
HUMAN NEUROSCIENCE
ORIGINAL RESEARCH ARTICLE

published: 18 October 2011
doi: 10.3389/fnhum.2011.00113

A computational theory for the learning of equivalence
relations
Sergio E. Lew* and B. Silvano Zanutto

Instituto de Ingeniería Biomédica, Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, Argentina

Edited by:

Ivan Toni, Radboud University,
Netherlands

Reviewed by:

Ivan Toni, Radboud University,
Netherlands
Frank Leone, Radboud University,
Netherlands

*Correspondence:

Sergio E. Lew, Instituto de Ingeniería
Biomédica, Universidad de Buenos
Aires, Paseo Colon 850, Buenos
Aires, Argentina.
e-mail: sergiolew@gmail.com

Equivalence relations (ERs) are logical entities that emerge concurrently with the develop-
ment of language capabilities. In this work we propose a computational model that learns
to build ERs by learning simple conditional rules.The model includes visual areas, dopamin-
ergic, and noradrenergic structures as well as prefrontal and motor areas, each of them
modeled as a group of continuous valued units that simulate clusters of real neurons. In
the model, lateral interaction between neurons of visual structures and top-down modula-
tion of prefrontal/premotor structures over the activity of neurons in visual structures are
necessary conditions for learning the paradigm. In terms of the number of neurons and
their interaction, we show that a minimal structural complexity is required for learning ERs
among conditioned stimuli. Paradoxically, the emergence of the ER drives a reduction in
the number of neurons needed to maintain those previously specific stimulus–response
learned rules, allowing an efficient use of neuronal resources.
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INTRODUCTION
Logic categories are classes composed of elements that verify an
equivalence relation (ER) among them, that is to say, they are
reflexive, symmetric, and transitive.

Mainly in human subjects, training conditional rules among
stimuli produce the emergence of ER between those stimuli that
were directly or indirectly associated (Hayes, 1989; Sidman et al.,
1989; Kastak et al., 2001). A strong coexistence between the emer-
gence of ER and the capabilities of developing a language was
shown in children. In fact, only those children that developed a
language, at least using signs, have performed correctly in equiva-
lence tests (Devany et al., 1986). Indeed, emergence of symmetry
has been studied in groups of monkeys, baboons, and children
giving positive results only for the last group (Sidman et al.,
1982).

Understanding the neural mechanisms that underlie the emer-
gence of ER should give us a deeper knowledge about language
development.

In many computational papers, rule learning has been
explained from the point of view of how the model reacts and
adapts to changing environments (Cohen et al., 2007; Rey et al.,
2007), paying special attention to the tradeoff between dopamine
and norepinephrine release in the cerebral cortex and how these
neuromodulators switch between exploratory and exploitatory
behavior. In O’Reilly et al. (2002), a computational model of the
intradimensional/extradimensional task is presented and, as in the
models aforementioned, the focus is on the ability of switching
between different learned rules for normal or pathological cases.
However, few computational models simulate ER learning (Martin
et al., 2008; García et al., 2010).

Human beings are unique among other species in that ER
emerge as a natural consequence of training conditional rules. For
that reason, the study of the mechanisms and structures involved

in the learning of this paradigm is limited to cases of patients with
brain injuries or learning deficiencies. In this sense, computational
models can help to understand what structures and mechanisms
could be interacting in order to produce the emergence of ER.

Herein, we introduce a computational model to explain the
emergence of the ERs from the learning of simple conditional
rules. The model accounts for psychological and neurophysiolog-
ical data in primates and by means of lesions; we will explain
how certain mechanisms affect the emergence of ER as a natural
consequence of training simple conditional rules. Among these
mechanisms, top-down modulation of neurons in the visual path-
way together with Hebbian learning and lateral interactions seem
to be necessary.

MATERIALS AND METHODS
The experimental paradigms used to train and test the models are
the same as those used in Devany et al. (1986) and Sidman et al.
(1982) to teach ER to humans and monkeys.

Briefly, a stimulus (sample) is presented at the center of the
display during 500 ms, followed by a delay interval of 1 s without
stimuli. After that, two stimuli (comparisons) are presented at the
sides, left and right of the central position.

At this moment, the subject has to choose one of the compari-
son stimuli in order to be rewarded.

Figure 1 shows some examples of delayed matching to sample
(DMTS) training, ER testing, and the timing diagram of stimuli
presentation, response and reward during one trial.

