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Predicting the actions of other individuals is crucial for our daily interactions. Recent evi-
dence suggests that the prediction of object-directed arm and full-body actions employs
the dorsal premotor cortex (PMd). Thus, the neural substrate involved in action control
may also be essential for action prediction. Here, we aimed to address this issue and
hypothesized that disrupting the PMd impairs action prediction. Using fMRI-guided coil
navigation, rTMS (five pulses, 10 Hz) was applied over the left PMd and over the vertex
(control region) while participants observed everyday actions in video clips that were tran-
siently occluded for 1 s. The participants detected manipulations in the time course of
occluded actions, which required them to internally predict the actions during occlusion.
To differentiate between functional roles that the PMd could play in prediction, rTMS was
either delivered at occluder-onset (TMS-early), affecting the initiation of action prediction,
or 300 ms later during occlusion (TMS-late), affecting the maintenance of an ongoing pre-
diction. TMS-early over the left PMd produced more prediction errors than TMS-early over
the vertex.TMS-late had no effect on prediction performance, suggesting that the left PMd
might be involved particularly during the initiation of internally guided action prediction but
may play a subordinate role in maintaining ongoing prediction. These findings open a new
perspective on the role of the left PMd in action prediction which is in line with its functions
in action control and in cognitive tasks. In the discussion, the relevance of the left PMd for
integrating external action parameters with the observer’s motor repertoire is emphasized.
Overall, the results are in line with the notion that premotor functions are employed in both
action control and action observation.
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INTRODUCTION
An increasing amount of evidence points to the relevance of the
premotor cortex for predicting events in the external world (see
Schubotz, 2007, for a review). The premotor cortex plays a cen-
tral role in action planning and forms a core part of the network
that is activated when an action is observed or imagined (Grèzes
and Decety, 2001). It has been suggested that the involvement of
the motor system during action observation mainly serves pre-
dictive purposes (Wilson and Knoblich, 2005; Schütz-Bosbach
and Prinz, 2007; Urgesi et al., 2010). We obtained corresponding
evidence in a study using functional magnetic resonance images
(fMRI; Stadler et al., 2011), which showed that the left dorsal pre-
motor cortex (PMd) and the left pre-supplementary motor area
(pre-SMA) were involved in the prediction of actions that were
transiently occluded from view. The particular relevance of the left
PMd for internal action prediction can be explained by the type
of actions used in the experiment: participants predicted object-
directed (i.e., transitive) arm and full-body actions performed in
a naturalistic environment by a right-handed actress.

In the present study, we tested whether the left PMd has a causal
significance for internal action prediction. We hypothesized that
disturbing this area by means of rTMS impairs the prediction of
transiently occluded actions.

Other studies using TMS to investigate premotor cortex
involvement in action observation focused on the pars opercularis
of the inferior frontal gyrus (IFG), which has been suggested to
belong to the posteriorly adjacent ventral premotor cortex (PMv).
Setting transient lesions in this area seems to disrupt sensorimo-
tor transformations of action-related visual information (Urgesi
et al., 2007a) and leads to performance deficits only when observers
are required to access action representations that are in their own
action repertoire (Pobric and Hamilton, 2006; Avenanti et al., 2007;
Urgesi et al., 2007b), for example, when discriminating between
possible but not between impossible hand configurations (Candidi
et al., 2008).

So far, TMS has not been used to study the involvement of pre-
motor areas and particularly the PMd during the active prediction
of observed actions. Studies on motor control indicate that TMS
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over this area affects different aspects of motor cognition as com-
pared to PMv. Davare et al. (2006) found that during grasping and
subsequent lifting of an object, rTMS over the PMv affects the grip
configuration while stimulation over the PMd selectively disrupts
the timing of the lifting phase. This is in line with the functional
distinction between PMv and PMd that is established in litera-
ture (see Tomassini et al., 2007 for a dissociation in humans and
an overview of findings in the monkey). The PMv is associated
with the control of fingers in coordination with the surface of the
grasped object. The PMd is involved in the control of movements
that integrate a higher number of joint trajectories such as reach-
ing for objects in space (Pesaran et al., 2006; Beurze et al., 2007).
Furthermore, the PMd has been shown to contribute to learned
associations of actions with arbitrary external events (Rushworth
et al., 2003). Neurons in the PMd of monkeys were found to rep-
resent the expected external effects of performed and observed
actions in a task in which markers lighted up when touched with
a cursor (Cisek and Kalaska, 2004). Correspondingly, TMS over
the human PMd disrupts the prediction of forces when different
weights are lifted (Chouinard et al., 2005) and prolongs reac-
tion times (RT) in choice reaction time tasks (Schluter et al.,
1998; Johansen-Berg et al., 2002) when actions are contingent on
arbitrary visual cues.

Moreover, the PMd is involved in more abstract cognitive tasks
that are not directly related to action but require spatial trans-
formations, such as serial prediction (Schubotz and von Cramon,
2001; Schubotz et al., 2003), the generation of number sequences
from memory (Abe et al., 2007) and mental rotation (Lamm
et al., 2001; Windischberger et al., 2003). Mental rotation is a task
that has many functional commonalities with action prediction.
Both tasks require an internally guided transformation of visual
(or visuospatial) information (see Schubotz, 2007). Interestingly,
TMS over the PMd was shown to disrupt mental rotation (Tanaka
et al., 2005; Oshio et al., 2010) and mental rotation can induce
corticospinal excitation as observed in motor-evoked potentials
measured in hand muscles (Bode et al., 2007; Eisenegger et al.,
2007).

