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Reinforcement learning models of human and animal learning usually concentrate on how
we learn the relationship between different stimuli or actions and rewards. However, in
real-world situations “stimuli” are ill-defined. On the one hand, our immediate environ-
ment is extremely multidimensional. On the other hand, in every decision making scenario
only a few aspects of the environment are relevant for obtaining reward, while most are
irrelevant. Thus a key question is how do we learn these relevant dimensions, that is, how
do we learn what to learn about?We investigated this process of “representation learning”
experimentally, using a task in which one stimulus dimension was relevant for determining
reward at each point in time. As in real life situations, in our task the relevant dimension
can change without warning, adding ever-present uncertainty engendered by a constantly
changing environment. We show that human performance on this task is better described
by a suboptimal strategy based on selective attention and serial-hypothesis-testing rather
than a normative strategy based on probabilistic inference. From this, we conjecture that
the problem of inferring relevance in general scenarios is too computationally demanding
for the brain to solve optimally. As a result the brain utilizes approximations, employing
these even in simplified scenarios in which optimal representation learning is tractable,
such as the one in our experiment.
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1. INTRODUCTION
In the last two decades, the computational field of reinforcement
learning (RL) has revolutionized our understanding of the neural
basis of decision making by providing a precise, formal computa-
tional framework within which learning and action selection can
be understood (Sutton and Barto, 1998; Niv, 2009). Yet, despite this
success at explaining human, animal, and neural behavior on rela-
tively simple tasks, significant difficulties arise when trying to apply
RL to more complex decision problems. One major problem is that
RL algorithms concentrate on assigning values to a set of stimuli
or states that describe the environment. In real-world scenarios
in which the environment is complex and high-dimensional, the
number of different states is enormous. This renders popular RL
algorithms such as temporal difference learning (Sutton and Barto,
1990, 1998) highly inefficient.

In the machine learning literature, this so-called “curse of
dimensionality” is often overcome by the use of specialist, hand
crafted representations that concentrate on a small subset of rel-
evant stimulus features to make the RL problem tractable. Yet
humans and animals, who are presumably born without such task-
specific representations, still learn to solve new tasks efficiently in
a world that is both uncertain and extremely multidimensional. In
this work we investigate how this is possible.

We hypothesize that humans make the assumption that in any
specific task only a small number of features of the environment
are relevant for determining reward. For example, when eating
at a restaurant, the identity of the chef and the quality of the
ingredients are important determinants of reward. Of much less
importance (in most circumstances) are the table one is sitting at,

the clothes the waiter is wearing, and the weather outside. Such
a sparsity assumption (Kemp and Tenenbaum, 2009; Braun et al.,
2010; Gershman et al., 2010) drastically simplifies the compu-
tational complexity of the RL problem. However, it leaves open
the question of how to learn which are the relevant features – a
process we term “representation learning,” as it involves learning a
simplified reward-relevant representation of task stimuli.

Here we analyze human behavior on a task that involves con-
current representation learning and RL in a non-stationary envi-
ronment characterized by abrupt and unsignaled change-points.
In this task, subjects must track a periodically changing relevant
stimulus feature using only noisy reward feedback. Unlike previ-
ous work involving change-point detection (Behrens et al., 2007;
Brown and Steyvers, 2009; Wilder et al., 2009; Yu and Cohen, 2009;
Nassar et al., 2010) we are not interested only in how subjects
detect unsignaled changes, but in how this extra uncertainty inter-
acts with uncertainties due to unknown task representation and
unreliable rewards.

We compare two possible computational solutions to the rep-
resentation learning problem: (1) an exact Bayesian inference
strategy that makes use of all information in the task, and (2) a
selective attention, serial-hypothesis-testing strategy that uses just
a fraction of the information at a time. This second learning strat-
egy trades statistical efficiency for computational efficiency and
acknowledges that, even with the simplifying assumption of spar-
sity, the Bayesian solution may be too computationally demanding
for the brain (Daw and Courville, 2007).

Using both qualitative and quantitative analyses of behavioral
data, we find that human behavior is significantly better accounted
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for by the selective attention strategy than by the exact Bayesian
strategy. This suggests that humans favor computational over sta-
tistical efficiency for representation learning, even for a simple task
such as ours in which exact, or approximate Bayesian inference
might be tractable.

2. MATERIALS AND METHODS
2.1. TASK
To investigate the process of representation learning, we examined
learning in a simplified scenario in which stimuli have three fea-
tures, only one of which is relevant to predicting (and obtaining)
point rewards. A schematic of our representation learning task,
based on the Wisconsin Card Sorting Task (Milner, 1953) and its
animal analog, the Intra-Dimensional/Extra-Dimensional Shifts
task (Mackintosh, 1965), is shown in Figure 1. On each trial, sub-
jects are presented with three stimuli each described by one feature
on each of three dimensions: shape (square, triangle, or circle),
color (red, green, or yellow), and texture (plaid, dots, or waves).
The subject’s task is to choose one stimulus on each trial, with the
goal of accumulating as many points as possible. After choosing
a stimulus, the subject receives feedback indicating whether this
choice has been rewarded with one point, or with zero points. This
is determined as follows: two of the stimuli are associated with a
low probability of reward (25%), while one is highly rewarding
(75%). The identity of the more rewarding stimulus is determined
by only one feature in one of the dimensions (e.g., the green stimu-
lus is highly rewarding, while any stimuli that are not green are less
rewarding). Moreover, every 15–25 trials (uniform distribution)
the identity of the relevant dimension and feature changes (e.g.,
from green to waves) in an unsignaled manner. Thus, to maximize
reward on this task, subjects must constantly revise their estimates
of the rewarding feature in the face of the triple uncertainty of
probabilistic rewards, unknown rewarding feature identities and
unknown change-point locations.

2.2. SUBJECTS
Thirty-seven subjects (22 females, ages 18–28, mean 21.3 years)
recruited from the Princeton community performed 500–1000
trials of the task. Subjects first performed a similar number of
trials in a task that was identical but for the fact that changes in
the relevant dimension and most rewarding feature were explic-
itly signaled. For both parts of the experiment, subjects received
on-screen instructions informing them that only one of the three
dimensions (color, shape, or texture) was relevant to determining

the probability of winning a point, that one feature in the rele-
vant dimension will result in rewards more often than the others
(the exact probability was not mentioned), and that all rewards
were probabilistic (specifically, that “even the best stimulus will
sometimes not reward with a point” and vice-versa). They were
also instructed to respond quickly (imposed using a 1-s response
timeout) and to try to get as many points as possible.