Sample and comparison stimuli belong to different classes
that could be perceptually different. In the paradigm used here
(Figure 2A), stimuli of class A = {ai} are presented as samples and
stimuli of classes B = {bi} and C = {ci} are used as comparisons.
As an example, stimulus G (from class A) is paired to the green
color and the word “GREEN,” from classes B and C respectively.
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FIGURE 1 | (A) A trial in DMTS training. A sample stimulus is presented
during 500 ms, a 1-s delay is interposed, and after that delay two comparison
stimuli are presented. The subject must choose between these stimuli in
order to receive a reward. In this trial, letters were paired to colors. (B) A
DMTS trial where letters are paired to words. (C) A test trial where unpaired
stimuli are presented, it is a test for equivalence relation between words and

colors. (D) Stimuli timing, responses, and reward along trials. Sample stimuli
(S) are presented for 500 ms at the beginning of the trial. After a 1-s delay the
comparison stimuli (S) are presented. Comparison stimuli are held until a
response (R) is executed, or the end of the trial is reached. Every time a
correct response is executed a reward is delivered. Rewards last 2 s for
simulation purposes.

The same occurs for the other stimuli (R, “RED” and color red).
Trained conditionals and tested relations are shown in continuous
and dashed lines respectively in Figure 2. After reaching criteria in
A → B and A → C rules, the subject is tested in reflexivity (A → A,
B → B, C → C), symmetry (B → A and C → A) and the combined
test for symmetry and transitivity (B → C and C → B).

If the subject succeeds in more than 80% of the tested rela-
tions, it is considered as having the capability of learning ERs.
When this happens, equivalent stimuli can be rearranged in two
logical categories (see Figure 2B).

MODEL
In previous computational models we explained the neural mech-
anisms and neural structures that allow them to perform efficiently
in visual discrimination (VD) and DMTS paradigm (A → B,
A → C), and also how these structures interact to allow flexible
behavior in changing environments (Rey et al., 2007; Lew et al.,
2008; Rapanelli et al., 2010). Nonetheless, when we tested those
models in ERs learning, they performed at random.

In order to produce the emergence of ERs from the training
of simple conditional rules, we included three neurophysiological
hypotheses in the original model.

First, neurons in the input layer of the model are selective to
objects and places. A certain stimulus placed at position i (center
of the screen) produces the activation of neurons selective for the
same stimulus when that stimulus appears in other positions (left
and right parts of the screen; Suzuki et al., 1997).

Second, associative memories of paired stimuli emerge as a
consequence of reinforced learning in a delayed paired association
task (Naya et al., 2001).

Third, prefrontal and premotor areas modulate selectively the
excitability of neurons at early stages of the visual pathway (Tomita
et al., 1999; Ekstrom et al., 2008).

Neurons in the model represent functional clusters of biological
neurons, see Figure 3. The output of these neurons is the average
firing rate of those clusters. This is a real time model and variables
are updated every 100 ms.

When certain conditioned stimulus i (CSi
m) is present in posi-

tion m (center, left, or right), its value is set to CSi
m = 1, otherwise

CSi
m = 0.
Every time a correct response is executed, the unconditioned

stimulus (US) is set to a positive value for the next 20 time steps
(2 s), otherwise its value is set to zero. This positive value represents
the strength of the reward.

The input layer of the model computes the short term memory
(STM) of input stimuli:

τt

(
CSi

m

)
= (1 − αdecay) · τt−1(CSi

m) + αrise · CSi
m(t )

+ δE

∑
p �=m

τt−1(CSi
p) + ρitc

∑
∀n,j �=i

w itc
ijmn τt−1(CS

j
n)

τt (US) = (1 − αdecay) · τt−1(US) + αrise · US(t ) (1)

where CSi
m is the conditioned stimulus i presented at the posi-

tion m (center, left, or right), US is the unconditioned stimulus
(reward), t is the time step and τ means the stimulus trace.

In the case of CSi
m traces, the third term in Eq. 1 is the informa-

tion that responsive neurons for stimulus i at position m receive
from the neuron that responds to stimulus i at position p. The last
term involves weighted contributions of any other stimuli than

Frontiers in Human Neuroscience www.frontiersin.org October 2011 | Volume 5 | Article 113 | 2

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Lew and Zanutto Learning equivalence relations

FIGURE 2 |Training and testing equivalence relations. (A) Three classes
of perceptually different stimuli were used to train and test the paradigm.
Simple conditional rules (continuous line) were reinforced in a delayed
matching to sample experiment. Once individuals reached criteria in DMTS,
they were tested in equivalence relations (dashed lines). REF: reflexivity
test, SYM: symmetry test, and ER: equivalence relation test. (B) If the
performance in the equivalence relations test is higher than 80%, the set of
stimuli can be split in two new subsets, two logic categories of equivalent
stimuli (Category 1 and Category 2).