Assuming that the internal prediction of observed actions
employs similar PMd functions as those involved in the gener-
ation of overt action, we expected that interference with rTMS
impairs action prediction performance. We presented everyday
actions in video clips and used a task that required participants to
predict action sequences during transient occlusions lasting for 1 s
(Figure 1A). Immediately after an occlusion, the action continued
either with correct or manipulated timing. Manipulating the time
course of the actions resulted in continuations that either lagged
behind or were too advanced. The participants indicated whether
the timing was correct or not by pressing one of two response but-
tons. Repetitive TMS at 10 Hz was applied over the left PMd and
in a control session over the vertex region (VX). To guide rTMS
application to each individual’s prediction related “hot spot” in
the PMd and to the VX region that was not related to prediction,
previously acquired fMRI contrast images were used (Figure 1B).
Repetitive TMS pulse trains lasted for 400 ms and were applied
either at occluder-onset (TMS-early) or with a delay of 300 ms
after occluder-onset (TMS-late). This variation of rTMS onsets
allowed us to differentiate between the effects of PMd stimulation

during early periods of internal prediction (i.e., initiating action
prediction) and effects in later prediction periods (i.e., driving
and maintaining ongoing action prediction). Applying TMS over
the premotor cortex was shown to condition the excitability of
the primary motor cortex (M1; Civardi et al., 2001; Rizzo et al.,
2004). In order to avoid an influence on motor responses, we asked
the participants to respond with the ipsilateral left hand. The
electromyographic (EMG) activity was monitored and recorded
during the entire TMS experiment and was compared between
the stimulation sites.

MATERIALS AND METHODS
PARTICIPANTS
Twelve right-handed (above 80% according to Edinburgh Inven-
tory; Oldfield, 1971) females, aged between 20 and 32 years
(mean = 25 ± 3.3) participated in the experiment. In accordance
with the declaration of Helsinki, participants received informa-
tion regarding effects of rTMS and related risks before signing
an informed consent agreement. The experimental protocol was
approved by the Ethics Committee of the University of Leipzig.
None of the participants had neurological, psychiatric, or other
medical problems or any contraindication to rTMS (Wassermann,
1998). One participant decided to withdraw from the experiment
after the first session.

STIMULI AND TASK
Eight different video clips (mean duration: 37.8 ± 11.2 s, range:
11–52.5 s) were presented in random order, each showing a female
agent performing a well-known everyday action in a naturalistic
setting (changing the bed sheets, filling the dishwasher, putting up
a poster, setting the table, hanging up laundry, preparing a salad,
making coffee, watering a plant). The participants were seated at
a distance of 112 cm from the monitor. At a screen resolution of
1024 × 768 pixels, the agent in the video covered a visual angle
of 5.76˚. The clips were repeatedly occluded with a dark rectan-
gle covering the whole display. All occlusions lasted for 1 s. Each
video clip was occluded one to four times (average 2.5 ± 0.7) and
was presented six times using different occluder-onset positions
in order to exclude possible learning effects due to repetition.
Occlusions were placed at action sequences that were rated as
sufficiently predictable on the basis of pilot experiments. In accor-
dance with the functional selectivity of the PMd (Kalaska et al.,
1997; Hoshi and Tanji, 2000; Raos et al., 2003; Beurze et al., 2007;
Filimon et al., 2007), occlusions covered sequences of higher inte-
grated limb and full-body actions that were extended in space,
such as reaching for objects, object transport in space, or full-body
translational movement. The interval between occlusions varied
randomly between 7.5 and 20.5 s (mean 13.5 ± 3.6). After each
occlusion, participants indicated whether the time course of the
action was coherent or had been manipulated during the occlu-
sion. In the coherent timing conditions, the action continuation
corresponded to the occluder duration (i.e., the action contin-
ued at a frame occurring 1 s after the last visible frame before
occlusion). In the incoherent timing conditions, the action either
continued too soon (continuation at 0.5 s instead of 1 s after the
last visible frame) or belated (continuation at 3 s instead of 1 s
after the last visible frame). The asymmetry between time shifts in
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FIGURE 1 | (A) Design. Video clips showing naturalistic everyday actions
were repeatedly occluded. Occlusions lasted for 1 s. The actions continued
immediately after the occlusions with either coherent or incoherent timing. In
time-coherent trials, the action continuation corresponded to the occluder
duration (i.e., the action continued 1 s after the last frame before occlusion). In
time-incoherent trials, the action either continued at a frame that was too
soon (coherent − 500 ms) or belated in the action sequence
(coherent + 2000 ms). Participants decided whether the action continued with
coherent or incoherent timing, by pressing one of two response buttons with
their left index finger. Repetitive TMS was applied only during occlusions in
50% of the trials. TMS application either started at occluder-onset (TMS-early)

or 300 ms after occluder-onset (TMS-late). In 50% of the trials (noTMS),
performance under unstimulated conditions was assessed. Pulse trains
included five single pulses at a frequency of 10 Hz and lasted for 400 ms. The
interval between occlusions varied randomly between 7.5 and 20.5 s. (B)

fMRI-guided coil navigation. A functional brain scan of one exemplary
participant is overlaid on the participant’s anatomical scan (coronal slice,
sagittal slice, and 3D-rendered surface). In the 3D brain, yellow dots indicate
the sites of TMS application, left dorsal premotor cortex (PMd) as the region
of interest, and Vertex (VX) as the control region. For left PMd stimulation, the
TMS coil was navigated to the local maximum obtained in an fMRI contrast
between an action prediction task and an action memory task.

too soon and belated continuations was motivated by pilot data
showing that these values resulted in reasonable performance rates
(of around 80% correctly answered trials).