Subjects practiced the task, and were then instructed that
throughout the first part they would be informed when the rele-
vant dimension and best feature were changed. Before the start
of the second (unsignaled changes) part, they were instructed
that changes in the relevant dimension and best feature would
no longer be signaled. In this part, subjects were given a break and
allowed to rest after completing each quarter of the trials. In each
break they were also informed of their cumulative point earnings
since the last break, and how that compared to the maximum pos-
sible earnings. In neither part were subjects instructed about the
rate of change-points or the hazard function.

After performing the second part, some subjects continued
to perform another 300 trials of the signaled task inside a mag-
netic resonance imaging scanner. Subjects were compensated for
their time with either $12 (behavior only) or $40 (scanning
experiment). All subjects gave informed consent and the study
was approved by the Princeton University Institutional Review
Board. As we are interested specifically in the interaction between
change-point detection and representation learning, here we focus
exclusively on data from the unsignaled portion of the experiment
(see Gershman et al., 2010, for an analysis of the first part of the
experiment).

2.3. COMPUTATIONAL MODELS
We compared two alternative families of models that could poten-
tially explain human performance on this task. The first, based on
Bayesian probability theory, makes use of all available information
to infer the action that will maximize the probability of obtain-
ing a reward on the next trial. The second focuses on one feature
at a time, testing whether it is the correct feature that maximizes
reward. This latter set of models is suboptimal in its use of informa-
tion, and consequently performs less well on the task. However, it is
computational much simpler and thus more tractable in an online
highly multidimensional setting. By comparing the fits of the
two classes of models to subjects’ trial-by-trial behavior, our aim
was to determine which model better describes the computations
performed by the human brain in such scenarios.

FIGURE 1 | Schematic showing the outline of the task. (A) The
subject is presented with three different stimuli. Each stimulus has
a different feature along each one of the three feature dimensions
(shape, color and texture). (B) The subject chooses one of the

stimuli and receives binary reward feedback, either winning one (as
in this case) or zero points. (C) After a short delay a new trial begins
and the subject is presented with three new stimuli from which to
choose.
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2.3.1. Notation
We begin by defining some notation common to both models. We
let the identity of the relevant dimension (shape, color, or texture)
on trial t be d and that of the feature, i.e., the specific shape, color,
or texture, be f. On any trial, we say that the set of three stimuli
are st = (st(1), st(2), st(3)). We write ct ∈ {1, 2, 3} for the subject’s
choice on trial t and rt ∈ {0, 1} for the reward given in response
to that choice. We use the notation c1:t and r1:t to denote the set
of choices and rewards from trial 1 to trial t. For compactness,
we define D1:t = (c1:t , r1:t ) as the history of choices and rewards.
Finally, ρh and ρ l are the reward probabilities of the high and low
rewarding options, respectively.

2.3.2. Bayesian inference models
The Bayesian model uses probabilistic inference to compute the
probability distribution over the identity of the rewarding dimen-
sion and feature given all past trials, p(d, f | D1:t ). Using this, it
infers the “value” of each stimulus, that is, the probability that
choosing the stimulus will lead to reward, p(r t+1 | D1:t , st+1(i)).
These values drive choices, with higher values corresponding to
higher choice probabilities. This model extends a previous model
by Gershman et al. (2010) to allow unsignaled changes in the rel-
evant dimension and feature, using methods of Bayesian change-
point detection (Adams and MacKay, 2007; Fearnhead and Liu,
2007; Wilson et al., 2010).

Specifically, we are interested in computing the probability of
reward for each possible stimulus, st+1(i), based on the observed
history of choices and rewards D1:t . If the identity of the rewarding
dimension, d, and feature, f, were known, this computation would
be trivial, as we would simply look for presence or absence of the
rewarding feature in the stimulus:

p
(
rt+1|d , f , st+1(i)

)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρhrt+1 + (1 − ρh) (1 − rt+1)

if st+1(i) has feature f on dimension d

ρl rt+1 + (1 − ρl) (1 − rt+1)

if st+1(i) does not has feature f on dimension d

(1)

When d and f are unknown, as is the case in our experiment,
one must marginalize out uncertainty over d and f:

p (rt+1|D1:t , st+1(i)) =
∑

d

∑
f

p
(
rt+1|d , f , st+1(i)

)
p

(
d , f |D1:t

)
(2)

The key, then, is to evaluate p(d, f | D1:t ). Gershman et al.
(2010) showed how to do this exactly in a stationary environment.
However, in the current, dynamically changing, task each change-
point renders the previous experience irrelevant for determining
the currently correct d and f. Thus for unsignaled change-points
one must additionally marginalize over all possible change-points
and the uncertainty associated with each. To do this efficiently, we
follow the approach of Adams and MacKay (2007), and introduce
the run-length, lt – the number of trials since the last change-
point. In cases in which change-points render past information
truly irrelevant (i.e., they divide the time series into independent

epochs called “product partitions”; Barry and Hartigan, 1992),
the run-length determines how much past data is relevant to the
current inference1. Thus we can write

p
(
d , f |D1:t

) =
∑
lt+1

p
(
d , f |lt+1, D1:t

)
p (lt+1 |D1:t )

=
∑
lt+1

p
(
d , f |lt+1, D1:t

)

×
∑

lt

p (lt+1|lt , D1:t ) p (lt |D1:t )

(3)

By definition, the run-length either increases by one after each
trial, in between change-points, or becomes zero at a change-point.
Thus we can define the change-point prior, p(lt+1 | lt, D1:t ) as

p (lt+1|lt , D1:t ) =

⎧⎪⎨
⎪⎩

1 − h (t , lt , D1:t ) if lt+1 = lt + 1

h (t , lt , D1:t ) if lt+1 = 0

0 otherwise

(4)

where h(t, lt, D1:t ) is the hazard rate, the prior probability that
a change occurs. In general, the hazard rate can vary as a func-
tion of time (trial), run-length, and the specifics of the past data.
However, many real-world scenarios are not as convoluted. Specif-
ically, for the current task we consider two different versions of the
Bayesian model: one in which the hazard rate h is taken to be the
true hazard rate from the experiment, i.e., a uniform probabil-
ity of change between trials 15–25 after the previous change-point
(hereafter Bayes var h to denote the variability of the hazard rate as
a function of time), and a second slightly simplified model which
(incorrectly) assumes a constant hazard rate (hereafter Bayes const
h). The former model is motivated by the fact that the subjects have
already played 500–1000 trials of the task with signaled changes
and thus might reasonably be expected to have learned an approxi-
mation to the correct hazard rate. In the latter, approximate model,
we fit the constant hazard rate separately to each subject’s behavior
(see below). In both models the hazard rate depends, at most, on
lt, hence below we drop the dependences on t and D1:t .

