stimuli that included pictures
of their own face or car, the “Joe” target face or car and novel faces
and cars. After viewing each stimulus, participants were prompted
to determine whether each face or car was “Joe” or “not Joe” using
two separate response buttons. Females saw six female “Jane” faces
and males saw six male “Joe” faces including their own, along with
the six cars of the corresponding people. Each trial included the
presentation of a fixation cross (500 ms), followed by the face or
car image (500 ms), followed by a delayed-response sequence con-
sisting of a 500-ms blank screen and a 1000-ms response prompt.
Participants were instructed to withhold their responses until the
prompt appeared, and then press one of two buttons correspond-
ing to whether or not the stimulus was “Joe” or “Not Joe.” A blank
1000 ms inter-trial interval followed the response. Each partici-
pant completed 35 blocks of trials with self-paced rest breaks in
between. Each block contained 24 trials; 2 presentations of each of
the 6 faces and 6 cars presented randomly for a total of 840 trials.

Electrophysiological procedure

Scalp voltages were collected with a 128-channel Geodesic Sensor
Net™(Tucker, 1993) connected to an AC-coupled, 128-channel,
high input impedance amplifier (200 M2, Net Amps™, Electri-
cal Geodesics Inc., Eugene, OR, USA). Amplified analog voltages
(0.1-100 Hz bandpass) were digitized at 250 Hz and collected con-
tinuously. Filter cutoffs were specified as the —3 dB point, which
is half power. This was the same for offline filtering. Individ-
ual sensors were adjusted until impedances were less than 50 k€2.
Offline, the EEG data were low-pass filtered at 40 Hz. Trials were
discarded from analyses if they contained eye movements (ver-
tical EOG channel differences greater than 70 V) or more than
10 bad channels (changing more than 100 @V between samples,
or reaching amplitudes over 200 LV). EEG from individual chan-
nels that was consistently bad for a given participant was replaced
using a spherical interpolation algorithm (Srinivasan et al., 1996).
EEG was measured with respect to a vertex reference (Cz), but
an average-reference transformation was used to minimize the
effects of reference-site activity and accurately estimate the scalp

topography of the measured electrical fields (Dien, 1998). The
average reference was corrected for the polar average-reference
effect (Junghofer et al., 1999). ERPs were baseline-corrected with
respect to a 100-ms pre-stimulus recording interval.

Statistical analyses

Accuracy in each condition was at ceiling and thus no analyses
were conducted using measures of accuracy. Reaction times were
collected but were not considered informative due to the delayed
nature of the paradigm in which participants were instructed not
to respond until the prompt.

Electrophysiological analyses of each component of interest
(N170;N250) were analyzed separately. Due to the relatively higher
electrode density in Experiment 2, groups of electrodes were used
instead of single channels. The channels were selected by iden-
tifying the electrode locations in the right and left hemisphere
with the largest N170 and N250 across all conditions (channels
58 and 92, between standard locations O1/02 and T5/T6). Analy-
ses were conducted on averaged ERPs across the mean of these
channels and five immediately adjacent electrodes in the left hemi-
sphere (59, 64, 65, 69, and 70) and right hemisphere (97, 91, 96,
90, and 95). These locations are immediately lateral to standard
locations P07 and P08 used in Experiment 1, so similar locations
were analyzed in both experiments despite differences in number
of recording electrodes and reference choice. Windows used in
analyses included 147-215ms after stimulus onset for the N170
and 235-335 ms after stimulus onset for the N250. As in Experi-
ment 1, the N170 window was calculated as £1 SD from average
peak latency, whereas the N250 latency window was based on pre-
vious research and identical to that used in Experiment 1. Mean
amplitudes were submitted to a 2 Stimulus Type (face, car) x 3
Condition (Joe, own, other) x 2 Experimental half (first half, sec-
ond half) x 2 Hemisphere (left, right) repeated measures ANOVA.
Bonferroni corrected paired ¢-tests were conducted to follow-up
significant effects.