CSi
m present at time step t. Synaptic weights w itc

ijmn are computed

by Hebbian learning (see Eq. 13). They represent the associative
memory found in inferotemporal cortex (ITC) after training in a
delayed paired associated experiment (Naya et al., 2001).

The output layer of the model includes those areas related to
the execution of a response, that is, the premotor cortex, the basal
ganglia, and/or the frontal eye field.

If throughout a trial the activity of the output neurons do not
exceed the activation threshold, a random response is executed
with probability of 1/3. This random response is executed 900 ms
after the end of the delay period. When a response is executed, the
activity of its associated neuron is set to 1 during five time steps,
while the others are clamped to 0 for the same time.

Responses represent both, saccadic movements or touching to
the right (R1), left (R2), and to any other non-rewarded direction
(R3). All are codified at the motor-related structure layer.

Experimental data suggest that stimulation of the ventro
tegmental area (VTA) decreases spontaneous firing rates of PFC
pyramidal neurons, mainly by exciting interneurons (Tseng et al.,
2006; Tseng and O’Donnell, 2007). In our model, such inhibition is
represented by constant negative synaptic weights ut(P) from the
VTA to the PFC. However, due to the synergism between NMDA

and D1 dopamine receptors (Lewis and O’Donnell, 2000), we
postulate that initially inhibited PFC pyramidal neurons will fire
strongly when afferent inputs release large amounts of glutamate.
This activated cluster will then inhibit other clusters (Durstewitz
et al., 2000). To model this effect, we apply a winner-take-all mech-
anism at the PFC output. The following equations show how the
output of PFC neurons is computed along a trial:

Ok
t =

∑
∀ m,i

uk
t (CSi

m) · τt (CSi
m) + ut (P) · Pt + Bwinner · Pt

+ basalPFC if Ok
t > 0; else Ok

t = 0 (2)

M k
t =

{
Ok

t if k = k∗
0 otherwise

(3)

where k∗ = arg max
k

Ok
t represents the index of the winner neuron,

Bwinner stands for the synergism between D1 dopamine receptors
and NMDA receptors, and basalPFC is the baseline firing rate of
PFC neurons.

It has been hypothesized that dopamine (DA) modulates the
excitability of striatal neurons allowing the BG to inhibit com-
petent programs and to release the correct one (Mink, 1996). As
in the PFC, in our model DA inhibits the motor area through
constant negative synaptic weight wt(P), and, in contrast to this
general inhibition, the winner neuron is excited proportionally
to the released DA. This mechanism applies a “brake” over all
possible motor programs releasing that program whose activity
surpasses a fixed threshold. The output of the response neurons is
computed as:

R
j
t =

∑
∀ i,m

w
j
t (CSi

m) · τt (CSi
m) · lct +

∑
∀ k

w
j
t (M k) · M k

t

+ wt (P) · Pt + Bwinner · Pt + basalBG−PMC (4)

basalBG–PMC is the baseline firing rate of BG–PMC neurons and
lct represents a modulation exerted by noradrenergic neurons of
the Locus Coeruleus (LC) over visual and somatosensory cortical
neurons. Effects of norepinephrine (NE) on the modulation of
glutamate-evoked responses have been proved to have an inverted
U shape (Berridge and Waterhouse, 2003), that is, low and high
doses of NE produce a decrease on neuron excitability, while
medium doses increase their excitability. In behaving monkeys,
tonic firing of LC neurons shows a defined correlation with perfor-
mance (Usher et al., 1999). Tonic frequencies of 2–3 Hz are associ-
ated with good performance periods while frequencies >3 Hz are
related to periods where erratic performance and distractibility are
observed. This gives a hint of the function of the noradrenergic
system in the regulation of exploratory behavior (Aston-Jones and
Cohen, 2005). We model tonic firing of LC neurons as a function
of the reward received in the last trials:

τ
long
t (US) = (1−αlc)·τlong

t−1 (US)+αlc ·US(t ), lct = 1−5·τlong
t (US)

(5)

Short term memories for the response neurons are computed by

τt (Rj) = (1 − αR) · τt−1(Rj) + αR · Rj(t ), (6)
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and as in Eq. 2, for the PFC area, a winner-take-all rule is
applied.