The participants discriminated between coherently timed
action continuations and incoherent ones by pressing one of two
response buttons as soon as possible after occlusion, using their
left index and middle fingers, respectively. Based on pilot experi-
ments, the time shifts were chosen such that the overall error rates
did not exceed 30% of all trials.

TMS
The resting motor threshold was assessed in each participant by
recording motor-evoked potentials (MEPs) from the right first
dorsal interosseous (FDI) muscle after applying single pulse TMS
over the left primary motor cortex (M1). To this end, surface elec-
trodes (Ag/AgCl) were placed over the muscle belly (i.e., active
electrode) and over the corresponding tendon (i.e., reference) in a
belly–tendon montage. The EMG was amplified at a gain of 1000,
band-pass filtered (20–2000 Hz), and digitized at a sampling rate
of 5 kHz. The resting motor threshold was defined as the lowest
stimulation intensity to evoke MEPs of at least 50 μV peak-to-peak

in five out of 10 single pulse stimulations (Rossini et al., 1994).
Stimulation was delivered using a figure-of-eight stimulation coil
(70 mm, Magstim polyurethane coated) over the left M1, adjust-
ing its position to optimize MEP amplitudes in response to single
pulses. These were delivered with an inter-pulse delay of at least
5 s using a Magstim Rapid2 stimulator (The Magstim Company,
Carmarthenshire, Wales, UK). Recording of EMG activity was
continued throughout all experimental sessions.

While participants were performing the action prediction task,
online rTMS was applied by means of a Magstim Air Film Coil
(figure-of-eight shaped, 70 mm) mounted on an articulated coil
stand. A Magstim Rapid2 stimulator producing a maximum out-
put of 3.5 T at the coil surface (output type: biphasic; pulse
width: 400 μs) was used for stimulation at a frequency of 10 Hz.
Each train of pulses consisted of five single pulses with an inter-
stimulus interval of 100 ms, thus lasting for 400 ms. Stimulation
intensity was 110% of the individual resting motor threshold,
ranging from 44 to 77% (mean = 62.1 ± 10.1%) of the maxi-
mum stimulator output. Intervals between pulse trains lasted for
at least 12 s (respecting safety recommendations for the min-
imum delay between two rTMS trains; Rossi et al., 2009). In
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half of the rTMS trials, stimulation was delivered at the onset
of an occluder (TMS-early condition), while in the other half, it
was delivered 300 ms after the onset of an occluder (TMS-late
condition).

For left PMd stimulation, the coil was positioned at the fMRI
activation maximum that was found in each individual around the
crossing of precentral sulcus with the superior frontal sulcus (SFS).
The mean PMd coordinates, SD and ranges were x = −22.6 ± 6.7
(−14 to −39), y = 1.4 ± 6.2 (−8 to 13), and z = 53.8 ± 2.6 (51–
59; Talairach and Tournoux, 1988). The coil was oriented with
an angle of 45˚ to the sagittal axis. In order to control for unspe-
cific effects of the rTMS treatment (such as tactile sensations and
sound), the vertex area (VX) was chosen as a control site receiving
rTMS stimulation with similar parameters as the PMd. For vertex
stimulation, the coil was positioned over the sagittal midline, at
the level of the postcentral gyri (Figure 1B). The mean VX coordi-
nates, SD, and ranges were x = 0.2 ± 0.8 (−2 to 1), y = −34.7 ± 3.8
(−29 to −42), and z = 58.2 ± 4.8 (51–66).

The positioning of the rTMS coil on the regions of interest
(ROIs) was navigated using fMRI of the individual participants in
a frameless stereotaxic system including a Polaris IR tracker camera
(Northern Digital,Waterloo, ON, Canada) that measured the posi-
tion of anatomical landmarks on the participants’ heads. These
landmarks were co-registered with each participant’s unpeeled
anatomical MRI scan using Brainsight software (Rogue, Mon-
treal, QC, Canada). The TMS coil was equipped with tracking
points so that its position relative to the brain could be tracked
online.

MRI
In order to obtain contrast images for coil navigation, fMRI was
acquired in a separate session comprising two tasks (i.e., a predic-
tion task and a memory task), both involving sequences of every-
day actions that were performed by the same actress as those in
the present study. The tasks were from an earlier study that found
increased left PMd activation during action prediction (Stadler
et al., 2011). More specifically, an action prediction task (similar to
the one used in the present experiment) was employed in random
alternation with a memory task in which the participants were
required to memorize the last visible frame prior to the occlusion
(for a more detailed description, see Stadler et al., 2011). Func-
tional brain scans were acquired on a 3 T Bruker Medspec 30/100
system using a single shot gradient EPI sequence (TE = 30 ms,
flip angle 90˚, TR = 2000 ms, acquisition bandwidth 100 kHz).
Twenty-two axial slices oriented parallel to the bicommissural
plane were acquired (pixel matrix = 64 × 64, FOV = 19.2 cm, in-
plane resolution = 3 × 3 mm, slice thickness = 4 mm, interslice
gap = 1 mm). Data pre-processing and statistical analysis based
on the general linear model were carried out with the soft-
ware package LIPSIA (Lohmann et al., 2001). Contrast images
were generated between target events (onsets of occlusions) of
the two conditions Prediction and Memory. Functional MRI
maps showing the contrast Prediction > Memory in each indi-
vidual were used for TMS coil navigation and were therefore
overlaid on a high-resolution 3D reference dataset (EPI-T1).
The brain was manually extracted and visualized for 3D surface
rendering.