RESULTS AND DISCUSSION
Electrophysiological results
N170. Repeated measures ANOVA analyses revealed a main effect
of stimulus type [F(1, 23) =23.32, p <0.0001] due to a greater
peak amplitude N170 response to faces compared to cars. In
addition, analyses revealed a marginal main effect of hemisphere
[F(1,23) =4.04, p=0.056] due to a greater amplitude response
in the right relative to the left hemisphere. No condition effects or
interactions were significant (all ps > 0.05; see Figures 2C,D).
Analyses of the peak latency response for the N170 revealed a
main effect of stimulus type [F(1,23) =16.33, p > 0.001] dueto a
longer latency response to cars (M =191 ms, SE = 2.2) relative to
faces (M = 184 ms; SE =2.5). In addition, there was a significant
interaction between condition, experimental half, and hemisphere
[F(2, 46) =4.79, p =0.01]. This interaction was due to a longer
latency response in the right (M = 192 ms; SE = 2.1) relative to the
left (M = 185 ms, SE = 2.8) hemisphere in the second half of the
Joe condition (p < 0.01).

N250. Significant main effects of stimulus type [F(1,23) = 62.88,
p <0.0001] and condition [F(2, 46) =32.30, p < 0.0001] were
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found (see Figures 3C,D, 8, and 9). The main effect of stimu-
lus type was due to a greater amplitude N250 for cars compared
to faces and the main effect of condition was due to a greater
response to the own and target stimuli compared to the other
stimuli (follow-up paired comparison ps < 0.01). However, both
of these main effects were qualified by interactions. Analyses

revealed a significant interaction between condition and experi-
mental half [F(2,46) = 11.39, p < 0.001]. Follow-up comparisons
revealed that this interaction was due to a greater amplitude
response to the own stimuli compared to the target stimuli com-
pared to the other stimuli in the first half and a greater amplitude
N250 to the own stimuli and target stimuli relative to the other
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stimuli in the second experimental half (ps < 0.05; Figures 3C,D, 8
and 9).

In addition, interactions between condition and hemisphere
[F(2, 46) =6.16, p <0.01] and stimulus type and hemisphere
[F(1,23) =6.81, p < 0.02] were found. Follow-up analyses suggest
that the interaction between condition and hemisphere was due to
a greater response to the target and own stimuli compared to the
other stimuli in the left hemisphere and a greater response to the

own stimuli compared to the Joe stimuli which were both greater
than the other stimuli in the right hemisphere (all ps < 0.05).
Finally, the interaction between stimulus type and hemisphere was
due to a marginally greater amplitude to faces in the right com-
pared to the left hemisphere (p =0.07; see topographic maps in
Figures 10 and 11).

As in Experiment 1, the condition X stimulus type interaction
was not significant, but potential differences in the time course of

Experiment 2:

were maximal.

Joe - Other

Faces Own - Joe
1st Half

~1.0|N_ ow ﬁw A.0uV
2nd Half

— - —
A0V oW 100V A0V

FIGURE 10 | Topographical maps for Experiment 2 faces showing the difference in amplitude between Own and Joe, Joe and Other, and Own and
Other conditions during the first and second half of the experiment. Time points were selected as the average latency where differences across conditions

Own - Other

300 - 304 ms

—= — -
oW 100 A0V ow 104V

300 - 304 ms. 300 -304 ms

- — =
o 10V A0WV (1'% 100V

Experiment 2:

Cars Own - Joe

1st Half

2nd Half

were maximal.

Joe - Other

—
A0

— —
0wV o 104V 0wV

FIGURE 11 | Topographical maps for Experiment 1 cars showing the difference in amplitude between Own and Joe, Joe and Other, and Own and
Other conditions during the first and second half of the experiment. Time points were selected as the average latency where differences across conditions

Own - Other

-
oW 10V

300 - 304 ms 300 - 304 ms

o
ow 104V 0w o 10

Frontiers in Human Neuroscience

www.frontiersin.org

October 2011 | Volume 5 | Article 111 | 10


http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

Pierce et al.