In addition to excitability, dopamine effects on PFC pyrami-
dal neurons are also related to modifications of synaptic efficacy
via LTP and LTD (Reynolds and Wickens, 2002; Pan et al., 2005).
For this reason, previous models have used the DA signal in the
modulation of synaptic weights modifications (Lew et al., 2001,
2008; O’Reilly et al., 2002). Although the temporal differences
(TD) model simulates accurately the firing rates of VTA neurons
(Schultz et al., 1997), dopamine effects in PFC and BG–PMC are
observed for hundreds of milliseconds after DA release. In this
work, for computationally reasons, we used a simple algorithm to
model the presence of extracellular DA in the PFC and the BG–
PMC; however, the same results were obtained when a TD model
was used as the VTA–SNc block (Lew et al., 2008). Prediction of
incoming reward Pt was computed based on the stimuli present at
time t

X =
∑
∀i,m

vt (CSi
m) · τ(CSi

m) +
∑
∀k

vt (M k) · M k
t (7)

Pt = 1 − 0.3 lct

1 + e−10 (X−0.3)
(8)

where the negative term in the numerator of Eq. 8 stands for
noradrenergic inhibition of dopaminergic neurons (Paladini and
Williams, 2004) and vt are synaptic weights that represent learned
associations between conditioned stimuli, PFC neuron responses,
and the US

Δvxt (CSi
m) = αv · τt (CSi

m) · (USt − Pt ) (9)

vt (CSi
m) = 2

1 + e5·vxt (CSi
m)

− 1 (10)

Equation 9 is the Rescorla–Wagner like model of associative
learning in conditioning paradigms (Rescorla and Wagner, 1972;
Schmajuk and Zanutto, 1997; Lew et al., 2001), τt (CSi

m) represent
traces of both, conditioned stimuli and PFC neurons responses
and vt is used to clump those associations between −1 and 1.

As in our previous models DA modulates learning in both,
PFC and BG–PMC neurons (Lew et al., 2001, 2008; Rey et al.,
2007; Rapanelli et al., 2010). If Pt > h, Hebbian learning com-
putes the synaptic weights of both, PFC and BG–PMC neurons.
The opposite occurs if Pt < h. Thus, synaptic weights of the PFC
winner neuron k∗ and BG–PMC neurons and also those synaptic
weights that connect input units at the input layer are updated
according to:

uk
t (CSi

m) = μPFC · uk
t−1(CSi

m) + sign(Pt − h) · νPFC·
τt (CSi

m) · Ok
t if k = k∗ (11)

w
j
t (CSi

m) = μBG−PMC · w
j
t−1(CSi

m) + sign(Pt − h)·
νBG−PMC · τt (CSi

m) · τt (Rj) · lct

w
j
t (M k) = μBG−PMC · w

j
t−1(M k) + sign(Pt − h)·

νBG−PMC · M k
t · τt (Rj)

(12)

Δwitc
ijmn,t = 2 · νITC · τt (CSi

m) · τt (CS
j
n) if Pt > h (13)

In the previous equations, μPFC and μBG–PMC are first order
momentum constants while νPFC, νGB–PMC, and νITC are learn-
ing rates for the PFC, BG–PMC, and units at the input layer
respectively.

Top-down modulation mechanisms were found in monkeys
during learning of association tasks and memory retrieval (Tomita
et al., 1999). Lateral Intraparietal (LIP) neurons modulate the
activity of V1 neurons in humans (Saalmann et al., 2007) whereas
FEF transmagnetic stimulation influences the modulation of
visual activity (Taylor et al., 2007; Ekstrom et al., 2008). In our
model, we propose selective top-down modulation of frontal
and premotor areas over visual inputs. The main purpose of
this selective modulation is to control the extinction of short
term memories according to the executed response. The STM
extinction rate αdecay of Eq. 1 is modulated selectively when a
comparison stimulus is chosen, increasing the original value of
αdecay in 2% for non-selected stimuli while keeping its origi-
nal value for the selected one. In the model, this effect pro-
duces a faster extinction of short term memories for non-selected
stimuli.

SIMULATIONS AND RESULTS
LEARNING OF REINFORCED CONDITIONALS
In the learning phase the model was trained in DMTS. Sample
stimuli belonging to class A were presented during 500 ms fol-
lowed by a delay of 1000 ms without stimuli presented. After that,
two stimuli, both of them belonging to classes B and C respec-
tively were presented as comparison stimuli. Responses of the
model, indicated as direct conditional relations in Figure 2A, were
reinforced. A total of 500 simulations were performed using a
DMTS paradigm in order to analyze the statistical properties of
the ensemble. From these simulations, 394 (78%) reached a perfor-
mance of 100% and were used to test the emergence of equivalent
relation.