Substituting the change-point prior, equation 4, into equation
3 gives

p
(
d , f |D1:t

) = p
(
d , f |lt+1 = 0

) ∑
lt

h (lt ) p (lt |D1:t )

+
∑

lt

(1 − h (lt )) p
(
d , f |lt+1 = lt + 1, D1:t

)
p (lt |D1:t ) (5)

where p(d, f | lt+1 = 0) is the (uniform) prior probability of d and
f after a change-point.

We now need to specify two distributions: (1) p(d, f |
lt+1 = lt + 1, D1:t ), which is the probability distribution over the

1Note that the “product partition” simplification does not strictly hold for our task
because here a change was always to a different dimension (e.g., if the relevant fea-
ture was red, it could change to waves, but never to green), which means that the
data are weakly correlated across a change-point. Nevertheless, we use this approxi-
mation as it simplifies inference considerably while making the model only slightly
suboptimal in terms of performance on the task.
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rewarding feature (d,f), conditioned on the run-length lt+1 = lt + 1
and past data; and (2) p(lt | D1:t ), the inferred distribution over
the run-length up to the current trial, given the observed data.

The first of these, p(d, f | lt+1 = lt + 1, D1:t ) can be computed
efficiently and recursively using Bayes’ rule

p
(
d , f |lt+1 = lt + 1, D1:t

) = p
(
d , f |Dt−lt :t

)
∝ p

(
rt |d , f , ct

)
p

(
d , f |Dt−lt :t−1

)
= p

(
rt |d , f , ct

)
p

(
d , f |lt , D1:t−1

) (6)

The run-length distribution p(lt | D1:t ), can also be computed
recursively using Bayes’ rule according to

p (lt |D1:t ) ∝ p (rt |lt , ct , D1:t−1 ) p (lt |D1:t−1)

=
∑

d

∑
f

p
(
rt |d , f , ct

)
p

(
d , f |Dt−lt :t−1

)

×
∑
lt−1

p (lt |lt−1, D1:t−1) p (lt−1|D1:t−1)

(7)

Taken together, these equations define a Bayesian update
process that makes optimal use of past information to infer the
present identity of the most rewarding feature with unsignaled
change-points.

In order to generate choice probabilities the model looks one
time step into the future to compute stimulus values, that is, the
predicted reward outcome for each choice V (st+1(i)) = p(rt+1 |
D1:t , ct+1 = st+1(i)) and then uses a softmax choice function2 (also

2It is also possible to use the so-called ε-greedy choice function with this model.
In this case, the model chooses the highest value option with probability 1 − ε for
some small ε (0 ≤ ε ≤ 1) otherwise choosing randomly between the three options.
Empirically, we found this model to fit the data particularly poorly and hence we do
not consider it further in this paper.

called a Boltzmann distribution) to generate choice probabilities
based on these values:

p (ct+1 = st+1(i)|D1:t ) = eβV (st+1(i))∑
j eβV (st+1(j))

(8)

where β is an inverse temperature parameter which will be fit to
data. Thus for a given Bayesian model (Bayes const h or Bayes var
h) and a set of parameters (β, h, ρh, and ρ l for Bayes const h; β,
ρh and ρ l for Bayes var h) this equation allows us to compute the
probability of the next choice given previous choices. In section
3.3 we use this to decide which of the models fits the data best.

Note that, unlike the inference process, the decision process is
suboptimal. This reflects the fact that although “ideal observer”
inference of reward probabilities in this task is tractable, deter-
mining the optimal action selection policy while taking account
of the multiple levels of uncertainty about these inferences is far
from trivial.

Figures 2 and 3 illustrate this algorithm in action. Figure 2
shows the detailed update process for six steps of the model, for
simplicity illustrated for the case of no change-points. Figure 3
depicts the evolution of p(d, f | D1:t ) over a longer time scale that
includes unsignaled changes.

2.3.3. Selective attention models
The second family of models assumes that subjects use a simplified
“serial-hypothesis-testing” strategy to solve the task. In particular,
this model postulates that at each point in time the subject focuses
attention on one feature f ∗ of one dimension d∗. The subject then
chooses the stimulus containing this feature until such time that
the subject decides to switch attention to a different dimension and
feature. This strategy requires substantially fewer computational
resources than the Bayesian inference strategy, however this comes
at the price of suboptimal use of information and diminished
performance on the task.

FIGURE 2 | Illustration of six time steps of the Bayesian model in

action with no change-points. Starting from t = 1 from top to bottom:
the model begins with a uniform prior distribution over dimension d and
feature f, p(d, f | D1:t ) (rows in 3 × 3 plot denote dimensions, with three
features each; shading denotes probability; see scale on right). Next the
three stimuli, st+1 = {st+1(1), st+1(2), st+1(3)}, are observed and their values,
p(rt+1 | D1:t , st+1(i )), computed. Given these values the choice probability
CF (st+1(i )) is computed for each option (here with β = 10) and a choice ct+1

is made. After the choice the model receives feedback about the reward,

rt+1, and uses this to compute the likelihood for each dimension and
feature pair, p(rt+1 | d, f, ct+1), which is equal to either ρh or ρ l. This
likelihood is then multiplied by the prior distribution p(d, f | D1:t ) to obtain
(after normalization) the posterior distribution over dimensions and
features, which is the new prior distribution at the next time step. As is
evident from the figure, on every trial the model gains new information
about all the dimensions and features, thus allowing it to rapidly converge
on the correct inference n(in this case, that the second texture feature,
dots, were the most rewarding).
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FIGURE 3 | Illustration of the Bayesian model in action with

unsignaled change-points. Each square represents p(d, f | D1:t ), the
distribution over correct dimension and feature, at a different trial,
starting with trial 1 in the top left and finishing with trial 50 in the bottom

right corner. There are two unsignaled change-points in this data set, on
trials 15 and 30. The model requires quite a few trials to detect the
change (and the resulting drop from 75% chance of reward to 42%), but
does so reliably.

We focus on three formal instantiations of the selective atten-
tion model. These are by no means the only possibilities within
this family of models, but they capture the essential features of
selective attention while remaining amenable to analysis.