Familiar face and object N250

the familiarity effects were found for the pair-wise comparisons
(see Figures 3C,D). As in Experiment 1, in the second half of the
experiment both faces and cars showed differences between target
and own versus other conditions, but target and own conditions
did not differ. Faces and cars appeared to differ in the first half such
that cars showed a pattern that was similar to the second half, but
target faces fell significantly in between the own and other con-
ditions. Thus, as for faces and dogs in Experiment 1, familiarity
effects were slower to develop for faces than cars in Experiment 2.

Experiment 2 tested the specificity of the previously reported
N250 familiarity effect (Tanaka et al, 2006) by showing
participants pictures of their own car and own face along with
novel faces and cars and a target car or face. Consistent with pre-
vious research investigating the electrophysiological response to
faces versus objects (e.g., Carmel and Bentin, 2002), the present
experiment found a greater amplitude and faster latency N170
response to faces compared to cars. This N170 effect was not
influenced by subsequent within-experiment familiarization to
cars or faces and did not differ for the target or non-target stimuli.

Unlike the N170, the N250 amplitude was influenced by
experimental familiarization. For both faces (Figure 8) and cars
(Figure 9), the N250 was significantly more negative for the own
than other novel conditions within both the first and second
halves of the experiment, indicating an effect of pre-experimental
familiarity on the N250 manifesting itself in the early part of the
experiment. For cars, the N250 responded similarly to target cars
as for subjects’ own cars, each being differentiated from novel cars
in each half of the experiment. For faces, on the other hand, target
familiarity effects were slower to develop since target faces signif-
icantly differed from the own face in the first, but not the second
half of the experiment. Collectively, the main results from Exper-
iment 2 suggest that the N250 is sensitive to pre-experimentally
familiar stimuli, such as the participant’s own face or own car,
even when the items were not directly pertinent to the experi-
mental task. The current study shows that the N250 to personally
familiar objects (Miyakoshi et al., 2007) is of the same magnitude
as personally familiar faces.

GENERAL DISCUSSION

The present experiments investigated the neural correlates of
perceiving personally familiar, newly familiar and foil faces and
objects. The pattern of response to the personally familiar faces
and objects was remarkably consistent across the two experiments.
Consistent with previous findings (e.g., Bentin et al., 1996; Eimer,
2000) the N170 component to faces was larger in amplitude and
peaked faster than that elicited to non-face dog and car stimuli.
However, the within-category manipulations of familiarity (own
versus other stimuli) and task relevance (target versus non-target
stimuli) had little effect on the amplitude and latency of the N170
component.

In contrast to the N170, manipulations of personal familiarity
significantly influenced the magnitude of the later N250 compo-
nent. The own face and own dog in Experiment 1, and own face
and own car in Experiment 2 — despite their non-target status —
elicited an greater N250 response than the other non-target face
and object foils. In the Joe/No Joe task, the mere presentation
of the own face, dog, and car images was sufficient to evoke an

N250. The equivalent N250 response to own face and own objects
(Experiment 1: own dog, Experiment 2: own car) indicates that
the N250 familiarity effect is not restricted to faces, but reflects a
generalized response to individuated, personally familiar items.

For the target Joe face, the N250 familiarity developed over the
course of the first and second halves of the experiment. Consistent
with previous studies (Tanaka et al., 2006), the N250 to the target
face was significantly smaller in the first half of the experiment
than the N250 to the own face. By the second half, however, the
N250 to the target face was comparable to the N250 produced by
the participant’s own face suggesting that the N250 is an index
of perceptual familiarity that can develop over the course of an
experiment. In contrast, the magnitude of the N250 to the target
dog and car items, in the first half of the experiment, was equal
in strength to the response generated by the personally familiar
own dog and own car stimuli. It is not clear why formation of
the N250 response to a novel face lags behind the formation of the
N250 for non-face objects. It is possible that due to a large number
of pre-experimental face exemplars stored in memory (Valentine,
1991), additional perceptual practice is required to differentiate a
specific face from other competing faces. In contrast, less percep-
tual analysis is needed to distinguish a specific dog or car from the
relatively few dog and car exemplars stored in perceptual memory.