In Figure 4, the dynamic of learning is shown as training
progresses. Average values of performance in DMTS as well as
dopaminergic and noradrenergic activation and reaction times
are plotted against training trials.

Before proceeding with the formal test to evaluate the model in
ERs, we tested it in symmetry. Experimental results obtained with
monkeys, baboons, and children have shown that only children
can pass a symmetry test (Sidman et al., 1982).

After training the model in DMTS, symmetry was tested in the
394 models of the ensemble that reached a performance of 100%.
Sample stimuli were chosen from classes B or C while compar-
ison stimuli were chosen from class A. From the 394 models of
the ensemble, symmetry was proved positively in 354 cases. Also,
reflexivity was proved positively in 368 models.

To test reflexivity, models had to choose correctly those com-
parison stimuli that were presented previously as samples. In
the symmetry and reflexivity tests, all possible combinations of
sample and comparison stimuli were tested. Here, a relation is
learned when at least 80% of correct responses were executed.
Reflexivity, symmetry, and ERs were tested positively in 94, 93.6,
and 87% of the models able to learn DMTS. In spite of the
proportion of models that learn DMTS and ER (394/500 and
344/500), the averaged performances after the training phase were
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FIGURE 3 | Computational model. The input layer contains units that
compute short term memories of input conditional stimuli (CS) and the
reward (US). These memories are inputs to other blocks of the models. The
VTA–SNc block computes P, the prediction of the US. The LC block
computes a long term memory of the US, and this quantity modulates both:
the excitability VTA–SNc neurons and the strength of visual inputs that
project onto the output layer. The LPFC structure contains neurons that
compute their outputs based on short term memories of the visual inputs
and the value of P. Outputs of these neurons compete in a winner-take-all
mechanism and project onto the output layer and onto the VTA–SNc. The

quantity of neurons in the LPFC structure is one of the subjects of this
research and by default its value is 80. Here, the BG–PMC block is the
output layer of the model. This layer executes the behavioral responses R1,
R2, or R3. Neurons in this structure integrate information from visual inputs,
the LPFC, and the VTA–SNc. As in the LPFC structure, a winner-take-all
mechanism is applied to the output of the neurons in order to avoid the
execution of multiple responses. Top-down modulation is shown in red
whereas Hebbian-like synapses at visual stages are shown in green. A
glossary containing parameters values and their definitions is appended at
the end of this work.

95.7 and 88.9% respectively, as can be seen Figure 5A. In that
sense, the distribution of performances in the ensemble showed
a broad spectrum with a peak for values higher than 90%, see
Figure 5B.

Figure 6 shows the dynamics of learning ERs for the ensem-
ble of 500 models as a function of the number of trials. To study
the behavior of the ensemble, simulations were performed for dif-
ferent numbers of training trials, from 1 to 720 in steps of 40
trials. This figure shows the percentage of models in the ensemble
whose performances were 100 and 80% in DMTS and ER tests
respectively.

As can be seen, after trial 280, DMTS could be tested positively
in approximately 80% of the models. However, ERs emerge 40 tri-
als after DMTS reached performance plateau. The percentage of
models in the ensemble that pass ER tests increases until trial 600,

where a plateau of 63% is reached. Additionally, we show the aver-
age of PFC neurons used by the ensemble of models to map rules.
This quantity is calculated as the average of PFC neurons that won
the winner-take-all competence during the last 100 training trials.
As can be seen, that average reaches a first plateau after 400 train-
ing trials. During this plateau, eight PFC neurons were necessary
to map the complete set of trained rules. It is interesting to note
that after some time of overtraining in DMTS and, concurrently
with the plateau in the emergence of ERs, the number of neurons
decrease to four, the smallest amount required to map all learned
rules.

Figure 7 shows the dependence of DMTS and ER learning as a
function of the number of PFC neurons. It can be seen that a min-
imal complexity is required to learn those paradigms. The DMTS
and ER paradigms cannot be learned if the number of neurons
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in the PFC structure is less than 16. On the other end, increas-
ing the PFC size over 128 neurons does not increase significantly
the number of models that learn DMTS as well as ER paradigms.
To understand how the amount of neuronal resources affect the
behavior of the models during training and testing of DMTS and
ER paradigms, we calculated the average of winner neurons in the
last 100 trials of these stages of the experiment. As displayed in
Figure 6, if the number of neurons assigned to the PFC is over a
certain minimum (64 neurons), both, DMTS and ER are learned.
However, the number of neurons that finally mapped learned rules
remains constant and independent of this minimum. On the other
hand, although the amount of neuronal resources assigned to PFC
increases exponentially, the maximum number of neurons used at
the beginning of the training increases linearly.