2.3.3.1. Selective attention with hypothesis testing (SA full).
This model performs a Bayesian hypothesis test to determine
whether to switch from, or stick with, the currently attended
dimension and feature, based on the reward history since switch-
ing attention. It shares some similarities with the model of Yu and
Dayan (2005), which also entertains only one possibility at a time
for the relevant feature, although in their model the dynamics of
attention switching are deterministic while in our model they are
probabilistic.

The SA full model tracks the probability that the currently
attended dimension-feature pair is the most rewarding one based
on the history of rewards experienced since the last shift of atten-
tion. We write n as the number of time steps since the last shift
of attention and p({d∗, f ∗}t | r t−n+1:t ) as the probability that
dimension d∗ and feature f ∗ are correct at time t given the last
n rewards. Using Bayes rule it is then straightforward to show how
this probability distribution updates over time

p
({

d∗, f ∗}
t |rt−n+1:t

) ∝ p
(
rt |

{
d∗, f ∗}

t

)
p

({
d∗, f ∗}

t |rt−n+1:t−1
)

= p
(
rt |

{
d∗, f ∗}

t

)
×

∑
{d∗, f ∗}t−1

p
({

d∗, f ∗}
t |
{

d∗, f ∗}
t−1

)

× p
({

d∗, f ∗}
t−1|rt−n+1:t−1

)
. (9)

Here p(rt | {d∗, f ∗}t) is the probability of seeing reward out-
come rt given that the attended dimension-feature pair is correct,
which is just ρh if rt = 1 and (1 − ρh) if rt = 0. Also, if we assume

a constant hazard rate for unsignaled changes in the task we have

∑
{d∗, f ∗}t−1

p
({

d∗, f ∗}
t |
{

d∗, f ∗}
t−1

)
p

({
d∗, f ∗}

t−1|rt−n+1:t−1

)

= (1 − h)p
({

d∗, f ∗} |rt−n+1:t−1
) + hU

(
d∗, f ∗) (10)

where U (d∗, f ∗) is a uniform distribution over d∗ and f ∗. Taken
together this leads to the following recursive update equation for
p({d∗, f ∗}t | rt−n+1:t)

p
(
rt |

{
d∗, f ∗}

t

) ∝ p (rt |ρh) · [
(1 − h)p

({
d∗, f ∗} |rt−n+1:t−1

)
+hU

(
d∗, f ∗)] (11)

Similarly, we can compute the probability that the
attended dimension-feature pair is not correct, i.e., p(¬{d∗,
f ∗}|rt−n+1:t) = 1 − p({d∗, f ∗}|rt−n+1:t).

Given these two probabilities, the log likelihood ratio between
the hypothesis that the current focus of attention is on the highly
rewarding feature, and the alternative hypothesis is

LR(n) = log
p

({
d∗, f ∗} |rt−n+1:t

)
p

(¬ {
d∗, f ∗} |rt−n+1:t

) (12)

which in turn determines the probability of switching the focus of
attention according to

g = 1

1 + exp (β(LR(n) − θ)
(13)

with inverse temperature parameter β and threshold θ as free para-
meters of the model. Note that this model essentially reduces to
leaky counting of the number of wins and losses. An outline of the
model in action is shown in Figure 4.
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FIGURE 4 | Illustration of six trials of the full selective attention model in

action. At t = 1 the model randomly picks one dimension-feature (d ∗, f ∗) pair,
in this case (shapes, triangle), to attend to. Then the three stimuli
st+1 = {st+1(1), st+1(2), st+1(3)} are observed and ε-greedy choice probabilities
are computed (in this example ε = 0.3). Next a stimulus is chosen, ct+1, and
the reward outcome, rt+1, observed. The observed reward is used to update

the log likelihood ratio LR(n). For clarity, the black bar indicates the initial log
likelihood ratio and the orange bar represents the updated log likelihood ratio
that takes into account the new reward value. If the log likelihood ratio
crosses the threshold (dashed line), as occurs here on trial 4, the agent
switches its attention randomly (in this case, to (textures, plaid)) and resets its
log likelihood ratio to the initial value (black bar at trial 5).

2.3.3.2. Selective attention with win-stay-lose-shift style
switching (SA WSLS). We also considered two simplified ver-
sions of the selective attention model. In the first, we assume
that the subject shifts attention with probability gwin if the last
trial was rewarded with a point or gloss if it was not rewarded.
This model performs the task at better than chance levels as it
is less likely to switch away from the correct (often rewarded)
dimension-feature pair.

2.3.3.3. Selective attention with random switching (SA rand).
In this second, simplest possible, selective attention model, we
assume that subjects switch the focus of their attention ran-
domly with some fixed probability g, regardless of reward feed-
back. We further assume that the subjects are memoryless such
that they are equally likely to switch their attention to any of
the possible dimensions and features (including the last focus
of attention). It is important to note that, when simulated, this
model cannot actually perform the task at above-chance levels
since switching is unrelated to the reward outcomes. Neverthe-
less, when used as a tool to infer the subjects’ center of attention
from the data, this model can be useful as an approximation
to the more complex selective attention models as it captures
a key feature of selective attention choice behavior, i.e., that
choices are correlated across trials such that the subject tends
to choose a certain feature in a certain dimension for a length
of time.

2.3.3.4. Choice probabilities. We use an ε-greedy policy for all
selective attention models, such that the agent picks the option
with the attended feature with probability 1 − ε, and chooses ran-
domly with probability ε. Such a choice rule allows for mistakes,
that is, trials in which an option that does not have the attended
feature is chosen by accident. In these trials, the current value
of LR(n) is not changed. Note that the ε-greedy choice function
used here is similar to a softmax choice function (as used in the
Bayesian models) if one assumes that a selective attention agent

attaches higher value to a stimulus with the attended feature, than
to other stimuli.

2.3.3.5. Inferring the attended feature. While these selective
attention models provide straightforward accounts of the genera-
tion of subjects’ choices, it is complicated to fit them to subjects’
behavior. This is due to an additional source of uncertainty: the
experimenter’s uncertainty about the subject’s focus of attention
on each trial. For example, it is impossible to conclude, only on the
basis of the observation that the subject has chosen a red-plaid-
circle stimulus, which of the three features (red, plaids, or circles)
was the focus of attention. We can only infer a distribution over the
target feature given the subjects’ choice and reward history, p(d∗,
f ∗ | D1:t ). Using this, we can compute the likelihood of choosing
each option according to

p(ct+1 = st+1(i)|D1:t )

=
∑
d∗

∑
f ∗

p
(
st+1(i)|d∗, f ∗) p

(
d∗, f ∗|D1:t

) (14)

where p(st+1(i) | d∗, f ∗) is determined by the ε-greedy choice
function as follows

p
(
st+1(i)|d∗, f ∗)
=

{
1 − 2∈

3 if st+1(i) has feature f ∗ on dimension d∗
∈
3 otherwise.