PROCEDURE
Half of the participants were in a previous fMRI experiment
(Stadler et al., 2011) and contrast images used for localizing the
ROIs during rTMS were already available for them. For the remain-
ing six participants, an fMRI scan was acquired prior to the TMS
experiment. The TMS experiment was conducted in two sessions.
Within each session, only one ROI (left PMd or VX) was stimulated
and the session order was counterbalanced over participants. Due
to regulations of the local ethics commission, the participants in
this study were not allowed to take part in a second brain imaging
experiment within 1 week time. Consequently, the experimental
sessions (fMRI, TMS 1, and TMS 2) were separated by 1 week.
One day before the first TMS session, a 60 min practice session
was held in which participants watched each video clip without
occlusions, and then received feedback while practising the pre-
diction task (36 trials, 17 with coherent timing) on two video clips
(not used in the actual experiment). Afterward, they performed 40
trials (20 with coherent timing) that were similar to those of the
TMS sessions (i.e., including the same videos and no feedback).
The results of the 20 coherent trials were used to assess individual
baseline performance.

The first TMS session lasted for about 90 min and started with
the assessment of the resting motor threshold. The experimental
part in which the prediction task was performed and rTMS was
delivered either over the PMd or the VX was presented in three
runs of 10 min duration that were separated by two short breaks.

In the second TMS session, the same stimulation parameters
were used so it was not necessary to determine the motor threshold,
resulting in a shorter overall duration of 45 min.

In each session and per stimulated area (PMd and VX), a total
number of 120 trials was presented, 60 of which were coherent,
30 too soon, and 30 belated. In both TMS sessions, half of the tri-
als were without rTMS stimulation, which allowed us to rule out
potential effects of anticipating rTMS application. Repetitive TMS
trials were divided in 50% TMS-early (i.e., rTMS at the onset of
an occluder) and 50% TMS-late trails (i.e., rTMS 300 ms after the
onset of occlusion).

The software Presentation (Neurobehavioral SystemsTM,
Albany, CA, USA) was used to control the presentation of visual
stimuli, response registration, EMG acquisition, and for triggering
TMS stimulation.

ANALYSIS
Effects of rTMS on error rates and RT were analyzed only for tri-
als with coherent timing because performance rates were close
to chance level in incoherent trials (mean = 60% ± 14 correct
answers, 30–77%), in contrast to 83% ± 11 (from 60 to 99%) in
coherent trials. The error rates and RTs in noTMS trials were used
as measures of baseline performance; the performance in an initial
practice session served as an additional baseline.

Error rates represent coherently timed continuations that were
incorrectly judged as incoherent (i.e., missed). Two two-way
repeated-measures ANOVAs were used to analyze the effects
of rTMS-site (PMd vs. VX) and rTMS onset (TMS-early vs.
TMS-late) on the error rates and the mean RTs as dependent
variables, respectively. Additional two-way repeated-measures
ANOVAs were used to assess effects of rTMS in contrast to noTMS
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trials, including the factors rTMS-site (PMd vs. VX) and interfer-
ence (TMS, collapsed over TMS-early and TMS-late, vs. noTMS
trials). Paired-samples t -tests (two-tailed) were used for compar-
isons between the factor levels. The influences of covariates were
assessed by means of correlation analysis (Pearson, two-tailed) and
by means of independent samples t -tests.

To control whether rTMS pulses elicited MEPs, EMG activity
was analyzed within epochs from 100 ms before until 600 ms after
the last rTMS pulse. The activity recorded before the first pulse
was used as a baseline and this was subtracted from the activity
obtained after pulse onset. For each participant, resulting ampli-
tude values were then averaged over all rTMS trials within one
session.

The software SPSS (IBM, SPSS statistics, Version 17) was used
for statistical analyses.

RESULTS
EFFECTS OF rTMS ON ERROR RATES
The mean error rates are shown in Table 1 and are plotted in
Figure 2 for the rTMS-sites (PMd and VX) and the rTMS onsets
(TMS-early and TMS-late), respectively. In addition, error rates
from noTMS trials (presented separately for the PMd and VX
sessions) and from the pre-TMS practice session are shown as
measures of baseline performance.

Error rates were highest when the PMd was stimulated in the
TMS-early condition. However, no interaction effects were found
between rTMS-site and rTMS onset (P = 0.19), which was pos-
sibly due to low statistical power. The TMS-induced increase in
error rates was statistically significant when it was compared to
the TMS-early condition in the VX (t 10 = 2.79, P = 0.019).

An additional two-way ANOVA which was carried out to com-
pare rTMS trials with noTMS trials, including the factors rTMS-
site (PMd,VX) and interference (TMS, noTMS), also did not show
any significant effects.

In a next step, the influence of several independent variables
on the error rates during TMS-early and TMS-late in PMd and
VX was studied by means of correlation analysis (Pearson cor-
relation). These variables were (i) the localization of the rTMS
focus in the anterior-to-posterior dimension (y-coordinate) and
in the medial-to-lateral dimension (x-coordinate), (ii) the strength
of the fMRI contrast at the stimulated site, and (iii) the rest-
ing motor threshold, which determined stimulation intensity in
each individual. The only significant correlation found was a neg-
ative correlation between TMS-early in VX and the resting motor

threshold (r11 = −0.62; P = 0.043). Thus, the higher the motor
threshold (i.e., the stimulation intensity), the lower the error rates
when the VX was stimulated during occlusion.