PRODUCING LESIONS IN THE MODEL
We produced lesions to components of the model that we postu-
lated as necessary for ER learning, that is, the dopamine systems,

FIGURE 4 | Average values of performance in DMTS acquisition,

activation levels of VTA–SNc and LC and reaction times from 394 from

500 (78%) DMTS experiments where the performance reached 100%.

the Hebbian learning mechanism at the input layer and top-down
inhibition.

For each simulated lesion, an ensemble of 500 models was run
and the mean performance across the ensemble for tasks of differ-
ent complexities was calculated. In all cases, mean performances
were calculated after the plateau in correct responses was reached.
The average performance for each type of lesion is shown in
Figure 8.

Lesions to the dopamine system were simulated by inhibiting
theVTA/SN block output. Dopamine signal (P) affects both, learn-
ing and excitability in the PFC and the BG–PMC structures. We
produced independent lesions to the dopamine–PFC system and
to the dopamine–PMC/BG system.

Lesions to the dopamine–PMC/BG systems impair the abil-
ity to reinforce stimulus–response paths and, as a consequence
of that, the models perform at chance no matter what the tasks
are. On the other hand, lesions to the dopamine–PFC system
impair the acquisition of complex tasks, like DMTS and ER,
keeping intact the ability of acquiring the simple ones. For sim-
ple operant tasks, like pressing a level to receive reward (OPER)
or to discriminate two different visual stimuli (VD), models
of the ensemble perform significantly better than chance. This
result is consistent with the linear separability of the patterns
involved in each task (Roychowdhury et al., 1995; Lew et al.,
2008).

Disruptions to Hebbian learning mechanisms at the input
structure of the model decrease the probability of learning ER.
Simulations were performed by setting the value of v ITC, which
is the parameter that controls Hebbian learning rates at the input
layer, to zero. Despite the fact that the lesioned models did not
learn ER, the performances in operant learning, VD, and DMTS
were significantly higher than chance, as can be seen in Figure 8.
The models performed as if they were stimulus specific mappings.
In this sense, it is known that lesions of the parahippocam-
pal gyrus, which contains the perirhinal and entorhinal cortices
and where associative visual memory formation is found (Naya
et al., 2001), impair the formation and retrieval of associative
memories in human subjects (Weniger et al., 2004; Gold et al.,
2006).

FIGURE 5 | (A) Performance in DMTS and ER. Mean values and SEM
were calculated using the first 20 trials after the plateau in correct
responses was reached, that is, the same number of trials used for
testing equivalence relations (all combinations indicated by dashed

lines in Figure 2). (B) Normalized distribution of performances in the
ensemble. It can be noted that while less than 70% of the models
performs better than 90% in ER, the average performance of the
ensemble is 88.9%.
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FIGURE 6 | Performance in DMTS and equivalence relations (ER) are

shown as a function of training trials. Both performances were
calculated as the percentage of models of the ensemble that perform at
100% in DMTS and over criteria (80%) in equivalence relations. The right
axis shows the number of neurons necessary to codify the rules tested in
the equivalence relation.

FIGURE 7 | Use of neuronal resources. Left axis: the percentage of
models in the ensemble that reaches criteria in DMTS and ER test is shown
as a function of the number of neurons in the PFC. Right axis: number of
neurons in the PFC that won at least once during the training phase
(MaxUsedNeurons) and the number of neurons in the PFC that won at least
once in the last 100 trials of the training phase (FinalUsedNeurons).

In monkeys, transection of the posterior corpus callosum and
the anterior commissure, severely impairs the performance in a
delayed pair associated paradigm by means of a lack in top-down
inhibition (Tomita et al., 1999). This kind of lesions gives us an
insight about the function of feedback projection from the frontal
lobe over visual structures, while learning and recalling associa-
tive memories. We simulated this lesion by disrupting top-down
inhibition in the models and computing their performances dur-
ing the last part of the training phase. Operant learning, VD,
and DMTS tasks could be learned with performances higher than
chance as it is shown in Figure 8. However, as in the rest of the
simulated lesions, ERs did not emerge as a consequence of learning
simple conditional rules.