(15)

To compute the probability that a feature is attended to, p(d∗,
f ∗ | D1:t ), we again use the change-point algorithm of Adams and
MacKay (2007), with change-points now reflecting the subject’s
switches in attention, rather than the dynamics of the task:

p
(
d∗, f ∗|D1:t

) =
∑

lA
t

p
(
d∗, f ∗|lA

t , D1:t
)

p
(
lA
t |D1:t

)
. (16)
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Here, we introduce lA
t as the run-length since the last time the

attentional focus was shifted (as distinct from lt in the Bayesian
model which denotes the run-length since the last change-
point in the task). As before, p(d∗, f ∗|lA

t , D1:t ) can be computed
recursively via

p
(
d∗, f ∗|lA

t , D1:t
) = p

(
d∗, f ∗|Dt−lA

t +1:t

)
∝ p

(
ct |d∗, f ∗) p

(
d∗, f ∗|Dt−lA

t +1:t−1

)
= p

(
ct |d∗, f ∗) p

(
d∗, f ∗|lA

t−1, D1:t−1
) (17)

and

p
(
lA
t |D1:t

) ∝ p
(
ct |lA

t

) ∑
lA
t−1

p
(
lA
t |lA

t−1, D1:t−1
)

p
(
lA
t−1|D1:t−1

)

=
∑
d∗

∑
f ∗

p
(
ct |d∗, f ∗) p

(
d∗, f ∗|lA

t , D1:t
)

(18)

×
∑
lA
t−1

p
(
lA
t |lA

t−1, D1:t−1
)

p
(
lA
t−1|D1:t−1

)
.

The exact form of the change-point prior, p(lA
t |lA

t−1, D1:t−1)

depends on the selective attention model:

for SA rand : p
(
lA
t |lA

t−1, D1:t−1
) = g

for SA WSLS : p
(
lA
t |lA

t−1, D1:t−1
) =

{
gwin if rt−1 = 1

glose if rt−1 = 0

for SA full : p
(
lA
t |lA

t−1, D1:t−1
) = 1

1 + exp
(
β(LR

(
lA
t−1

) − θ
) .

(19)

Finally, we assume a uniform distribution over d∗ and f ∗ as the
initial condition.

As was the case for the Bayesian model, computing p(ct+1 |
D1:t ), the probability of the next choice, given the parameters of
each model and past choices, allows us to compare the different
models’ abilities to fit the observed behavioral data.

2.4. MODEL FITTING AND MODEL COMPARISON
To adjudicate between the models, we used human trial-by-trial
choice behavior to fit the free parameters ωm of each model m,
and asked to what extent each of the models explains the subjects’
choices.

The free parameters, ωm for each model are shown in Table 1.
Model likelihoods were based on assigning probabilities to the
individual choices of each subject, according to equation 8 for the
Bayesian models and equation 14 for the selective attention mod-
els, such that the likelihood of the choices given model m and
parameters ωm was given by

p (c1:T |ωm) =
T∏

t=1

p (ct |D1:t−1, ωm) (20)

We fit each model’s parameters to each subject’s data separately.
To facilitate this, we used regularizing priors that favored realistic
values and maximum a posteriori (MAP; rather than maximum
likelihood) fitting (Daw, 2011). These priors and constraints are
summarized in Table 1 along with the mean fit values for each of
these parameters.

We optimized model parameters by minimizing the negative
log posterior of the data given different settings of the model
parameters using the Matlab function fmincon. The best fit-
ting parameters ω̂m for each model were then used to compute

Table 1 | List of parameters with accompanying priors and constraints used in the model-based analysis.

Model Parameters Priors Constraints Fit value ± SEM

Bayes const h β Gamma(2,2) 0 ≤ β ≤ ∞ 6.49 ± 0.36

h Beta(1,1) 0 ≤ h ≤ 1 0.153 ± 0.009

ρh Beta(12,4) 0.5 ≤ ρh ≤ 1 0.500 ± 0.0004

ρ l Beta(4,12) 0.2 ≤ ρh ≤ 0.5 0.2 ± 8 × 10−8

Bayes var h β Gamma(2,2) 0 ≤ β ≤ ∞ 3.59 ± 0.13

ρh Beta(12,4) 0.5 ≤ ρh ≤ 1 0.526 ± 0.009

ρ l Beta(4,12) 0.2 ≤ ρh ≤ 0.5 0.2 ± 3 × 10−8

SA full β Gamma(2,2) 0 ≤ β ≤ ∞ 1.34 ± 0.07

h Beta(1,1) 0 ≤ h ≤ 1 0.38 ± 0.03

ε Beta(1,1) 0 ≤ ε ≤ 1 0.052 ± 0.007

θ Uniform(−20,0) −20 ≤ θ ≤ 0 −3.29 ± 0.03

SA WSLS ε Beta(1,1) 0 ≤ ε ≤ 1 0.143 ± 0.014

gwin Beta(1,1) 0 ≤ gwin ≤ 1 0.010 ± 0.002

glose Beta(1,1) 0 ≤ glose ≤ 1 0.27 ± 0.02

SA rand ε Beta(1,1) 0 ≤ ε ≤ 1 0.064 ± 0.009

g Beta(1,1) 0 ≤ g ≤ 1 0.169 ± 0.007

In the rightmost column are the estimates of these parameters, as fit to all subjects in the experiment (mean and SEM).
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the Laplace approximation to the Bayesian evidence Em for each
model (Kass and Raftery, 1995):

Em = log p (c1:T |m)

= log

∫
ωm

p (ωm) p (c1:T |ωm) dωm

≈ log p
(
ω̂m

) + log p
(
c1:T |ω̂m

) + 1

2
Gm log 2π − 1

2
log |Hm|

(21)

in which p(ω̂m) is the value of the prior on the parameters at
the MAP estimate, p(c1:T |ω̂m) is the data likelihood at the MAP
estimate, Gm is the number of parameters in model m and |Hm|
is the determinant of the Hessian matrix of second derivatives of
the negative log posterior evaluated at the MAP estimate. The
Bayesian evidence is a means for comparing different models
and correctly penalizing those with large number of free para-
meters. As the Bayesian evidence scales with the number of data
points and thus can be hard to interpret, we computed an aver-
age probability per trial for each model by dividing the total
Bayesian evidence by the number of trials and exponentiating
it, i.e.,

Pm = exp

(
Em

N

)
(22)

The resulting measure, Pm, retains many of the useful fea-
tures of the evidence, Em, such as including correction terms that
take account of the number of free parameters in a model, while
also being a more intuitive measure of variance explained by the
model. In particular, Pm varies between 0 and 1, with Pm = 1/3
approximating chance choice probabilities in our model (indi-
cating that the model does not explain any variance in the data,
or alternatively, that the data provide no support for the model),
while Pm = 1 implies that a model predicts the observed choices
perfectly. More generally, in cases where the Laplace approxima-
tion to Em is valid (Kass and Raftery, 1995), Pm can be shown

to approximate the geometric mean of the choice probabilities
given the maximum likelihood parameter settings of the model,
p

(
ci |ω̂m , D1:i−1

)
.