The effect of session order (i.e., whether the PMd was targeted
in the first or the second TMS session) was assessed by means
of an independent samples t -test comparing error rates during
PMd stimulation in the first session to error rates during PMd
stimulation in the second session. No significant difference was
found.

EFFECTS OF rTMS ON RTs
The mean RTs are shown in Table 2 and plotted in Figure 3 for
the rTMS-sites (PMd and VX) and the rTMS onset (TMS-early
and TMS-late). In addition, RTs for noTMS trials (presented sep-
arately for the PMd and VX sessions) and RTs for the pre-TMS
practice session are shown. No RT differences were found between
rTMS-sites and rTMS onsets. However, mean RTs were longer in
the baseline condition and during noTMS trials as compared to
TMS trials in both the PMd and the VX sessions. This difference
was statistically confirmed in a two-way ANOVA with the factors
rTMS-site (PMd,VX) and interference (TMS trials, noTMS trials),
revealing a significant main effect of interference (F1,10 = 6.21,
P = 0.032). Thus, the RTs were generally reduced in TMS trials,
irrespective of the site stimulated and TMS onset.

In addition, the influence of several independent variables on
RT was assessed by means of correlation analysis (Pearson cor-
relation), with the variables (i) localization of rTMS focus in
the anterior-to-posterior dimension (y-coordinate) and in the
medial-to-lateral dimension (x-coordinate), (ii) strength of the
fMRI contrast at the stimulated site, and (iii) resting motor thresh-
old. None of these correlated significantly with the RTs measured
in the different conditions.

Further, no significant differences were found when analyz-
ing the influence of the session order by means of an independent
samples t -test comparing RT when PMd was stimulated in the first
session to RT when PMd was stimulated in the second session.

EMG ACTIVITY
Electromyographic activity in response to rTMS trains was
recorded from the FDI muscle of the right hand and was com-
pared between the rTMS-sites. Repetitive TMS over the left PMd
elicited significantly higher EMG activity than VX stimulation
(t 10 = 2.59, P = 0.027). In contrast to VX stimulation, left PMd
stimulation occasionally evoked MEPs in some participants (left

Table 1 | Mean error rates (%) and SE forTMS (TMS-early,TMS-late), and noTMS trials for the twoTMS sessions (PMd and VX) and for the

practice session.

Session Mean SE TMS application

TMS-early TMS-late noTMS

Mean SE Mean SE Mean SE

PMd – – 16.97 3.39 13.38 4.93 14.09 2.91

VX – – 9.37 2.58 12.26 3.70 12.13 3.17

Practice 13.33 2.78 – – – – – –
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PMd: mean EMG amplitude = 380 μV, SD = 441; VX: mean EMG
amplitude = 37 μV, SD = 22). However, no evidence was found of
an influence of EMG activity on performance. EMG amplitudes
neither correlated significantly with error rates (PMd stimulation:
r11 = 0.25, P = 0.46; VX stimulation: r11 = 0.50, P = 0.12) nor
with RT (PMd stimulation: r11 = −0.25, P = 0.46; VX stimula-
tion: r11 = 0.01, P = 0.99; TMS trials were collapsed over early
and late stimulation).

DISCUSSION
We used rTMS to study the functional significance of the PMd
for action prediction. To this end, an “occluder-paradigm” was
set up, using video clips of everyday actions that were repeat-
edly occluded for 1 s. Occlusions covered object-directed arm and
full-body actions performed by a right-handed actress. The partic-
ipants’ task was to judge whether or not the action continued with
coherent timing after an occlusion. The time course of the actions
was occasionally manipulated during occlusion, resulting in action
continuations that were too soon or too advanced relative to the
undisrupted action. In two conditions, rTMS was delivered to the
left PMd either at the onset of occlusion (TMS-early) or 300 ms
after the onset of occlusion (TMS-late). In a control session, the
same procedure was applied while stimulating the VX.

FIGURE 2 | Graphs show the mean error rates forTMS-early and

TMS-late in the left PMd and in the VX. Error rates from noTMS trials
(i.e., trials without TMS that were randomly intermixed between TMS trials
in each session) and from the practice session were taken as measures of
baseline performance. Errors were those cases when a time-coherent
action continuation was misjudged as being time-incoherent. Bars
represent SE.

Even though the present results lack the fortification of strong
statistical confirmation (only one pairwise comparison in a 2 × 2
factorial design was significant), they might inform future research
and highlight interesting functional interpretations of the PMd
from earlier literature which is discussed below. In the TMS-early
condition, rTMS over the PMd led to an increased number of
prediction errors when compared to VX stimulation. More pre-
cisely, participants had an increased tendency to falsely judge
time-coherent action continuations as incoherent. Interestingly,
rTMS had this effect when it was applied at the onset of occlu-
sions, but not when it was applied 300 ms after the onset of
occlusions. In agreement with our hypothesis, this result suggests
that the PMd is indeed functionally relevant for generating pre-
dictions about the future course of observed action sequences.
However, before discussing the results in detail we have to point
out limitations in statistical confirmation. In particular, a signif-
icant effect of TMS was only found in a pairwise comparison
between PMd and VX stimulation in the TMS-early condition.
Error rates increased specifically after early rTMS over the PMd
and were lowest after TMS-early over the VX. Nevertheless, the
overall interaction between rTMS-site and rTMS onset did not
reach significance. The lack of a statistically significant interaction
is probably due to low statistical power which leads to an increased
possibility of a type II error. Although this raises reservations, it
should be considered that the pattern of results draws a consis-
tent picture which is in good correspondence with the relevant
literature.