In terms of the subject performances, it is reasonable to think
that VD, DMTS, and ER tasks posses increasing levels of com-
plexity. In a previous work (Lew et al., 2008) we have shown how
the PFC and the PMC–BG can interact in order to allow simple
(VD) and complex (DMTS) tasks learning. Here, we include in

FIGURE 8 | Effects of lesions. Four types of lesions were conducted over
the necessary mechanisms for ER learning. Lesions to the dopaminergic
afferents to the output layer (DA–PMC/BG) impair the ability to build stimuli
responses mappings, and models perform at chance, that is, all responses
have the same probability of being executed. On the other hand, lesions to
the PFC dopamine afferents only impair the acquisition of DMTS and ER,
both tasks containing non-linear separable input patterns. Disruption of
Hebbian learning at the input structures and top-down inhibition
mechanisms does not affect the learning of simple operant tasks neither
DMTS. In contrast, ER cannot be learned if any of the mechanisms here
lesioned are not working properly. Dashed line indicates chance level.

that model three mechanisms, Hebbian learning and lateral inter-
actions at the input stage and top-down inhibition, which allow
ERs learning.

DISCUSSION
Among the large variety of primates, human is the unique species
that can develop a formal language. Whether building logic
categories of equivalent stimuli is a necessary condition or a
consequence of the ability to acquire formal languages still remains
to be elucidated. However, it has been shown that these capabili-
ties emerge concurrently in human subjects who have the ability
to communicate at least using signs.

We introduced a computational model that explains how ERs
of unrelated visual stimuli can be learned as a consequence of the
reinforced training of simple conditional rules.

Unlike other computational models that learn ER between
stimuli (Martin et al., 2008; García et al., 2010), our model pro-
poses the biological mechanisms that give to the system a new
emergent property: the ability to learn ERs from the training of
simple conditionals.

It is important to note that the model is also able to learn
many other relevant behavioral paradigms like simple operant
learning, VD and, of course, DMTS. Not all of these behaviors
need all the structures and mechanisms involved in the model
presented here. Operant learning can be learned by means of an
input structure, a dopaminergic system that rules Hebbian or anti-
Hebbian learning and an output structure that executes behavioral
responses (Lew et al., 2001). However, that model is not able to
learn paradigms where the stimuli are not linearly separable, as in
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DMTS. The addition of a PFC-like structure to the model, with
neurons that adapt their synaptic weights by means of Hebbian
rule, provides the system with the capability of learning this kind
of paradigms (Lew et al., 2008). Adding Hebbian learning at the
input structures and top-down inhibition brings ability of learning
ERs. This sequence of improvements can explain from an evolu-
tionary point of view, how new nervous structures allow learning
more complex paradigms.

In our model, functional blocks representing neuroanatomic
structures as the main components of the visual pathway, the
lateral prefrontal cortex, dopaminergic, and noradrenergic areas,
interact in order to learn correct behavioral responses. Also,
Hebbian-like association learning at the visual stages and top-
down modulation of PFC and motor-related neurons over visual
inputs are included as a key component in the learning of logic
categories.

We showed how disrupting these mechanisms impacts over
the performance of the system in operant tasks, DMTS, and ER
paradigms. In the case of dopaminergic afferents to the output
structures, lesioning the dopamine system undermines the abil-
ity to learn stimulus specific relations. On the other hand, simple
operant tasks including VD can be learned if the lesion only affects
dopaminergic afferent to the PFC-like structure. Both types of
lesions impair the acquisition of paradigms where there exists
non-separability of the input patterns, as can be found in DMTS
and ER.

On the contrary, lesions to the Hebbian learning mechanisms
impair the ability of learning ER while the performance in DMTS
remains almost unaffected. In this way, this mechanism appears to
be necessary for the learning of paradigms where rule extraction
and concept learning are involved. Rule extraction and concept
learning result in a reduction in the number of active PFC neurons
in the last phase of DMTS training and ER testing.

Finally, top-down inhibition degradation showed the deterio-
ration of both, the DMTS and ER performances.

Summarizing, none of the mechanisms here proposed as neces-
sary for ER emergence affect the abilities to learn paradigms where
rule extraction can be replaced by specific stimuli–response map-
pings. However, in the light of our results, all of them are required
if the emergence of ER is expected as a consequence of the learning
of simple conditional rules.

The model suggests that a minimal structural complexity is
necessary to allow the emergence of ERs after learning simple
conditional rules. In fact, as it is shown in Figure 7, the number of
ensemble models that learn ERs depends on the number of PFC
neurons. However, it is also shown that the maximum number of
neurons used to codify all the rules contained in an ER remains
fixed.