3. RESULTS
We first describe the qualitative features of subjects’ behavior
on our task, before presenting more detailed analyses to deter-
mine n which model explains better subjects’ choices. We use two
types of analyses: in a qualitative analysis, we test the data for
distinctive patterns that are predicted by each of the models. In
the second, quantitative analysis, we use the whole sequence of
trial-by-trial choices and rewards in order to fit each of the mod-
els, and compare the likelihoods of the data given each model
while accounting for their different numbers of free parameters.
The results of both of these analyses indicate that the selective
attention class of models better explains subjects’ behavior in our
task.

3.1. LEARNING CURVES
Figure 5A shows performance (fraction correct choices) as a func-
tion of the number of trials after an unsignaled change-point,
averaged over all subjects. From this learning curve it is apparent
that subjects were able to learn the correct dimension and feature,
and in general to perform the task at better than chance levels,
despite its difficulty. Furthermore, performance did not deviate
from chance for several trials after a change in the correct dimen-
sion and feature occurred, suggesting that it takes several trials for
subjects to detect and respond to the change.

To assess each subject’s degree of learning we compared the
average fraction correct on the first five trials after a change to the
average fraction correct on trials 16–20 after the change (provid-
ing that another change has not yet occurred). This is depicted in
Figure 5B. Points above the equality line indicate subjects whose
performance improved between change-points. In the rest of the
analyses we focus on the 35 (out of 37) subjects who showed such
improvement.

FIGURE 5 | Performance on the task as a function of number of

trials after an unsignaled change-point. (A) Fraction correct choices
as a function of trial number after a change-point, averaged across
subjects (solid black line). Shading – SEM; dashed line – chance
responding. (B) Comparison of average performance on trials 1–5 after

a change and trials 16–20 after a change for each individual subject. The
dashed black line corresponds to equality such that subjects lying
above this line improved their performance over the course of a block.
The two subjects that did not meet this criterion are shown in
orange.
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3.2. QUALITATIVE ANALYSIS
The main qualitative difference between the two classes of models
we propose is that a Bayesian learner learns about all features of the
chosen stimulus, whereas a selective attention learner only learns
about one feature in each trial. Thus the selective attention model
predicts that if a subject switches the focus of attention after a zero-
reward trial, she is equally likely to switch to any feature, including
the unattended features of the recently chosen (and unrewarded)
stimulus. In contrast, the Bayesian model, having associated all the
features of the last choice with the zero point outcome, is likely to
avoid all of these features in the next choice, to the extent that this
is possible.

Unfortunately, as discussed above, we cannot directly infer the
focus of attention from a single choice in our task. However, we
can glean some information about the focus of attention in a
model-free way from pairs of consecutive trials in which only one
feature is common to both choices. On this subset of trials, for
the selective attention model, there is a high probability that the
currently attended feature is the feature common to both choices.
We can then ask what happens on the next trial (i.e., the third
trial in the sequence), based on the history of rewards for the first
two trials, i.e., whether the two previous trials were “loss” trials
(denoted as 00) or “win” trials (11). Specifically, we asked whether
the third choice shared the putative attended feature (“stick”) or
not (“switch”), and whether it included 0, 1, or 2 of the previous
putatively unattended features. For instance, based on two con-
secutive trials in which a red-plaid-square and a red-dots-triangle
were chosen, we guess that “red” was the attended feature, and ask:
if both trials resulted in 0 reward, will the subject “stick” with red
on the third trial? And if not, will the subject also tend to avoid
dots and triangles (as predicted by the Bayesian class of models,
but not the selective attention models)?

Figure 6 compares the behavior of subjects (Figures 6E,F) with
that of 100 simulations of one model from each class (Bayes const
h, Figures 6A,B, and SA full, Figures 6C,D; these were the models
in each class found to best fit the behavioral data, see below). The
left column (Figures 6A,C,E) shows the frequency of switch and
stick trials for the two different reward conditions. As expected, the
behavior of both models is qualitatively similar and very close to
that of the subjects. The right column (Figures 6B,D,F) shows the
distribution over the number of shared features on the unattended
dimension. Figure 6B clearly shows that the Bayesian model seeks
to avoid all features paired with a loss, as the distribution over
the number of shared features is shifted to the left for loss trials as
compared to win trials. The selective attention model (Figure 6D),
however, shows no such difference between loss and win trials.
Importantly, the predictions of the selective attention model are
in line with the behavior of the subjects (Figure 6F).

3.3. QUANTITATIVE MODEL COMPARISON
3.3.1. Model evidence and choice probabilities
Figure 7A shows the average probability per choice Pm (see section
2.4) for each of the five models, averaged across subjects. All of the
models perform better than chance, with the full selective atten-
tion model explaining the data best. A more detailed view of this
result is shown in Figure 7B which plots histograms of the choice
probabilities p(ci |ω̂m , D1:i−1 ) for the five different models, pooled

across subjects. This demonstrates that the full selective attention
model predicts more choices with high probability than any of
the other models. Figure 8 further confirms this population-level
trend at the single subject level. Here we compared Pm for each
model against the full selective attention model. For all four other
models, the full selective attention models better explained the
data in a majority of subjects3.

3.3.2. Confusion matrix
We assessed the sensitivity of our analysis by asking to what extent
our model fitting procedure was able to correctly recover the iden-
tity of a model from simulated data. Specifically, we used each
model to simulate 200 subjects (500 trials each), using parameter
values consistent with the values fit to subjects’ behavior (that is,
parameter values drawn from empirical priors generated from the
above fits to subjects’ choice data). We then fit each of the five
models to each simulated subject, and determined the model that
best fit the subject’s data.