Irrespective of its onset and the cortical site stimulation was
delivered to, RTs were generally shorter in rTMS trials than in
noTMS trials. This finding stands in contrast to the absence of RT
shortening during visuomotor learning which was found specifi-
cally after TMS interference in the right PMd (Praeg et al., 2005).
In the present study, the RT shortening was not specific to the
stimulated site and occurred in all conditions. Different effects of
TMS to the left PMd compared to the right PMd could point to
different functional roles that these areas play during sensorimotor
integration. In accordance with the present findings, unspecific RT
shortening was reported for simple RT (Terao et al., 1997), go/no–
go RT (Sawaki et al., 1999) and sequential responses (Gregori et al.,
2005). In these studies, non-specific RT shortening occurred inde-
pendently of the rTMS application site and was observed after both
subthreshold and suprathreshold stimulation. The non-specific
RT effects were hence explained by intersensory facilitation (e.g.,
Nickerson, 1973), which refers to additive facilitating effects of

Table 2 | Mean reaction times and SE forTMS (TMS-early,TMS-late) and noTMS trials, for the twoTMS sessions (PMd and VX) and for the

practice session.

Session Mean SE TMS application

TMS-early TMS-late noTMS

Mean SE Mean SE Mean SE

PMd – – 1021.71 36.68 998.92 42.48 1045.19 44.41

VX – – 1019.67 41.56 1011.47 53.37 1054.15 46.77

Practice 1086.19 36.48 – – – – – –
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FIGURE 3 | Graphs show the mean RTs forTMS-early andTMS-late in

the left PMd and in the VX for trials with coherently timed action

continuations after occlusion. RTs from noTMS trials (i.e., trials without
TMS that were randomly intermixed between TMS trials in each session)
and from the practice session were considered as measures of baseline
performance. Bars represent SE.

multimodal sensory stimulation that is applied simultaneously.
During rTMS, the discharging coil produces tactile sensations
at the scalp which are accompanied by acoustic clicks. In the
present study, not only the mean RT was shorter in rTMS tri-
als compared to noTMS trials, but also the error rates in the
TMS-early condition of the VX session decreased with stronger
stimulation intensity. This was expressed in a significant correla-
tion between error rates and resting motor threshold. In fact, the
tactile sensation and the clicking sound increase with stimulation
intensity. This interpretation suggests that while the participants
might have been generally more efficient in TMS trials, the inter-
ference in the PMd at early times during occlusion could have
inhibited particularly those functions that were required in the
action prediction task.

Conversely, TMS over the VX could have induced modulation
in mesial superior parietal areas, such as the precuneus (PCu;
Cavanna and Trimble, 2006) or more laterally in the superior
parietal lobe (SPL; Rushworth et al., 2003; Busan et al., 2009).
Both areas are involved in visuo-spatial processing during action-
related tasks. The increase in accuracy with the increasing intensity
of VX stimulation might reflect either the facilitation of task rele-
vant processing (Busan et al., 2009) or the inhibition of redundant
functions (Oshio et al., 2010).

As indicated in the EMG activity in the right FDI that was sig-
nificantly increased during PMd stimulation, TMS over the left
PMd modulated the activation in the ipsilateral M1, occasionally
eliciting MEPs. Such propagation of activity to M1 is not sur-
prising, given its dense connectivity to premotor areas (e.g., Wise
et al., 1997; Picard and Strick, 2001). It has been shown before
that TMS to the premotor cortex can induce excitability changes
in the ipsilateral primary motor cortex (Civardi et al., 2001; Rizzo
et al., 2004). Note that EMG was measured in the FDI muscle
of the right hand, contralateral to the stimulated (left) hemi-
sphere, and responses were given with the ipsilateral (left) hand.
Also, transcallosal propagation to the contralateral motor cortex
was observed after PMd stimulation (Koch and Rothwell, 2009).
Here, it can not be excluded that PMd stimulation influenced the

participants’ response behavior in this way, although we did not
find any indication (such as RT differences between stimulation
sites).

CONTRIBUTION OF THE LEFT PMd TO ACTION PREDICTION
The present results provide first insights to the way in which
the PMd might contribute to action prediction. The study was
designed to complement the findings of an earlier fMRI study
showing that BOLD activation in this area was strongest during an
action prediction task, as compared to control conditions which
employed the same stimuli but different task instructions (e.g.,
memory task; Stadler et al., 2011).

Previous studies targeted the PMv to disrupt the sensorimo-
tor transformation of perceived action information. For instance,
TMS over the PMv affected weight judgments of a lifted box
(Pobric and Hamilton, 2006) and disrupted the discrimination
of upright static pictures showing dancing postures (Urgesi et al.,
2007b) and the visual discrimination of actions presented dynam-
ically and in static images (Avenanti et al., 2007; Urgesi et al.,
2007a; Candidi et al., 2008). However, in contrast to the PMv,
the PMd seems to be concerned with movement requiring a
higher level of integration such as guiding the arm toward an
object in space. These differential specializations are well docu-
mented for motor control (Davare et al., 2006; Hoshi and Tanji,
2007) and were also found during action perception (Buccino
et al., 2001; Sakreida et al., 2005). Corresponding actions were
occluded in the present study. Thus, the performance increment
after PMd stimulation might reflect prediction that is based on
simulating the occluded motor actions (Graf et al., 2007). Apply-
ing the action simulation account to the present study, suggests
that motor programs involved in controlling right arm move-
ments were activated during occlusion and produced predictions
of the sensory consequences of motor actions (Grush, 2004;
Wilson and Knoblich, 2005). When the action continued after
occlusion, the prediction was matched with the actual action
continuation.