Results from Experiments 1 and 2 demonstrate the value of
the label in eliciting the N250 potential. Although presented an
equal number of times as the target face and object stimuli, the
un-individuated “other” faces, dogs and cars failed to exhibit an
enhanced N250 component. The critical difference appears to be
that the target face, dog and car stimuli were marked with the
“Joe” label in contrast to the “other” faces and objects that were
not labeled. However, name labels themselves are not sufficient to
evoke an N250 response. In a recent investigation, Gordon and
Tanaka (in press) familiarized participants to Joe and Bob faces
at the beginning of the experiment. In the first half of the experi-
ment, participants were asked to monitor for the target Joe shown
among “other” novel faces, including Bob. Although identifiable
by a name, the non-target Bob failed to elicit a differential N250
response. However, when the target face was switched from the Joe
face to the Bob face halfway through the experiment, a robust N250
negativity was produced to both Bob and the non-target Joe. These
findings suggest that the N250 relies on the name label to individu-
ate a face and practice at identifying the face at a more subordinate
level of categorization. Once the representation is established at
this more specific level, its activation is obligatory in the sense that
it does not need to be directly task relevant.

The current findings also clarify functional differences between
the N170 and N250 ERP components. The N170 component has
previously been proposed to index an early encoding stage in the
perceptual processing of faces (Bentin and Deouell, 2000; Eimer,
2000) and objects of expertise viewed by real world (Tanaka and
Curran, 2001) and laboratory-trained (Scott et al., 2006, 2008)
experts. Previous studies have found that the N170 component is
relatively insensitive to familiar faces, such as faces of celebrities
(e.g., Bentin and Deouell, 2000; Eimer, 2000; Schweinberger et al.,
2002) or even the participant’s own face (Tanaka et al., 2006). Con-
sistent with these results, we found that the N170 did not detect
differences between the participant’s highly familiar own face and
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completely novel faces. However, using adaptation techniques, sev-
eral recent investigations have found N170 differences between
familiar and unfamiliar faces (Jemel et al., 2005, 2009; Jacques and
Rossion, 2006; Kovacs et al., 2006; Caharel et al., 2009). Other work
has shown that face familiarity can increase the amplitude of the
N170 if a very small set of familiar and unfamiliar faces are tested
(Caharel et al., 2002; Keyes et al., 2010; but see Caharel et al., 2005).
Thus, the presence (or absence) of N170 face familiarity effects are
likely affected by a number of experimental factors including the
cognitive task employed (e.g., passive viewing versus categoriza-
tion), the number of faces in the stimulus set and whether the faces
are celebrities or personally familiar to the participant.

In summary, unlike the N170 that was relatively insensitive
to the familiarity of exemplars within a face or object category,
the N250 component was responsive to two types of individual
within-category exemplars. First, the N250 differentiated the pre-
experimentally familiar own face and own objects from novel faces
and objects. Second, the naming manipulation was sufficient to
evoke an N250 response to novel Joe face and object stimuli that
differentiated these items from the unnamed, novel “other” items.

The amplitude of the N250 differences to familiar and learned dog
and car stimuli (i.e., own dog, Joe’s dog, own car, Joe’s car) did
not differ from the face stimuli (i.e., own face, Joe’s face). Thus, in
contrast to the N170, the N250 is not specific to any one category
(e.g., faces, objects of expertise), but taps into the long-term per-
ceptual memory for any type (face or non-face) of individuated
stimulus. As demonstrated in the current study, these long-term
representations are obligatorily recruited even in situations when
they are not the targets of the experimental task at hand.
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