The results of this analysis are summarized in the “confusion
matrix” (Steyvers et al., 2009) shown in Figure 9. Numbers in each
box correspond to the percentage of simulations for which the
model on the x-axis provided the best fit to data generated by the
model on the y-axis. If our ability to recover the model that gen-
erated the data was perfect, this matrix would be zero everywhere
except on the diagonal where it would have value 100. Unfortu-
nately, some of the models we tested predict sufficiently similar
behavior on this task, such that there are significant off-diagonal
elements in this matrix. However, reassuringly, for all models the
correct model is identified as best explaining the data most often,
and, importantly, there is very little mixing between models in the
two different (selective attention and Bayesian) classes. This fur-
ther validates our results supporting the selective attention class
of models.

3.3.3. Model learning curves
Although the above analysis of choice behavior strongly favors the
selective attention model, it is important to ask whether an inde-
pendent agent playing that strategy can perform the task at a level
comparable with that of humans. To test this, we simulated two
agents – one playing according to the Bayesian model with fixed
hazard rate and the other using the full selective attention strategy,
with optimal parameter settings – and measured their learning
curves.

In the Bayesian case, the optimal parameters correspond to a
deterministic choice function (β = ∞) and a hazard rate set as the
average hazard rate for the task (h = 0.05). In the selective attention
case, we assumed that optimal behavior has zero decision noise,
ε = 0, and searched the parameter space to find optimal values for
the other three free parameters, resulting in β = 50, θ = −2.1984,
h = 0.0333. With these parameter settings, we simulated 100,000
trials for each model and computed average learning curves as
shown in Figure 10. Clearly, both agents can perform the task, but
with very different degrees of success. Performance of the Bayesian

3Note that the shaded significance region was computed conservatively, according
to the subject with the fewest number of trials. For subjects with larger number of
trials the shaded region should be smaller.
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FIGURE 6 | Simulated data from the Bayes const h model (A,B) and

SA full model (C,D) (100 “subjects” simulated for each model)

compared with human behavior (E,F). Left column (A,C,E): the
probability of switching away from the putatively attended dimension
based on whether the outcomes for the last two trials were two losses

(orange) or two wins (white). Right column (B,D,F): the number of
shared features between the third choice and the second choice, in the
putatively unattended dimensions, divided according to the outcomes of
the last two trials (orange – two losses; white – two wins). Error bars are
SEM.

model far outstrips that of both the selective attention model and
the human subjects, as might be expected from a model that makes
near optimal use of information. The selective attention model,
however, performs similarly to (but marginally worse than) the
human subjects.

One possible reason for the inferior performance of the selective
attention model compared to human subjects is that we modeled

a memoryless selective attention model (for reasons of tractability
of the model-based choice analysis). Thus, our selective attention
agent has a probability of 1/9 of switching to the same feature
once it decides to switch its focus of attention, while humans
presumably always switch to a different feature.

For comparison, we also simulated the Bayesian, full and ran-
dom selective attention agents using parameter values found using
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FIGURE 7 | (A) Average choice probabilities, Pm, for each of the five models averaged across subjects. Dashed line: chance; error bars: SEM. (B) Histograms of
choice probabilities for the five different models using data from all 35 subjects.

FIGURE 8 | Within subject analysis of average choice probabilities. Pm

values from the full selective attention model plotted against those of the
four other models: the Bayesian model with constant (A) and variable (B)

hazard rates, and the selective attention models with random (C) and
win-stay-lose-shift (D) switching. Each dot represents an individual

subject, the black dashed line indicates equality, such that the choices of
any subject lying above this line are better explained by the full selective
attention model. Orange shading represents a confidence interval outside
which the Bayesian evidence favors one model over the other with
p < 0.0001.
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FIGURE 9 | Confusion matrix showing the percentage of times data generated by the model on the y -axis was fit by the model on the x -axis. Shading
corresponds to the numbers such that darker represents higher numbers.

FIGURE 10 | Average learning curves for simulated agents performing

10,000 trials of the task with unsignaled changes. Black – full selective
attention model with optimal (solid) and fit (dashed) parameters;
Orange – Bayesian model with constant hazard rate with optimal (solid) and
fit (dashed) parameters; Green – SA rand with fit parameter values;
Gray – human data (shading: SEM).

the fitting procedure. As expected from a model that pays no
attention to rewards, the SA rand model shows no learning and
performs at chance levels throughout. Both the Bayesian and
SA full models have learning curves with fit parameters that are
shallower than human behavior.

4. DISCUSSION
Much progress has been made in recent years in understanding
how humans and animals learn to maximize rewards by trial and

error. However, this work has often eschewed the question of how
the representation on which this learning process relies, is itself
learned. We investigated this “representation learning” process in
a task in which humans had to learn concurrently which of three
dimensions is relevant to rewards, and within this dimension,
which feature is associated with the highest probability of reward.
To exacerbate uncertainty in the task and further mimic learning
in real-world scenarios, the underlying reward-generating process
changed abruptly at different time points, unannounced to the
subjects. Thus our task involved uncertainty at multiple levels:
uncertain representations, uncertain (probabilistic) rewards and
uncertainty regarding change-point locations.

4.1. SUBJECTS ARE SUBOPTIMAL
Surprisingly, in contrast to perceptual decision making tasks in
which humans are often shown to be Bayes-optimal evidence inte-
grators (Ernst and Banks, 2002; Alais and Burr, 2004; Kording and
Wolpert, 2004), our analysis provides strong evidence that subjects
in our task use evidence suboptimally. Rather than estimating a
probability distribution over the identity of the rewarding dimen-
sion and feature, our subjects’ performance was more consistent
with a “selective attention” serial-hypothesis-testing strategy in
which the subject attends to one feature at a time, accumulat-
ing information about the likelihood that this feature is the most
rewarding one.

There are at least two possible explanations for this suboptimal-
ity. The first is that subjects in our task are less trained compared
to many of the human and animal subjects used in psychophysi-
cal and perceptual tasks. Thus they may have not yet learned the
correct Bayesian strategy. While this may account for differences
from experiments such as (Munuera et al., 2009) that investigated
sensorimotor integration in humans (which can be assumed to be
highly trained from everyday experience), it is hard to see how the
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subjects in an experiment such as (Bahrami et al., 2010) would be
significantly more trained than our subjects.