TMS studies that disrupted PMd function during motor con-
trol found effects on the timing of arm movements (Davare et al.,
2006) and on the anticipatory scaling of forces when objects with
different weights were lifted (Chouinard et al., 2005). Since object
weight was indicated by visual symbols in the latter study, impaired
force scaling could be attributed to the ineffective use of parame-
ters for arm movements that were provided by the visual cues
(e.g., Kalaska et al., 1997). In other studies, TMS was applied over
the left PMd during choice reaction time tasks and led to pro-
longed RTs of both ipsilateral and contralateral hand responses
(Schluter et al., 1998; Johansen-Berg et al., 2002). Thus, some
of these results provide evidence of effector-unspecific motor–
cognitive functions of the left PMd which has been corroborated
by imaging studies (e.g., Grafton et al., 2002; Sakai et al., 2002;
Ohbayashi et al., 2003; Haaland et al., 2004). These imaging stud-
ies involve the generation of more or less complex finger-tapping
sequences that are usually instructed by a visual stimulus sequence.
Some authors associated the PMd with action selection according
to learned (arbitrary) associations between (usually visual) stim-
uli and motor responses (see Rushworth et al., 2003 for a review).
Other authors relate PMd activation to the internal organization

Frontiers in Human Neuroscience www.frontiersin.org February 2012 | Volume 6 | Article 20 | 7

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Stadler et al. Premotor rTMS impairs action prediction

of action sequences, especially their ordinal (or temporal) struc-
turing (e.g., Ohbayashi et al., 2003; Haaland et al., 2004). The
PMd was further found to contribute to purely cognitive tasks
that require visuo-spatial transformations, such as mental rota-
tion (Lamm et al., 2001; Abe et al., 2007) or serial prediction
based on spatial stimulus properties (Schubotz and von Cra-
mon, 2001; Schubotz et al., 2003) and TMS over the PMd can
affect the accuracy in mental rotation tasks (Oshio et al., 2010).
These functional requirements, selection, structuring, and spa-
tial transformation, seem to be compatible with the particular
demands of the present prediction task. Here, occluded actions
were internally substituted, requiring observers to mentally gen-
erate an action sequence under internal (i.e., memory-based)
guidance (Springer and Prinz, 2010). The parameters determin-
ing the selection of the appropriate action components (Cisek,
2007) were given in the particular video scene perceived prior to
occlusion.

To conclude, the PMd, an area that is involved in the con-
trol of arm and full-body actions, might be needed when actions
of this kind have to be predicted during observation. The corre-
spondence between action execution and action observation might
either point to the direct activation of motor programs to simu-
late the observed/occluded actions or, alternatively, to the access
of effector-unspecific motor–cognitive functions of this particular
area.

TIMING OF THE LEFT PMd CONTRIBUTION TO ACTION PREDICTION
The time point of the rTMS application was crucial. Repetitive
TMS over the left PMd only affected action prediction when it was
delivered at the onset of the occlusion, taken to reflect an initial
phase of internal action prediction. First, this observation relates
to studies that showed RT slowing following PMd stimulation at
short latencies after the presentation of a visual cue (Schluter et al.,
1998, 1999; Johansen-Berg et al., 2002). Further, the PMd might
be involved particularly in the initiation of prediction, which is
in line with an idea recently put forward by Prinz and Rapinett
(2008). The authors found that real-time simulation of occluded
actions (Graf et al., 2007) can lag behind real-time by a constant
latency (of about 20–120 ms; Sparenberg et al., 2012). The concept
of real-time simulation claims that observed actions are mentally
simulated in real-time in order to achieve internal predictions
(Graf et al., 2007). Prinz and Rapinett (2008) specified this concept
by proposing that the positive time error reflects a restart of the
internal simulation. Accordingly, real-time simulation runs con-
tinuously during ongoing observation and is restarted when the
observed action is occluded. Drawing on the restart hypothesis,
one may take the present results to suggest that PMd is involved in
restarting (i.e., for initiating the simulation of an action sequence
in a purely internally guided mode).

A related issue was studied by Kennerley et al. (2004) during
motor control. They aimed to investigate the roles of the pre-
SMA and the left PMd during the initiation of finger-tapping
sequences and therefore used rTMS. Their work was derived from
evidence from RT analysis suggesting that movement sequences
are at least partly programmed prior to the start of the first move-
ment. This is, for instance, indicated by a relatively long RT for
the first movement in a sequence, with an RT increase that is

proportional to the total length of the sequence (e.g., Sternberg
et al., 1978; Rosenbaum et al., 1983). Kennerley et al. (2004)
found that disrupting pre-SMA functions, but not PMd func-
tions, prolonged sequence initiation only during internal guidance
(i.e., when the sequence was retrieved from memory and not
when it was externally cued). The results obtained by Kennerley
and colleagues appear to be inconsistent with the present results,
since in their study, only rTMS over the pre-SMA but not left
PMd had an effect on action initiation. However, the different
experimental designs could account for this apparent discrepancy.
Kennerley et al. (2004) employed a task that required the gen-
eration of sequential finger movements according to a sequence
that was previously memorized. In contrast, in the present experi-
ment, the predicted actions were determined by parameters given
in a complex spatial setup that was shown in naturalistic video
clips. Object-directed actions call on the participation of lat-
eral premotor areas (PMd and PMv) due to their relevance in
achieving sensorimotor transformations. While the pre-SMA is
associated with internal guidance, lateral premotor-based action
control relies on perceptual information to specify action para-
meters (Goldberg, 1985; Matelli and Luppino, 2001; Ogawa et al.,
2006; Gowen and Miall, 2007). The PMd, in particular, is part of a
network underlying the transformation of visuo-spatial informa-
tion into motor codes (Wise et al., 1997; Matelli and Luppino, 2001;
Pesaran et al., 2006; Tomassini et al., 2007). Thus, we assume that
for predicting the time course of actions directed toward objects in
space (as depicted in the video scenes), the PMd integrates action
parameters that are extracted from the current scene just as it
does during reach planning (Beurze et al., 2007; Hoshi and Tanji,
2007).