It is reasonable to ask why, in spite of the fact that the mech-
anisms we proposed as necessary for ER learning exist in the
primate brain; the only subjects able to learn ER are human
beings with language abilities. Our results suggest two possible
answers to this question. First, the emergence of ERs occurs after
some overtraining in a DMTS task. It would be interesting to
test if overtraining improves the emergence of ER in human sub-
jects with language disabilities. Second, there exists a region in

the parametrical space which rules top-down inhibition as well
as Hebbian learning and lateral interaction. In such region, VD,
DMTS, and ER can be learned. Although the model showed a
robust behavior against perturbations of those parameters, the lack
of top-down inhibition and Hebbian learning severely impacts on
the learning of complex tasks as well. It is, then, reasonable to
think that a balance between them is required in order to learn VD
and DMTS tasks before ER can emerge as a consequence of that
learning.

Regarding the number of necessary neurons to learn the ERs,
it is important to note the dynamics of this value. As can be
seen in Figure 6, more than 10 neurons (average) are necessary
to learn the ER, but after overtraining, this number of neurons
decreases to eight for approximately 150 trials. Even though dur-
ing overtraining there are no changes in the performance in DMTS,
the performance in ERs tests improves progressively. It is impor-
tant to note that when this performance reaches a plateau, the
number of neurons decreases to four; half of the neurons that
are needed to learn stimulus specific simple conditionals. Learn-
ing ERs that arise from the reinforcing of simple conditionals
rules requires a large number of neurons at the beginning of the
training phase. After the ER is learned, the number of recruited
neurons necessary to map the relations is reduced to the minimum
value.

GLOSSARY AND PARAMETERS

STIMULI AND SHORTTERM MEMORYTRACES

CSi
m Conditioned stimulus i at position m

US Unconditioned Stimulus (reward)

τt (CSi
m) Short term memory (STM) of CSi

m at time step t

τ
long
t (US) Long term memory of the US

STRUCTURES AND NEURON OUTPUTS

VTA Ventro Tegmental Area

SNc Substantia Nigra Pars Compacta

LC Locus Coeruleus

PFC Prefrontal cortex

BG–PMC Basal Ganglia and Premotor Cortex

Pt Prediction of the US due the presence of CSi at time step t

Rj
t Output of the BG–PMC neuron j at time step t

Ok
t Output of the PFC neuron k at time step t

Mk
t Output of the PFC neuron k after the winner-take-all at time

step t

lct Tonic activity of the Locus Coeruleus at time step t

SYNAPTIC WEIGHTS

vt (CSi
m) Association of τt (CSi

m) with the US

vt(Mi) Association of the winner-take-all output Mi with the US

uk
t (CSi

m) Synaptic weight from CSi
m to the k -th neuron of the PFC

ut(P ) Synaptic weight from VTA–SNc block to neurons in the PFC

wj
t (CSi

m) Synaptic weight from CSi
m to the j -th neuron of the BG–PMC

wj
t (M

k ) Synaptic weight that connect the k -th neuron of the PFC with

the j -th neuron of the BG–PMC

wt(P ) Synaptic weight from VTA–SNc block to neurons in BG–PMC

w itc
ijmn,t Synaptic weight that connect the i -th short term memory

unit of the input layer at position m with the j -th short term

memory unit at position n.
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Parameter Value Description

EXCITABILITY AND PLASTICITY PARAMETERS

h 0.6 Threshold for switching Hebbian or anti-Hebbian

learning

basalPFC 3 Basal activity of PFC neurons.

basalBG–PMC 3 Basal activity of BG–PMC neurons.

αdecay 0.01 Extinction of short term memories

αrise 0.35 Raising of short term memories

αlc 0.3 Dynamic of the memory of reward in the last

trials

αR 0.35 Dynamic of response traces

αv 0.0003 Learning constant for the VTA–SNc synaptic

weights

δE 0.0085 Information that convey to a neuron selective for

some stimulus presented outside its preferred

position on the screen

δI 0.35 Top-down inhibition

Bwinner 0.14 Synergism D1-NMDA

νPFC 0.0055 Learning constant for synaptic weights of PFC

neurons

νBG–PMC 0.00225 Learning constant for synaptic weights BG–PMC

neurons

μPFC 0.9945 First order momentum for synaptic weights of

PFC neurons

μBG–PMC 0.99775 First order momentum for synaptic weights of

BG–PMC neurons

νITC 0.0016 Learning constant for Hebbian association at the

input layer
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