Instead, we conjecture that there is a more general reason
for subjects’ suboptimal representation learning: optimal per-
formance in our task requires significantly more computational
capacity than needed to optimally solve any of the referenced per-
ceptual tasks. Specifically, implementing the full Bayesian model
with a variable hazard rate involves keeping track of up to 300
probability values (30 weights for each possible run-length plus 30
nine-valued probability distributions p(d, f | lt, D1:t ) for each pos-
sible run-length). This is considerably reduced in the fixed hazard
rate case, to 9 values, but even this is more complicated than in the
referenced papers.

In contrast, the selective attention model demands far fewer
computational resources, requiring the maintenance of only two
variables, the identity of the attended feature and the likelihood
ratio, at any time step. This process is not wholly computationally
suboptimal, as it at least utilizes an optimal (Bayesian) compu-
tation of the likelihood that the currently attended feature is the
most rewarding. However, since this strategy does not take all avail-
able information into account, learning is slower in terms of the
amount of experience that is needed in order to learn the correct
representation.

Such an account may explain why in a related, but simpler, task
with only two dimensions and features (Wunderlich et al., 2011)
the authors found evidence for Bayesian learning over a model
that selectively attended to the dimensions (although their selec-
tive attention model was different from the one presented here in
that it attended to dimensions rather than features). It is possible
that humans have the computational capacity to integrate infor-
mation optimally in relatively simple tasks but switch to simpler
strategies as task difficulty increases.

In real-world representation learning in which the number
of possible relevant dimensions and features is potentially huge,
we expect the difference in computational efficiency between
selective attention and fully Bayesian strategies to be even more
pronounced. Thus we conjecture that it is impossible for humans
to implement a full Bayesian solution in the real-world and thus,
even in our relatively simple task, they are using an alternative
approximate mechanism which is computationally efficient but
statistically suboptimal (see also Steyvers et al., 2003).

4.2. LIMITATIONS OF THE EXPERIMENT AND ANALYSIS
The main limitation of the current experimental design was that
we could not directly measure the subjects’ focus of attention. To
nevertheless estimate choice probabilities for the selective atten-
tion models, we used the subjects’ sequence of behavioral choices
and outcomes to infer the dynamically changing focus of atten-
tion. On some trials this method has significant uncertainty about
the focus of attention, which reduces the power of our statistics
in differentiating between models. Still, our results supported the
selective attention models unambiguously. In future work we hope
to overcome this limitation using modified versions of the task.

Another limitation is that our current analysis does not include
a selective attention model with memory for options that have
already been tested. This is because exact inference in change-
point problems is intractable when data are correlated across
change-points (as would be the case across attentional switches

in such a model). In future work we will examine the possibility
of performing approximate inference in these cases.

4.3. RELATION TO PRIOR WORK ON SELECTIVE ATTENTION
The two families of models that we explored, Bayesian and selec-
tive attention models, can be thought of as formal instantiations of
previous models of discrimination learning: the Bayesian model
expounding the“continuity theory”of early behaviorists (reviewed
in Mackintosh, 1965), in which all sensory dimensions and features
are treated equally in learning, and the selective attention family
formalizing “non-continuity theory” (Lashley, 1929; Krechevsky,
1938), which in its strongest form proposes that animals only learn
about the features they attend to.

Our results favor the latter theory. Because we have a precise
formulation of the models in both cases, we can, in line with early
theories of selective attention (Broadbent, 1958; Kahneman, 1973;
Bundesen, 1996), conjecture that selective attention is favored for
reasons of computational efficiency. This interpretation is distinct
from (and orthogonal to) the Bayesian models of selective atten-
tion from Dayan et al. (2000), in which dynamical allocation of
attention arises naturally as a result of Bayesian computations and
is not driven by computational costs.

However, prior work also suggests models that we have yet to
explore. Specifically, many past studies have found evidence for
two-stage models of selective attention (Sutherland and Mackin-
tosh, 1964). In these hierarchical models, an attentional spotlight
highlights one particular feature or dimension at the lower level,
while a higher-level meta-decision about where to switch attention
to is driven by all available information (perhaps weighted by the
attentional spotlight).

In this light, Dehaene and Changeux’s (1991) cognitive models
of the Wisconsin card sorting task suggest several possible hierar-
chical extensions to our model. Two, in particular, are of interest
here. The first extends the present selective attention model by
including memory – assuming that hypotheses that have been
ruled out are not immediately revisited. The second assumes that
subjects use some sort of reasoning to allocate the attentional spot-
light, rather than selecting their next focus of attention randomly.
In our case, this latter model would amount to a mixture of the
Bayesian and selective attention models in which a Bayesian high-
level analysis directs the focus of attention (biasing it toward fea-
tures likely to be rewarding) while the attentional model performs
hypothesis testing to determine whether the currently attended
feature is indeed more rewarding.

Unfortunately, an exact model-based analysis is not possible in
these cases due to violation of the product partition assumption.
More work employing approximate inference schemes and dif-
ferent experimental manipulations will be needed to distinguish
between these more subtle instantiations of selective attention.

The full selective attention model shares many similarities with
that of Yu and Dayan (2005). In their model of an extended Pos-
ner task, the agent focuses on one relevant feature at a time and
performs an approximate likelihood ratio test to decide when
to switch the center of attention. Unlike our model, attention
switches are deterministic, and the new center of attention is not
determined immediately after a switch but after ten passive “null
trials.” While such a strategy is likely to work in a detection task
like the Posner task, in a task such as ours in which subjects must
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make active choices it seems unlikely that such a passive strategy
would work.

Despite these differences, it is interesting to speculate whether
the attention switching mechanism, proposed by Yu and Dayan
(2005) to be driven by acetylcholine and norepinephrine, is used in
our task. In particular, this would map the likelihood ratio in equa-
tion 12 onto the activity in these two systems with norepinephrine
encoding the probability that the currently attended feature is
incorrect p(({d∗, f ∗} | rt−n+1:t) (the so-called “unexpected uncer-
tainty”) and acetylcholine encoding ρh, the probability of winning
given that the currently attended feature is correct (“expected
uncertainty”).

5. CONCLUSION
We have presented a novel experimental paradigm in which
humans infer the relevance of different features of stimuli to
determining rewards, in a changing environment. Analysis of

choice behavior in this task suggests that humans use a suboptimal
inference process based on a selective attention serial-hypothesis-
testing strategy in which subjects focus on just one feature of the
stimuli at a time. This glaring suboptimality is perhaps justified
by the intractability and complexity of the problem at hand –
and humans’ extraordinary success at learning new tasks in a
highly multidimensional and changing environments attests to
its obvious utility.
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