Disturbing the left PMd might result in an interference with
the initial spatial and temporal programming of the action con-
tinuation according to action-relevant parameters. These action-
relevant parameters, such as posture, the orientation of the body,
and the objects in the scene and spatial distances between them,
can be provided to the PMd via projections from posterior pari-
etal areas (e.g., Fagg and Arbib, 1998; Matelli and Luppino, 2001;
Tomassini et al., 2007). Note that the constant occluder duration
of 1 s may have facilitated such initial programming, since at the
onset of occlusions, participants were aware of how long the pre-
dicted sequence would last. At the moment when TMS-late was
applied, such integration with external parameters may have been
terminated. TMS-late had no effect on prediction performance,
suggesting that the PMd did not contribute significantly in the
middle of occlusions, when ongoing action prediction was main-
tained. Presumably, this function may be achieved by other nodes
of the action observation/imagery network, which could be an
issue for future research.

Inspired by ideas of other authors (Wise et al., 1997; Grol et al.,
2006), we speculate that the integrative functions of the PMd may
be particularly appropriate for initiating large-scale prediction
(i.e., prediction over temporal intervals in the range of seconds),
which seems to be in accordance with its involvement in control-
ling actions that cover relatively wide spatial distances (in contrast
to coordinated finger movements as represented in PMv) and in
movement that requires the integration of a larger number of
joints.
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LIMITATIONS AND PERSPECTIVES
The most obvious limitation of the present study is the comparably
low statistical power of the data. This reservation should be kept in
mind when considering the interpretations of PMd involvement
in the initiation of action prediction provided here. We take this
study to suggest a way in which functional interpretations of the
PMd from literature might fit to the domain of action prediction.
Further research is needed to strengthen this approach.

Finding TMS over the PMd to excite the FDI muscle of the
contralateral hand raises the question to which extent modula-
tions in other interconnected areas or in interregional network
activity contributed to the observed behavioral effects (e.g., see
Siebner et al., 2009). Moreover, after disrupting the left PMd
by means of offline rTMS, compensatory activation can occur
in the contralateral premotor cortex (O’Shea et al., 2007). The
fact that TMS effects are not locally restricted imposes a cer-
tain reservation toward functional conclusions drawn from the
application of focal TMS. This holds as long as the complex mod-
ulations in neural networks induced by TMS can not be entirely
assessed.

Another issue concerns the selection of the control site which
requires weighing of costs against benefits. The VX was chosen as
a control region for several reasons. Primarily, we found no pre-
diction specific fMRI activation in this area. This does not exclude
that TMS over the VX interfered in functions that, although not
specific to action prediction, were still task relevant. As outlined
above, VX stimulation might have modulated functions repre-
sented in mesial or lateral superior parietal areas. However, the
current data do not provide indications to specify possible effects.
A second argument for choosing VX as a control site are weak
sensory side effects of TMS that are comparable to those of PMd
stimulation.

An alternative comparison is between PMd and another region
of the action observation network (AON). Areas in this net-
work are also active during mental imagery of actions and when
occluded actions are predicted (Grèzes and Decety, 2001; Cross
et al., 2011; Stadler et al., 2011). Further research could clarify

their role relative to that of the PMd during action prediction.
For instance, the PMv that was shown to be activated during the
occlusion of observed grasping actions in monkeys (Umiltà et al.,
2001) might be relevant when different action types (e.g., object
manipulation, instead of more spatially defined arm actions and
translational actions) are predicted (Davare et al., 2006). Posterior
regions in the AON such as the human pSTS which was involved
during longer lasting (i.e., 3 s) occlusion of intransitive actions
(Saxe et al., 2004), might supply input to premotor areas during
prediction. Compared to the PMd, this area could be relevant in
different phases of the action prediction task.

SUMMARY
The present study highlights how the left PMd might contribute
to predicting action in the absence of visual information. Partic-
ularly, the time point is indicated at which left PMd functions
might be required. More precisely, we suggest that the left PMd
might be involved in initiating predictions at the moment when
an observed action becomes occluded but may hand over to other
regions when ongoing prediction has to be maintained. This inter-
pretation is consistent with the function that is ascribed to the PMd
in motor control, which is the transformation of visuo-spatial or
learned arbitrary information into motor codes. With reference
to the action parameters that are achieved during such transfor-
mations, the PMd may contribute to the initial programming of
the predicted action. Overall, this interpretation is in accordance
with the notion that the prediction of observed dynamics employs
similar structures to those required to overtly produce dynamics
(Schubotz, 2007), which is in line with the common coding prin-
ciple (Prinz, 1997) and with the simulation account (Jeannerod,
2001). It is also consistent with human mirror system research
(e.g., Buccino et al., 2001; Fadiga et al., 2005).
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